Some Comments on the Analysis of the Third Virial Coefficient for Polymer Chains

Masashi Osa, Takenao Yoshizaki, ${ }^{\dagger}$ and Hiromi Yamakawa
Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

(Received April 7, 2004; Accepted May 19, 2004; Published August 15, 2004)

Abstract

An analysis is made of experimental data for the third virial coefficient A_{3} of atactic oligo- and poly(α-methylstyrene)s (a-P $\alpha \mathrm{MS}$) in the Θ solvent cyclohexane at $30.5^{\circ} \mathrm{C}$ and in three good solvents, toluene, 4-tertbutyltoluene, and n-butyl chloride, at $25.0^{\circ} \mathrm{C}$ on the basis of the helical wormlike (HW) chain model. It is found that A_{3} at Θ, which is denoted by $A_{3, \Theta}$, becomes a constant of $5.0 \times 10^{-4} \mathrm{~cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}$ independent of the weight-average molecular weight M_{w} for $M_{\mathrm{w}} \gtrsim 10^{4}$ and deviates from it for $M_{\mathrm{w}} \lesssim 10^{4}$ because of effects of chain ends. The observed dependence of $A_{3, \Theta}$ on M_{w} may be well explained by the HW theory that takes account of the effects. For the three good-solvent systems, the behavior of the factor g defined by $A_{3} /\left[A_{2}^{(\mathrm{HW})}\right]^{2} M_{\mathrm{w}}$ is examined as a function of the cubed gyration-radius expansion factor $\alpha_{S}{ }^{3}$, where $A_{2}^{(\mathrm{HW})}$ is the part of the second virial coefficient A_{2} without the effects of chain ends. It is found that the data points for a-P $\alpha \mathrm{MS}$ samples with $M_{\mathrm{w}} \gtrsim 10^{5}$ in all the three good solvents form nearly a single-composite curve, as predicted by the HW theory, and that they follow the Stockmayer-Casassa theoretical curve for $\alpha_{S}{ }^{3} \gtrsim 2$ but deviate upward from it for $\alpha_{S}{ }^{3} \lesssim 2$ because of effects of three-segment interactions. Effects of chain stiffness are of minor importance for an explanation of this deviation. Some literature data for polystyrene are also examined. [DOI 10.1295/polymj.36.634]

KEY WORDS Third Virial Coefficient / Excluded-volume Effect / Chain Stiffness / Three-segment Interactions / Effect of Chain Ends / Helical Wormlike Chain / Poly(α-methylstyrene) / Polystyrene /

In our experimental studies of the intermolecular excluded-volume effect in dilute solutions of flexible polymers made so far within the new framework based on the helical wormlike (HW) chain model, ${ }^{1,2}$ it has been shown for atactic polystyrene (a-PS), ${ }^{1-4}$ atactic (a-) and isotactic poly(methyl methacrylate)s (PMMA), ${ }^{1,2,5,6}$ and atactic poly(α-methylstyrene) (a-P $\alpha \mathrm{MS})^{7}$ that for good-solvent systems the behavior of the second virial coefficient A_{2} as a function of the weight-average molecular weight M_{w} or of the interpenetration function Ψ appearing in it as a function of the cubed gyration-radius expansion factor $\alpha_{S}{ }^{3}$ may be well explained by the HW theory ${ }^{1,8}$ that takes account of effects of chain stiffness and chain ends. It has also been shown that the behavior of A_{2} as a function of M_{w} for a-PS, a-PMMA, and a-P α MS in the respective Θ solvents may be well explained by the HW theory at the Θ temperature ${ }^{9}$ with consideration of effects of chain ends and also three-segment interactions.

The third virial coefficient A_{3} is another important quantity which is concerned with the intermolecular excluded-volume effect in dilute polymer solutions. There has recently been substantial progress in an understanding of the behavior of A_{3} for flexible polymers on both experimental and theoretical sides. On the experimental side, it has been demonstrated by

Norisuye and co-workers ${ }^{10-16}$ that A_{2} and A_{3} can be simultaneously determined rather unambiguously from light-scattering (LS) data by an application of the Bawn plot. ${ }^{17}$ From the data so obtained for PS and polyisobutylene, they have derived the conclusions that A_{3} remains positive finite at the Θ temperature, as already shown in earlier experimental studies, ${ }^{18-21}$ and that for good-solvent systems the factor g defined by $A_{3} / A_{2}{ }^{2} M_{\mathrm{w}}$ as a function of $\alpha_{S}{ }^{3}$ is nearly consistent with the Stockmayer-Casassa (SC) theory prediction ${ }^{22,23}$ for $\alpha_{S}{ }^{3} \gtrsim 2$. Subsequently, Li et al. ${ }^{24}$ have obtained similar experimental results for PS in the Θ and good solvents. On the theoretical side, the effects of chain ends on A_{3} have been formulated and analyzed for a-PS and a-PMMA in the respective Θ solvents. ${ }^{25}$ As for good-solvent systems, Norisuye et al. ${ }^{26}$ have developed a theory of A_{3} with consideration of the effects of chain stiffness and three-segment interactions and claimed that the upward deviation of experimental data points from the SC theoretical curve in the plot of g vs. $\alpha_{S}{ }^{3}$ for $\alpha_{S}{ }^{3} \lesssim 2$ arises from those effects. In the present paper, we make an analysis of A_{3} data obtained from previous LS measurements for a-P $\alpha \mathrm{MS}^{7,27-29}$ to examine the effects of chain ends on A_{3} at Θ and reconsider Norisuye et al.'s conclusion for g for good-solvent systems. Some literature data for a-PS ${ }^{11,12}$ are also used.

