Cellulose/TiO₂ Hybrid Spherical Microbeads Prepared by a Viscose Phase Separation Method: Control of the Distribution of TiO₂ Particles in a Sphering System

Shoji NAGAOKA,^{1,†} Kenji ARINAGA,² Hiromi KUBO,² Shigenori HAMAOKA,³ Toshihiko SAKURAI,² Makoto TAKAFUJI,² and Hirotaka IHARA²

¹Kumamoto Industrial Research Institute, Higashi-machi, Kumamoto 862-0901, Japan ²Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan

³Kyushu Inoac Co., Ltd., 3-12-24 Ekihigashi, Hakata-ku, Fukuoka 812-0013, Japan

(Received September 6, 2004; Accepted November 25, 2004; Published March 15, 2005)

ABSTRACT: Cellulose/TiO₂ hybrid spherical microbeads were prepared by a one-step phase separation method using a cellulose xanthate aqueous solution and a sodium polyacrylate aqueous solution. Various types of cellulose/TiO₂ hybrid spherical microbeads were obtained by using the several kinds of TiO₂ particles. The resulting hybrid spherical microbeads showed respective differences in the distribution of TiO₂ particles. EPMA observation of the surface of hybrid spherical microbead clearly showed where the TiO₂ particles were distributed. In addition, the extent of coverage by TiO₂ particles of the surface was also confirmed by external appearance, because the surface of cellulose/TiO₂ hybrid spherical microbeads on which there were relatively few TiO₂ particles appeared dark yellow. In contrast, the cellulose/TiO₂ hybrid spherical microbeads on which TiO₂ particles aggregated densely appeared white. It was suggested that the distribution of TiO₂ particles on the hybrid spherical microbeads was related to electric repulsion between the CSS⁻ group and TiO₂. The narrower the zeta potential distribution of TiO₂ particles in the sphering pH condition (*i.e.*, in pH 13 aqueous solution) is, the more TiO₂ particles were driven out from the cellulose xanthate domain. [DOI 10.1295/polymj.37.186]

KEY WORDS Cellulose / TiO₂ / Zeta Potential / Spherical Microbeads / Viscose / Phase Separation /

Cellulose, which has been used in various matrixforming materials, has long been explored for its potential as a building material. In particular, spherical microbeads of cellulose have been used as chromatographic packing materials,^{1–3} immobilization supports of microbes⁴ and cosmetic materials.^{5,6} Hoogendam et al. prepared the organic/inorganic hybrid materials using hydroxyethyl cellulose and inorganic oxides, such as SiO₂, TiO₂, and Fe₂O₃, as materials for the cosmetics, pharmaceutics and coating.7 Gilchrist et al. prepared the organic/inorganic hybrid materials using cellulose and TiO₂ as the matrix of an anion exchanger for adsorbent of protein.⁸ Lei et al. were successful in preparation of TiO2-densified perfectly spherical microbeads cellulose as an anion exchanger by means of W/O phase separation using cellulose xanthate and dichlorobenzene.9 The control of TiO₂ particles on the cellulose surface is considered to be important for the adsorption behavior of various solutes. On the other hand, cellulose microbeads prepared by the phase separation phenomenon between cellulose xanthate and polyacrylic acid aqueous soluiotn, namely the "viscose phase separation method",

were monodisperse and spherical.¹⁰ We succeeded in preparation of cellulose/TiO₂ hybrid spherical microbeads the surface of which was covered densely with TiO₂ particles by a "viscose phase separation method", and could develop carbon/TiO₂ hybrid spherical microbeads by means of their carbonization. In addition, it was confirmed that the efficiency of the carbon/TiO₂ hybrid spherical microbeads for removal of acetaldehyde as a photoassisted-catalysis was more effective than that of naked TiO_2 .¹¹ In contrast, Taoda et al. developed hybrid silica microbeads coated sparsely with TiO₂.¹² Nonami et al. developed an adsorbent that modified the surface of TiO₂ particle with apatite partially.¹³ The contact area of TiO₂ particles with organic material in TiO2-composite was reduced in order to avoid the composite's photo-degradation by active TiO₂ particles. Yamashita et al. could develop the deodorant fiber that hybridized sparsely photocatalytic TiO₂ particles to cellulose fiber.¹⁴ They tried to avoid photo-degradation of cellulose fiber by active TiO₂ particles using modified TiO₂. Therefore, it is important for the photoassisted-catalytic adsorbent using cellulose as a matrix that TiO₂ particles were