[^0]In anticipation of analysis, it is pertinent to make here a short comment on the above-mentioned theory of Norisuye et al. ${ }^{26}$ They have derived an approximate closed expression for the part of g involving the effective binary-cluster integral β on the basis of the SC theory values ${ }^{22}$ with the use of a scaled excludedvolume parameter \check{z} newly introduced on the apparent analogy of the intra- and intermolecular scaled ex-cluded-volume parameters ${ }^{1,2} \tilde{z}$ and $\tilde{\tilde{z}}$. Strictly, however, the scale factor in their \check{z} arises from the leading (zeroth-order) term in the perturbation expansion of $A_{3}($ or $g)$ in contrast to those in \tilde{z} and $\tilde{\tilde{z}}$ which arise from the first-order perturbation terms of $\alpha_{S}{ }^{2}$ and A_{2}, respectively. Thus their analogy is not self-consistent.

RESULTS FOR a-P α MS

The values of A_{3} for $22 \mathrm{a}-\mathrm{P} \alpha \mathrm{MS}$ samples with M_{w} ranging from 5.30×10^{2} to 5.46×10^{6} in cyclohexane at $30.5^{\circ} \mathrm{C}(\Theta)$, those for 17 samples with M_{w} from 6.48×10^{2} to 5.46×10^{6} in toluene at $25.0^{\circ} \mathrm{C}$, and those for 6 samples with M_{w} from 2.38×10^{5} to 5.46×10^{6} in 4-tert-butyltoluene and n-butyl chloride at $25.0^{\circ} \mathrm{C}$ had been determined from the Bawn plots ${ }^{17}$ simultaneously in the previous ${ }^{7,29}$ studies of A_{2}. The values of A_{3} so determined for a-P $\alpha \mathrm{MS}$ in cyclohexane at Θ, which we denote by $A_{3, \Theta}$, are given in Table I along with those of M_{w} which have been reproduced from refs 7 and 29. In Table II are given the values of A_{3} for a- $\mathrm{P} \alpha \mathrm{MS}$ in toluene, 4-tert-butyltoluene, and n-butyl chloride at $25.0^{\circ} \mathrm{C}$ along with those of $\alpha_{S}{ }^{3}$, where the values of $\alpha_{S}{ }^{3}$ for OAMS5, OAMS8, and OAMS10 have been assumed to be 1 as in ref 7, and those for OAMS13 through AMS550 have been reproduced from refs 7 and 28.

It is seen from Table I that the values of $A_{3, \Theta}$ for a-P α MS in cyclohexane at $30.5^{\circ} \mathrm{C}$ are positive and almost independent of M_{w} for $M_{\mathrm{w}} \gtrsim 10^{4}$. From a com-
parison between the values of A_{3} for each of the samples AMS24 through AMS550 in different solvents given in Table II, it is seen that A_{3} increases with increasing solvent power $\left(\alpha_{S}{ }^{3}\right)$.

ANALYSIS AND DISCUSSION

Basic Equations

In this subsection, we summarize basic equations in the HW and related theories necessary for an analysis of the experimental data for A_{3} in the Θ and good solvents given in the last section.

The HW bead model (with excluded volume) ${ }^{1,25}$ is such that $n+1$ beads are arrayed with spacing a between them along the contour of total length $L=$ $n a$, where $n-1$ intermediate beads are identical and the two end beads are different from the intermediate ones and also from each other in species. Identical ex-cluded-volume interactions between intermediate beads are expressed in terms of the effective binarycluster integral β and the ternary-cluster integral β_{3}. We note that β is defined by $\beta=\beta_{2}+$ const. β_{3} with β_{2} the conventional binary-cluster integral and vanishes at Θ. In order to consider the effects of chain ends on A_{3}, it is necessary to introduce nine kinds of excess ternary-cluster integrals associated with those trios of beads which include at least one end bead. Note that there are ten kinds of ternary-cluster integrals in total, including the standard one $\left(\beta_{3}\right)$ for the trio only of intermediate beads. As explicitly shown later, the part $A_{3}^{(\mathrm{E})}$ of A_{3} representing the effects of chain ends may be written in terms of three combinations $\beta_{3,1}, \beta_{3,2}$, and $\beta_{3,3}$ of the nine excess ternary-cluster integrals. The HW model itself is defined in terms of three basic model parameters: the constant differential-geometrical curvature κ_{0} and torsion τ_{0} of its characteristic helix and the static stiffness parameter λ^{-1}.

According to the HW theory, ${ }^{1,25} A_{3}$ in general may be written in the form

Table I. Values of M_{w} and $A_{3, \Theta}$ for atactic oligo- and poly(α-methylstyrene)s in cyclohexane at $30.5^{\circ} \mathrm{C}$

Sample	M_{w}	$10^{4} A_{3, \Theta}$ $\left(\mathrm{~cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}\right)$	Sample	M_{w}	$10^{4} \mathrm{~A}_{3, \Theta}$ $\left(\mathrm{~cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}\right)$
OAMS4	$5.30 \times 10^{2} \mathrm{a}$	20	AMS2	2.48×10^{4}	4.7
OAMS5	6.48×10^{2}	17	AMS5	5.22×10^{4}	4.5
OAMS8	1.04×10^{3}	14	AMS6	6.46×10^{4}	4.8
OAMS10	1.27×10^{3}	9.9	AMS11	1.15×10^{5}	4.9
OAMS13	1.60×10^{3}	7.3	AMS15	1.46×10^{5}	5.0
OAMS19	2.27×10^{3}	8.9	AMS24	2.38×10^{5}	5.2
OAMS25	2.96×10^{3}	7.5	AMS40	4.07×10^{5}	4.7
OAMS33	3.95×10^{3}	6.3	AMS80	8.50×10^{5}	4.8
OAMS38	4.57×10^{3}	6.7	AMS200	2.06×10^{6}	4.4
OAMS67	7.97×10^{3}	4.7	AMS320	3.22×10^{6}	5.0
AMS1	1.30×10^{4}	4.2	AMS550	5.46×10^{6}	5.6

[^1]Table II. Values of A_{3} and $\alpha_{S}{ }^{3}$ for atactic oligo- and poly $\left(\alpha\right.$-methylstyrene)s in toluene at $25.0^{\circ} \mathrm{C}$,
in 4-tert-butyltoluene at $25.0^{\circ} \mathrm{C}$, and in n-butyl chloride at $25.0^{\circ} \mathrm{C}$

Sample	Toluene, $25.0^{\circ} \mathrm{C}$		4-tert-Butyltoluene,$25.0^{\circ} \mathrm{C}$		$\begin{gathered} n \text {-Butyl chloride, } \\ 25.0^{\circ} \mathrm{C} \end{gathered}$	
	$\begin{gathered} 10^{2} A_{3} \\ \left(\mathrm{~cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}\right) \end{gathered}$	$\alpha_{S}{ }^{3}$	$\begin{gathered} 10^{2} A_{3} \\ \left(\mathrm{~cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}\right) \\ \hline \end{gathered}$	$\alpha_{S}{ }^{3}$	$\begin{gathered} 10^{2} A_{3} \\ \left(\mathrm{~cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}\right) \\ \hline \end{gathered}$	$\alpha_{S}{ }^{3}$
OAMS5	0.34	$1^{\text {a }}$				
OAMS8	0.37	1				
OAMS10	0.27	1				
OAMS13	0.27	$1.00^{\text {b }}$				
OAMS25	0.23	1.02				
OAMS33	0.20	1.03				
OAMS67	0.21	1.12				
AMS1	0.24	1.23				
AMS2	0.30	1.41				
AMS5	0.40	1.73				
AMS15	0.61	2.22				
AMS24	0.75	2.54	0.14	1.49	0.09	1.37
AMS40	1.07	3.11	0.18	1.63	0.13	1.55
AMS80	1.57	3.81	0.28	1.94	0.17	1.69
AMS200	2.56	4.69	0.45	2.30	0.30	2.02
AMS320	3.45	5.67	0.59	2.74	0.33	2.26
AMS550	4.72	6.60	0.78	3.19	0.44	2.48

${ }^{\text {a }}$ The values of $\alpha_{S}{ }^{3}$ for OAMS5, OAMS8, OAMS10 have been assumed to be 1 as in ref 7. ${ }^{\text {b }}$ The values of $\alpha_{S}{ }^{3}$ for OAMS13 through AMS550 have been reproduced from refs 7 and 28.

$$
\begin{equation*}
A_{3}=A_{3, \beta}^{(\mathrm{HW})}+\Delta A_{3}^{(\mathrm{HW})}+A_{3, \beta_{3}}^{(1)} \tag{1}
\end{equation*}
$$

where $A_{3, \beta}^{(\mathrm{HW})}$ is the part of A_{3} dependent only on β, $A_{3, \beta_{3}}^{(1)}$ is the part of A_{3} involving terms linear in the above-mentioned ternary-cluster integrals and independent of β, and $\Delta A_{3}^{(\mathrm{HW})}$ is the remaining part of A_{3}. The terms $A_{3, \beta}^{(\mathrm{HW})}$ and $\Delta A_{3}^{(\mathrm{HW})}$ vanish at the Θ temperature, ${ }^{26,30}$ at which β vanishes, so that $A_{3, \Theta}\left(A_{3}\right.$ at Θ) is given by

$$
\begin{equation*}
A_{3, \Theta}=A_{3, \beta_{3}}^{(1)} \tag{2}
\end{equation*}
$$

The term $A_{3, \beta_{3}}^{(1)}$ may be written in the form

$$
\begin{equation*}
A_{3, \beta_{3}}^{(1)}=A_{3}^{0}+A_{3}^{(\mathrm{E})} \tag{3}
\end{equation*}
$$