[†]To whom correspondence should be addressed (Tel: +81-96-365-5172, Fax: +81-96-365-5172, E-mail: nagaoka@kmt-iri.go.jp).

controlled on the surface of cellulose microbeads.

In this study, we prepared various types of cellulose/TiO₂ hybrid spherical microbeads by using several kinds of TiO₂ particles with the objective of controlling the appearance of the TiO₂ component. Differences relative to the composition of TiO₂ particles were observed in the distribution of TiO₂ contained in hybrid spherical microbeads. Therefore, the relationships between hybrid spherical microbeads and the composition of TiO₂ particles used were examined and the mechanism of the hybrid-sphering process was discussed.

EXPERIMENTAL

Materials

Cellulose/TiO₂ hybrid spherical microbeads were prepared by a one-step phase separation method using cellulose xanthate aqueous solution and sodium polyacrylate aqueous solution.¹¹ The characteristics of TiO₂ powder are shown in Table I. The hybrid spherical microbeads prepared by "viscose phase separation method" are summarized in Table II. The dispersion of the various kinds of TiO2 powder in a cellulose xanthate aqueous solution (Cellulose Content, 9.5 wt %, RENGO Co., Ltd., Osaka, Japan) (325 g) was carried out by stirring successively at 5000 rpm using a homogenizer (PROCESS HOMOGENIZER PH91, SMT Co.). The dispersion-solution was mixed with 30 wt % aqueous solution (1320 g) of sodium polyacrylate (Aquaric DL-453, M_w: 50000, Nippon Shokubai Co., Ltd., Osaka, Japan) containing NaOH

Table I. Characteristics of TiO₂ powders

TiO ₂ no.	Bulk gravity	Diameter
TiO ₂ -1 P-25 ^a	0.15	21nm^{d}
TiO ₂ -2 TKP-101 ^b	0.58	6 nm ^d
TiO ₂ -3 ST-01 ^c	0.41	7 nm ^d

^apurchased from Degussa Co., Ltd. ^bpurchased from Tayca Corp. ^cpurchased from Ishihara Sangyo Kaisha, Ltd. ^dthe value in the manufacture's literature.

Table II. Abbeviations and elemental analysis of hybrid spherical microbeads

Microbeads	wt % ^a			$TiO_2 (wt \%)$ content	
	TiO ₂ -1	TiO ₂ -2	TiO ₂ -3	Calcd.	Found
CT-1-30	29.6			29.6	27.7
CT-1-15	15.0			15.0	14.7
CT-2-30		29.6		29.6	21.5
CT-2-61		61.2		61.2	55.3
CT-3-30			29.6	29.6	23.9
CT-3-53			52.8	52.8	45.7

^aweight percent for cellulose containing in viscose

(48 g), and suspended by stirring at 120 rpm at 80 °C for 1 h. After heating and congealing, the cellulose/TiO₂ hybrid spherical microbeads were washed with hydrochloric acid aqueous solution and water.

Measurement

The zeta potentials of TiO_2 powder were measured by the electrophoresis using Laser Doppler method (Zetasizernano, Sysmex Corporation, Kobe, Japan). Electron micrographs of the hybrid spherical microbeads were obtained using a field emission scanning electron microscope (FE-SEM) (Hitachi S-4000, Hitachi, Ltd., Tokyo, Japan), and electron probe micro analysis (EPMA) was carried out using a JEOL JXA-

Figure 1. Diffuse reflectance spectra of the obtained hybrid spherical microbeads and naked TiO_2 powders: (a) CT-1-30 and TiO_2 -1, (b) CT-2-30 and TiO_2 -2, (c) CT-3-30 and TiO_2 -3.