The first term A_{3}^{0} is linear in β_{3} (free from the effects of chain ends) and is explicitly given by

$$
\begin{equation*}
A_{3}^{0}=\frac{N_{\mathrm{A}}{ }^{2} n^{3} \beta_{3}}{3 M^{3}}=\frac{N_{\mathrm{A}}{ }^{2} c_{\infty}{ }^{3} L^{3} B_{3}}{3 M^{3}} \tag{4}
\end{equation*}
$$

where N_{A} is the Avogadro constant, M is the molecular weight, and B_{3} is defined by

$$
\begin{equation*}
B_{3}=\frac{\beta_{3}}{a^{3} c_{\infty}{ }^{3}} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{\infty}=\frac{4+\left(\lambda^{-1} \tau_{0}\right)^{2}}{4+\left(\lambda^{-1} \kappa_{0}\right)^{2}+\left(\lambda^{-1} \tau_{0}\right)^{2}} \tag{6}
\end{equation*}
$$

The second term $A_{3}^{(\mathrm{E})}$ on the right-hand side of eq 3 is the sum of terms linear in the nine excess ternary-clus-
ter integrals and may be written in the form

$$
\begin{equation*}
A_{3}^{(\mathrm{E})}=a_{3,1} M^{-1}+a_{3,2} M^{-2}+a_{3,3} M^{-3} \tag{7}
\end{equation*}
$$

where the coefficients $a_{3,1}, a_{3,2}$, and $a_{3,3}$ may be written in terms of the above-mentioned combinations $\beta_{3,1}, \beta_{3,2}$, and $\beta_{3,3}$ of the excess ternary-cluster integrals as follows

$$
\begin{align*}
& a_{3,1}=2 N_{\mathrm{A}}{ }^{2} \beta_{3,1} / M_{0}{ }^{2} \\
& a_{3,2}=4 N_{\mathrm{A}}^{2} \Delta \beta_{3,2} / M_{0} \\
& a_{3,3}=(8 / 3) N_{\mathrm{A}}^{2} \Delta \beta_{3,3} \tag{8}
\end{align*}
$$

with M_{0} the molecular weight of the bead and with

$$
\begin{align*}
& \Delta \beta_{3,2}=\beta_{3,2}-2 \beta_{3,1} \\
& \Delta \beta_{3,3}=\beta_{3,3}-3 \beta_{3,2}+3 \beta_{3,1} \tag{9}
\end{align*}
$$

We note that $\beta_{3,1}, \beta_{3,2}$, and $\beta_{3,3}$ are linear combinations of the excess ternary-cluster integrals associated with two kinds of trios of two intermediate beads and one end bead, with three kinds of trios of one intermediate bead and two end beads, and with four kinds of trios only of end beads, respectively.
For good-solvent systems, it is convenient to introduce a dimensionless factor g defined by ${ }^{31}$

$$
\begin{equation*}
g \equiv \frac{A_{3}}{\left[A_{2}^{(\mathrm{HW})}\right]^{2} M}=g_{2}+\Delta g_{2}+g_{3} \tag{10}
\end{equation*}
$$

where $A_{2}^{(\mathrm{HW})}$ is the part of A_{2} without the effects of chain ends, ${ }^{1}$ and $g_{2}, \Delta g_{2}$, and g_{3} are $A_{3, \beta}^{(\mathrm{HW})}, \Delta A_{3}^{(\mathrm{HW})}$, and $A_{3, \beta_{3}}^{(1)}$, respectively, divided by $\left[A_{2}^{(H W)}\right]^{2} M$. As
mentioned in the previous paper, ${ }^{9}$ the (residual) contribution of three-segment interactions to $A_{2}^{(\mathrm{HW})}$ may be ignored for good-solvent systems. Then $A_{2}^{(\mathrm{HW})}$ and therefore g_{2} are functions only of β for those systems. It is known that Δg_{2} and g_{3} decrease with increasing M, and that the contribution Δg_{2} is smaller than that of $g_{3}{ }^{1,30}$ Thus, in what follows, we neglect Δg_{2}, for simplicity.

There must in general be some effects of chain stiffness on the quantity g_{2} in the second of eq 10 , which is explicitly given by

$$
\begin{equation*}
g_{2}=\frac{A_{3, \beta}^{(\mathrm{HW})}}{\left[A_{2}^{(\mathrm{HW})}\right]^{2} M} \tag{11}
\end{equation*}
$$

since its effects are remarkable on $A_{2}^{(\mathrm{HW})}$, as mentioned in the Introduction, and so more or less on A_{3}. For the reasons mentioned later, however, we simply adopt an approximate closed expression for g_{2} within the framework of the two-parameter (TP) theory without consideration of chain stiffness, i.e.,

$$
\begin{equation*}
g_{2}(\bar{z})=2.219 \bar{z}\left(1+18 \bar{z}+12.6 \bar{z}^{2}\right)^{-0.5} \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{z}=z / \alpha_{S}{ }^{3} \tag{13}
\end{equation*}
$$

where z is the conventional excluded-volume parameter ${ }^{1,23}$ defined in terms of β in place of β_{2}, and α_{S} may be given by the Domb-Barrett equation ${ }^{32}$

$$
\begin{align*}
\alpha_{S}^{2}= & {\left[1+10 z+(70 \pi / 9+10 / 3) z^{2}+8 \pi^{3 / 2} z^{3}\right]^{2 / 15} } \\
& \times\left[0.933+0.067 \exp \left(-0.85 z-1.39 z^{2}\right)\right] \tag{14}
\end{align*}
$$

Equation 12 with eqs 13 and 14 has been empirically constructed by Norisuye et al. ${ }^{26}$ so that it gives the correct TP theory relation ${ }^{23} g_{2}=2.219 \bar{z}$ in the limit of $\bar{z} \rightarrow 0$ and also the asymptotic value $5 / 8$ for rigid spheres in the limit of $\bar{z} \rightarrow \infty$, and further well reproduces the SC theory values ${ }^{22} 0.108,0.185,0.28$, and 0.36 of g_{2} at $\bar{z}=3^{3 / 2} / 2,3^{3 / 2}, 2 \times 3^{3 / 2}$, and $4 \times 3^{3 / 2}$, respectively, as closely as possible.

From the second of eq 10 with eqs 3 and 4, the
term g_{3} may be written in the form

$$
\begin{equation*}
g_{3}=\frac{4 B_{3}}{3 L B^{2} h^{2}}\left(1+\frac{A_{3}^{(\mathrm{E})}}{A_{3}^{0}}\right) \tag{15}
\end{equation*}
$$

where we have used the HW theoretical expression ${ }^{1}$ for $A_{2}^{(\mathrm{HW})}$

$$
\begin{equation*}
A_{2}^{(\mathrm{HW})}=\left(N_{\mathrm{A}} c_{\infty}^{3 / 2} L^{2} B / 2 M^{2}\right) h \tag{16}
\end{equation*}
$$

with B the excluded-volume strength defined by

$$
\begin{equation*}
B=\frac{\beta}{a^{2} c_{\infty}^{3 / 2}} \tag{17}
\end{equation*}
$$

The so-called h function in eq 16 is given by

$$
\begin{equation*}
h(\hat{z})=\left(1+7.74 \hat{z}+52.3 \hat{z}^{27 / 10}\right)^{-10 / 27} \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{z}=\tilde{\tilde{z}} / \alpha_{S}{ }^{3} \tag{19}
\end{equation*}
$$

The intermolecular scaled excluded-volume parameter $\tilde{\tilde{z}}$ is defined by

$$
\begin{equation*}
\tilde{\tilde{z}}=[Q(\lambda L) / 2.865] z \tag{20}
\end{equation*}
$$

where the coefficient $Q(L)$ as a function of (reduced) L represents the effects of chain stiffness on A_{2}, as explicitly given below, and z is defined in terms of the HW model parameters by

$$
\begin{equation*}
z=(3 / 2 \pi)^{3 / 2}(\lambda B)(\lambda L)^{1 / 2} \tag{21}
\end{equation*}
$$

According to the quasi-two-parameter scheme or the Yamakawa-Stockmayer-Shimada theory, ${ }^{1,33-35}$ α_{S} in eq 19 may be given by the Domb-Barrett equation 14 with the intramolecular scaled excluded-volume parameter \tilde{z} defined by

$$
\begin{equation*}
\tilde{z}=\frac{3}{4} K(\lambda L) z \tag{22}
\end{equation*}
$$

in place of z. In eq 22 , the coefficient $K(L)$ as a function of (reduced) L represents the effects of chain stiffness on the intramolecular excluded-volume effect and is given by

$$
K(L)= \begin{cases}\frac{4}{3}-2.711 L^{-1 / 2}+\frac{7}{6} L^{-1} & \text { for } \quad L>6 \tag{23}\\ L^{-1 / 2} \exp \left(-6.611 L^{-1}+0.9198+0.03516 L\right) & \text { for } \quad L \leq 6\end{cases}
$$

The coefficient $Q(L)$ in eq 20 is given for (reduced) $L \gtrsim 1$ by 1,8

$$
\begin{align*}
Q(L)= & -\frac{128 \sqrt{2}}{15}-2.531 L^{-1 / 2}-2.586 L^{-1}+1.985 L^{-3 / 2}-1.984 L^{-2}-0.9292 L^{-5 / 2} \\
& +0.1223 L^{-3}+\frac{8}{5} x^{5 / 2}+\frac{2}{3} x^{3 / 2}\left(8+\frac{1}{6} L^{-1}\right)+x^{1 / 2}\left(8-13.53 L^{-1}+0.2804 L^{-2}\right) \tag{24}\\
& -x^{-1 / 2} L^{-1}\left(0.3333-5.724 L^{-1}+0.7974 L^{-2}\right)-x^{-3 / 2} L^{-2}\left(0.3398-0.7146 L^{-1}\right)
\end{align*}
$$

with

$$
\begin{equation*}
x=1+0.961 L^{-1} \tag{25}
\end{equation*}
$$

We simply put $h=1(\operatorname{rod}$ limit) for $\lambda L \lesssim 1$, in which range eq 24 is not valid.