Figure 2. SEM (upper and middle) and EPMA element map images (lower) for Ti of hybrid spherical microbeads: (a) CT-1-30, (b) CT-2-30, (c) CT-3-30. SEM: magnification; ×150 (upper) and ×10000 (midde), respectively. EPMA: magnification: ×2500 (lower).

8900 WD/ED (JEOL, Tokyo, Japan). Since only Ti was detected as component element of particles, Ti was performed by EPMA. Diffuse reflectance spectra were measured with a UV–vis spectrophotometer with integrating sphere equipment (JASCO V-560/ISV-469, JASCO, Tokyo, Japan). The cutting of a spherical microbead was carried out with a ultra microtoam (ULTRACUT S, Leica Microsystems).

RESULTS AND DISCUSSION

We obtained three types of hybrid spherical microbeads with hybridized cellulose and three kinds of TiO_2 powders (TiO_2 -1, TiO_2 -2 and TiO_2 -3) by the viscose phase separation method. The degree of appearance of TiO₂ on the surface of the spherical microbeads was found to depend on the type of TiO₂ powder used. The diffuse reflectance spectra of the obtained hybrid spherical microbeads, together with those of the naked TiO₂ powders are shown in Figure 1a-c. TiO₂-1, TiO₂-2 and TiO₂-3 showed no photoabsorption in the visible region. CT-1-30 spherical microbeads showed the least photoabsorption in the visible region, and their diffuse reflectance spectrum was closest to that of naked TiO₂ powder of TiO₂-1, TiO_2 -2 or TiO_2 -3. Figure 2a-c show the SEM and EPMA images of the hybrid spherical microbeads.

Figure 3. Diffuse reflectance spectra of CT-2 and CT-3 series: (a) CT-2-30, CT-2-61 and TiO₂-2, (b) CT-3-30, CT-3-53 and TiO₂-3.

Figure 4. Cross sectional SEM images of Cellulose/TiO₂ hybrid spherical microbeads: (a) CT-1-30, (b) cellulose, (c) CT-3-30, (d) CT-1-15.

Despite the fact that an equal weight (30 wt % for cellulose) of the three kinds of TiO₂ powders were respectively mixed into viscose in the process of sphering, it was confirmed that the distributions of TiO₂ particles containing in hybrid spherical microbeads depend on the specific type of TiO₂. The degree of appearance of TiO₂ particles on the surface of the microbeads was in the order of CT-1-30 > CT-2-30 > CT-3-30. The amounts of TiO₂ contained in the spherical microbeads were estimated from the ash weight by measurement of CHN elemental analysis and are shown in Table II. The difference among the content of TiO₂ containing cellulose/TiO₂ hybrid spherical microbeads was very small.

The three kinds of TiO_2 powders showed differences in their bulk gravities, as shown in Table I. In terms of bulk gravity, TiO_2 -1 was the lightest of all TiO_2 particles. Therefore, the hybrid spherical microbeads standing for CT-2-61 and CT-3-53 were prepared using TiO_2 powders amount corresponding to the volume of TiO_2 used for preparation of CT-1-30 hybrid spherical microbeads. Figure 3a and b show the diffuse reflectance spectra of the CT-2 and CT-3 hybrid spherical microbeads series. The photoabsorption in the visible region of CT-2-61 became less than that of CT-2-30 because of increase of adding of TiO_2 . This diffuse reflectance spectra is similar to that of CT-1-30. The reason CT-2-30 shows photoabsorption in the visible region is that the TiO₂ amount contained in CT-2-30 was so slight, the TiO_2 particles could not cover much of the surface of the sphere. The lack of photoabsorption in the visible region in CT-2-61 indicated that CT-2-61 could cover the surface of the sphere with TiO₂ particles. On the other hand, a decrease of photoabsorption of CT-3-53 was quite not observed for the visible region although a higher amount of TiO₂-3 powder was added to the viscose. As a result, the degree of appearance of TiO_2 particles on the surface of CT-3-53 was smaller than that of CT-3-30. These phenomena were not attributed to TiO_2 amount but to other causes. It was considered that the distribution of TiO₂ particles on the hybrid

Figure 5. Zeta potential distributions of TiO_2 particles measured by laser Doppler method: (a) TiO_2 -1, (b) TiO_2 -2, (c) TiO_2 -3.

spherical microbeads might be related to electric repulsion between the CSS^- group and TiO_2 .

Figure 4a shows an SEM image of a section of CT-1-30. As a reference, an SEM image of a section of cellulose microbead is shown in Figure 4b. In the scanning electron micrograph, TiO₂ particles were brightly visible due to their electrostatic charge. Obviously, the SEM image of cellulose microbeads shows no TiO_2 particles. As expected, it was confirmed that TiO₂-1 particles contained in CT-1-30 were located around the outline of the circle shape more tightly than inside the circle. In addition, it was confirmed that the hybrid spherical microbeads (stand for CT-1-15) in which the content of TiO_2 -1 is 15 wt %, had TiO₂-1 particles only on the surface of sphere, because the section of CT-1-15 indicated that the TiO₂-1 particles were located tightly only on the outline of the circle shape, as shown in Figure 4c. In contrast, as shown in the section of CT-3-30 of Figure 4d, TiO₂-3 particles contained in CT-3-30 were situated a little on the outline of the circle shape, but relatively in the interior of the circle shape. This indicates that the CT-3-30 hybrid microbeads involved TiO₂ particles internally. In particular, the SEM image for the section of CT-3-30 indicated the presence of a phase-separation phenomenon between the TiO₂ and

190

viscose domains; as a result, their interface formed wide pores in the conversion from viscose droplet to cellulose microbead.

In order to examine the mechanism of hybridization of TiO_2 and cellulose, the zeta potentials of TiO_2 used were respectively measured by the electrophoresis using Laser Doppler method in pH 13 aqueous solution. The pH of zeta potential measurement corresponded to that of the viscose phase separation sphering system. The zeta potentials of TiO₂-1, TiO₂-2, and TiO₂-3 all had minus potentials. Figure 5a-c show the zeta potentials distribution of each type of TiO₂ particle. As shown in Figure 5, the zeta potential distribution of TiO₂-1 was equal to that of TiO₂-2. However, the zeta potential distributions of both were much narrower than that of TiO₂-3. This indicates that the surface electric potentials of TiO₂-1 and TiO₂-2 particles, respectively, are comparatively homogeneous. The distribution of TiO₂ particles on the hybrid spherical microbeads must be related to electric repulsion between the CSS⁻ group and TiO₂. Figure 6a and b show the mechanism of hybridization of TiO₂ and cellulose xanthate. TiO₂-1 and TiO₂-2 particles possessing the minus potential uniformly were driven out by the CSS⁻ group of cellulose xanthate and the COO⁻ group of polyacrylic acid. Therefore, TiO₂-1 and TiO₂-2 particles localized at the interface between the cellulose xanthate phase and the PAA aqueous solution phase, as shown in the speculation on Figure 6a. In contrast, the zeta potential distribution of TiO₂-3 was the broadest of all given TiO₂ particles. This indicates that the surface electric potential of TiO₂-3 is inhomogeneous. As shown in the speculation of Figure 5b, TiO₂-3 particles were located within the cellulose xanthate phase, because of the diffusion to plus electric potential (around +60 mV) of its zeta potential. The fact that the content of TiO₂ particles of CT-3-53 was more than that of CT-1-30 indicates that the CT-3 hybrid microbeads series involved TiO₂ particles internally but did not have a great amount of TiO₂ particles on the surface. In addition, the shape of hybrid microbeads obtained using TiO₂-3 was most irregular. This phenomenon is attributed to the fact that the surface electric potential of TiO₂-3 was so inhomogeneous, the interface condition of phase separation between the cellulose xanthate phase and the polyacrylic acid phase was not stabilized.