Finally, we consider the effects of chain stiffness on g_{2}. For the HW bead model, the quantities $\alpha_{S}{ }^{2}, h$, and $A_{3, \beta}^{(\mathrm{HW})}$ may be expanded in terms of β as follows ${ }^{1}$

$$
\begin{align*}
\alpha_{S}^{2} & =1+[67 K(\lambda L) / 70] z+\cdots \tag{26}\\
h & =1-Q(\lambda L) z+\cdots \tag{27}\\
A_{3, \beta}^{(\mathrm{HW})} & =\frac{N_{\mathrm{A}}^{2} c_{\infty}^{3} L^{4} B^{2}}{4 M^{3}} U(\lambda L) z(1+\cdots) \tag{28}
\end{align*}
$$

where the (residual) effects of three-segment interactions have been ignored in $\alpha_{S}{ }^{2}$ and $A_{2}^{(\mathrm{HW})}$ (or h) since we here restrict ourselves to good-solvent systems, and the factor $U(\lambda L)$ (strictly $U / 2.219$) on the righthand side of eq 28 as a function of the reduced contour length λL represents the effects of chain stiffness on the leading term of $A_{3, \beta}^{(\mathrm{HW})}$. Substitution of eqs 16 and 28 with eq 27 into eq 11 leads to

$$
\begin{equation*}
g_{2}=U(\lambda L) z\{1+[2 Q(\lambda L)+\cdots] z+\cdots\} \tag{29}
\end{equation*}
$$

Norisuye et al. ${ }^{26}$ have introduced the new scaled ex-cluded-volume parameter \check{z} defined by

$$
\begin{equation*}
\check{z}=[U(\lambda L) / 2.219] \bar{z} \tag{30}
\end{equation*}
$$

in order to take account of the effects of chain stiffness on g_{2} on the apparent analogy of the scaled parameters \tilde{z} and $\tilde{\tilde{z}}$ defined by eqs 22 and 20 , respectively. From a comparison of eqs 29 and 30 with eqs 20, 22,26 , and 27 , it is seen that the scale factor in \check{z} arises from the zeroth-order term in the perturbation expansion, while those in \tilde{z} and $\tilde{\tilde{z}}$ arise from the first-order terms. Therefore, their expression for g_{2} given by eq 12 with \check{z} in place of \bar{z} provides an approximation, but it is not consistent with the maneuver of replacing z by \tilde{z} and \tilde{z} in eqs 14 and 18 with $\hat{z}=\bar{z}$, respectively. [Recall that the first-order deviations of $K(L)$ and $Q(L)$ from their coil-limiting values are of order $L^{-1 / 2}$, as seen from eqs 23 and 24, while that of $U(L)$ is of order $\left.L^{-1} .{ }^{1,26}\right]$ However, they have concluded that the effects of chain stiffness on g_{2} so considered are rather small. At any rate, this conclusion itself seems true, considering the fact that the effects of chain stiffness on A_{2} and A_{3} cancel, to some extent, each other in g_{2}. These are the reasons why we have simply adopted the (approximate) TP theoretical expression 12 for g_{2} without consideration of those effects. As shown later, eq 12 can indeed better explain experimental results than that with \check{z} in place of \bar{z}.

Effects of Chain Ends

We begin by analyzing the data for $A_{3, \Theta}$ for a$\mathrm{P} \alpha \mathrm{MS}$ in cyclohexane at $30.5^{\circ} \mathrm{C}$ given in Table I by the use of eq 2 with eqs 3,4 , and 7 . The theory predicts that $A_{3, \Theta}$ becomes a constant equal to A_{3}^{0} independent of M_{w} for such large M_{w} where $A_{3}^{(\mathrm{E})}$ $\left(\propto M_{\mathrm{w}}{ }^{-1}\right.$ for large M_{w}) becomes negligibly small. As mentioned above, the present data are consistent with this prediction, and A_{3}^{0} may be estimated to be $5.0 \times 10^{-4} \mathrm{~cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}$ as a mean of values of $A_{3, \Theta}$ for the six samples with the largest $M_{\text {w }}$ given in Table I. The part $A_{3}^{(\mathrm{E})}$ of A_{3} may then be calculated by subtracting this value of A_{3}^{0} from the observed values of $A_{3, \Theta}$. The values of $A_{3}^{(\mathrm{E})} M_{\mathrm{w}}$ so obtained for a$\mathrm{P} \alpha \mathrm{MS}$ in cyclohexane at $30.5^{\circ} \mathrm{C}$ are plotted against M_{w}^{-1} in Figure 1 (unfilled circles), where we have omitted the data points for the samples with $M_{\mathrm{w}}>2 \times 10^{5}$ since the experimental error in $A_{3}^{(\mathrm{E})} M_{\mathrm{w}}$ increases with increasing M_{w}. For comparison, there are also shown the previous results for aPS in cyclohexane at $34.5^{\circ} \mathrm{C}^{25}$ (filled circles) and aPMMA in acetonitrile at $44.0^{\circ} \mathrm{C}^{25}$ (filled triangles). For a-PS and a-PMMA, ${ }^{25}$ the respective values $5.0 \times$ 10^{-4} and $5.8 \times 10^{-4} \mathrm{~cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}$ of A_{3}^{0} have been used in the calculation of $A_{3}^{(\mathrm{E})}$. We note that for a-PS the value of A_{3}^{0} has been changed from 4.7×10^{-4} $\mathrm{cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}$ previously ${ }^{25}$ adopted to the above one since the values of A_{3} for a-PS cannot be distinguished from those for a-P $\alpha \mathrm{MS}$ beyond experimental error (see Figure 2). We also note that the values of β_{3} per repeat unit are estimated to be 6.8×10^{-45}, 4.7×10^{-45}, and $4.8 \times 10^{-45} \mathrm{~cm}^{6}$ for a-P $\alpha \mathrm{MS}$, a-PS, and a-PMMA, respectively, from eq 4 with the above-given values of A_{3}^{0}, where the repeat unit has