CONCLUSIONS

Various types of cellulose/TiO₂ hybrid spherical microbeads were obtained by using several kinds of TiO₂ particles. It was confirmed that the distributions of TiO₂ particles contained on hybrid spherical microbeads depend on the composition of TiO₂ parti-

Figure 6. Schematic illustration of mechanism of hybridization between TiO_2 particles and cellulose: (a) Cellulose/ TiO_2 spherical beads hybridized TiO_2 particles possessing homogeneous potential: narrow zeta potential distribution. (b) Cellulose/ TiO_2 spherical beads hybridized TiO_2 particles possessing inhomogeneous potential: broad zeta potential distribution.

cles. Based on the finding that TiO_2 particles possessing the minus potential uniformly were driven out by the CSS⁻ group of cellulose xanthate and the COO⁻ group of polyacrylic acid, TiO₂ particles localized at the interface between the cellulose xanthate aqueous solution phase and the PAA aqueous solution phase. The narrower the zeta-potential distribution of TiO₂ particles in the sphering pH condition (*i.e.*, in pH 13 aqueous solution) is, the more TiO₂ particles were driven out from the cellulose xanthate domain. Thereby, we could prepare cellulose/TiO₂ hybrid spherical microbeads that were covered densely with TiO₂ particles on the surface and were also involved TiO₂ particles. The data gathered here are not only useful for the preparation of photocatalysis adsorbent, but also for preparation of ion exchanger adsorbent^{7,8} composed from cellulose/TiO₂ composite matrix, cellulose/inorganic materials hybrid-fiber¹⁴ and hybrid materials for cosmetic materials⁵ from viscose.

Acknowledgment. The authors are grateful to Kohei Shiba of the Sysmex Corporation, Japan for providing information on the particles used in these experiments. The authors also are grateful to Akihiro Miyamoto of Kumamoto University, Japan for EPMA analysis.

In addition, the authors are grateful to Tetsuyuki Akao of the Fukuoka Industrial Technology Center, Japan for cutting of spherical microbeads.

REFERENCES

- 1. Y. Motozato, K. Matsumoto, and C. Hirayama, *Nippon Kagaku Kaishi*, 1883 (1981).
- Y. Motozato and C. Hirayama, J. Chromatogr., 298, 499 (1984).
- 3. U. Kim and S. Kuga, Cellulose, 7, 287 (2000).
- M. Fujita, T. Uchida, Y. Kimoto, and O. Daichu, Jpn. Patent, Appl. 315164 (1999).
- S. Ishihara, T. Goto, and T. Tanaka, Proc. of 22nd IFSCC Congress, poster No. 129, 23 (2002).
- 6. I. Nagai and M. Nishikawa, Jpn. Patent, 06-045534 (1994).
- C. W. Hoogendam, I. Derks, A. de Keizer, M. A. Cohen Stuart, and B. H. Bijsterbosch, *Colloids Surf.*, A, 144, 245 (1998).
- G. R. Gilchrist, M. T. Burns, and A. Lyddiatt, in "Separations for Biotechnology 3," D. L. Pyle, Ed., Royal Society of Chemistry, Cambridge, U.K., 1994, p 186.
- Y. L. Lei, D. Q. Lin, S. J. Yao, and Z. Q. Zhu, J. Appl. Polym. Sci., 90, 2848 (2003).
- S. Ohkuma, K. Yamagishi, M. Hara, K. Suzuki, and T. Yamamoto, Jpn. Patent, 05-048772 (1993).
- S. Nagaoka, Y. Hamasaki, S. Ishihara, M. Nagata, K. Iio, C. Nagasawa, and H. Ihara, J. Mol. Catal. A: Chem., 177, 255 (2002).
- H. Taoda, M. Fukaya, E. Watanabe, and K. Tanaka, Proc. of 19th Korea–Japan International Seminar on Ceramics, 471 (2002).
- T. Nonami, H. Taoda, N. T. Hue, E. Watanabe, K. Iseda, M. Tazawa, and M. Fukaya, *Mater. Res. Bull.*, 33, 125 (1998).
- 14. N. Yamashita, Sen-i Gakkaishi, 58, 231 (2002).