Figure 1. Plots of $A_{3}^{(\mathrm{E})} M_{\mathrm{w}}$ against $M_{\mathrm{w}}^{-1}:(\mathrm{O})$ present data for a-P $\alpha \mathrm{MS}$ in cyclohexane at $30.5^{\circ} \mathrm{C}(\Theta)$; ($)$ a-PS in cyclohexane at $34.5^{\circ} \mathrm{C}(\Theta) ;{ }^{25}(\mathbf{\Delta})$ a-PMMA in acetonitrile at $44.0^{\circ} \mathrm{C}(\Theta) .{ }^{25}$ The solid horizontal straight line fits the data points for both a-P $\alpha \mathrm{MS}$ and a-PS, and the dot-dashed curve represents the theoretical values for a-PMMA calculated from eq 7 (see the text).

Figure 2. Plots of $A_{3, \Theta}$ against $\log M_{\mathrm{w}}$ for a-P $\alpha \mathrm{MS}$ in cyclohexane at $30.5^{\circ} \mathrm{C}$, a-PS in cyclohexane at $34.5^{\circ} \mathrm{C}$, ${ }^{25}$ and a-PMMA in acetonitrile at $44.0^{\circ} \mathrm{C},{ }^{25}$ including literature data () for a-PS in cyclohexane at $34.5^{\circ} \mathrm{C}$ by Nakamura et al. ${ }^{13}$ The other symbols have the same meaning as those in Figure 1. The solid curve represents the theoretical values for both a-P $\alpha \mathrm{MS}$ and a-PS calculated from eq 2 with eqs 3 and 7, and the dot-dashed curve, those for a-PMMA (see the text).
been taken as a single bead, i.e., $M_{0}(=M / n)=118$, 104 , and 100 for a-P $\alpha \mathrm{MS}$, a-PS, and a-PMMA, respectively.

It is seen from Figure 1 that the data points for both a-P $\alpha \mathrm{MS}$ and a-PS follow the common horizontal straight line (solid line), so that we may put $a_{3,2}=$ $a_{3,3}=0$ in eq 7 and assign the value $0.70 \mathrm{~cm}^{6} / \mathrm{g}^{2}$ to $a_{3,1}$ for them. In contrast to the cases of a-P $\alpha \mathrm{MS}$ and a-PS, the data points for a-PMMA follow a curve slightly concave upward. The dot-dashed curve represents the best-fit theoretical values for a-PMMA calculated from eq 7 with the respective values 6.6 $\mathrm{cm}^{6} / \mathrm{g}^{2},-5 \times 10^{3} \mathrm{~cm}^{6} / \mathrm{g} \mathrm{mol}$, and $5 \times 10^{5} \mathrm{~cm}^{6} / \mathrm{mol}^{2}$ of $a_{3,1}, a_{3,2}$, and $a_{3,3}$ previously ${ }^{25}$ assigned. We may then calculate $\beta_{3,1}, \beta_{3,2}$, and $\beta_{3,3}$ from eqs 8 and 9 with the above-determined values of $a_{3,1}, a_{3,2}$, and $a_{3,3}$. The respective values of $\beta_{3,1}, \beta_{3,2}$, and $\beta_{3,3}$ so calculated are $1.3 \times 10^{-44}, 2.7 \times 10^{-44}$, and $4.0 \times 10^{-44} \mathrm{~cm}^{6}$ for a-P $\alpha \mathrm{MS}, 1.0 \times 10^{-44}, 2.1 \times 10^{-44}$, and $3.1 \times$ $10^{-44} \mathrm{~cm}^{6}$ for a-PS, and $9.1 \times 10^{-44},-1.6 \times 10^{-43}$, and $-2.4 \times 10^{-43} \mathrm{~cm}^{6}$ for a-PMMA, where the repeat unit has been taken as a single bead as above.

For a comparison of theory with experiment, in Figure 2 are shown plots of $A_{3, \Theta}$ against $\log M_{\mathrm{w}}$. As in Figure 1, the unfilled circles represent the present experimental values for $\mathrm{a}-\mathrm{P} \alpha \mathrm{MS}$ in cyclohexane at $30.5^{\circ} \mathrm{C}$, and the filled circles and triangles, the previous ones for a-PS in cyclohexane at $34.5^{\circ} \mathrm{C}^{25}$ and a-PMMA in acetonitrile at $44.0^{\circ} \mathrm{C},{ }^{25}$ respectively, where the filled circles with pip represent the values obtained by Nakamura et al. ${ }^{13}$ The solid curve represents the theoretical values for both a-P $\alpha \mathrm{MS}$ and a-PS,

Figure 3. Plots of g against $\alpha_{S}{ }^{3}$: (○) present data for a-P $\alpha \mathrm{MS}$ in toluene at $25.0^{\circ} \mathrm{C}$; (©) present data for a-P $\alpha \mathrm{MS}$ in 4-tert-butyltoluene at $25.0^{\circ} \mathrm{C} ;(\ominus)$ present data for a-P $\alpha \mathrm{MS}$ in n-butyl chloride at $25.0^{\circ} \mathrm{C} ;(\bigcirc)$ literature data for a-PS in benzene at $25.0^{\circ} \mathrm{C}$ by Sato et al..11 and by Nakamura et al. ${ }^{12}$ The heavy solid curves represent the theoretical values of $g=g_{2}+g_{3}$ for a-P $\alpha \mathrm{MS}$ for the indicated values of λB, and the dashed curve, those for a-PS. The light solid curve represents the theoretical values of $g=g_{2}+g_{3}$ with $h=1$ for $\mathrm{a}-\mathrm{P} \alpha \mathrm{MS}$ for $\lambda B=0.43$. The dotted curve represents the TP (or SC) theory values of g_{2} (see the text).
and the dot-dashed curve, those for a-PMMA, which have been calculated from eq 2 with eqs 3 and 7 with the above-given values of A_{3}^{0} and $a_{3, i}(i=1,2,3)$. Agreement between theory and experiment is satisfactory, indicating that the dependence of $A_{3, \Theta}$ on M_{w} arises definitely from the effects of chain ends.

For convenience, we here make a brief mention of the dependence on temperature of β_{3} of a-P $\alpha \mathrm{MS}$ near the Θ temperature, showing explicitly no experimental data. Nakamura et al. ${ }^{16}$ have estimated values of β_{3} for a-PS in trans-decalin near the Θ temperature $\left(21^{\circ} \mathrm{C}\right)$ and shown that β_{3} is independent of temperature there. We have made an analysis of data for A_{3} in cyclohexane at temperatures ranging from 15.0 to $45.0^{\circ} \mathrm{C}$ in a similar manner but with the values of β previously ${ }^{29}$ determined (not proportional to $1-$ Θ / T with T the absolute temperature), and found that β_{3} of a-P $\alpha \mathrm{MS}$ in cyclohexane in this range is also independent of temperature, as previously ${ }^{29}$ assumed.

Effects of Three-segment Interactions

Now we examine the behavior of the factor g of a$\mathrm{P} \alpha \mathrm{MS}$ in the three good solvents, toluene, 4-tert-butyltoluene, and n-butyl chloride, and make a comparison of experimental values with theoretical ones from eq 10 with $\Delta g_{2}=0$ and with eqs $12-15$ and $18-25$. Although there must exist effects of chain ends on A_{3} as well as on A_{2} also in the good solvents as in the Θ solvent, it is difficult to estimate the contribution $A_{3}^{(\mathrm{E})}$ of the effects separately from the others. The situation is different from that in A_{2}. We therefore
restrict ourselves to the range of $M_{\mathrm{w}} \gtrsim 10^{5}$ in which the effects on A_{2} and A_{3} may be ignored, so that $A_{2}=$ $A_{2}^{(\mathrm{HW})}$ and $A_{3}^{(\mathrm{E})}=0$.

Figure 3 shows plots of g against $\alpha_{S}{ }^{3}$ for the a-P $\alpha \mathrm{MS}$ samples with $M_{\mathrm{w}}>10^{5}$ in toluene (unfilled circles), 4-tert-butyltoluene (unfilled circles with vertical line segment), and n-butyl chloride (unfilled circles with horizontal line segment) at $25.0^{\circ} \mathrm{C}$. Here, the g values have been calculated from the first of eq 10 with the values of M_{w} and A_{3} given in Table I and II, respectively, and with those of A_{2} given in Table II of ref 7. For comparison, literature data (filled circles) by Sato et al. ${ }^{11}$ and by Nakamura et al. ${ }^{12}$ for a-PS samples with $M_{\mathrm{w}} \gtrsim 10^{5}$ in benzene at $25.0^{\circ} \mathrm{C}$ are also plotted. It is seen that all the data points form nearly a single-composite curve within experimental error.

In the figure, the dotted curve represents the values of g_{2} calculated from eq 12 with eqs 13 and 14 , which correspond to the TP (or SC) theory values without consideration of chain stiffness, as mentioned above. The heavy solid curves represent the values of $g=g_{2}+g_{3}$ for a-P $\alpha \mathrm{MS}$ for the indicated values of λB, and the dashed curve, those for a-PS, which have been obtained by adding the above-calculated values of g_{2} to those of g_{3} from eq 15 with $A_{3}^{(\mathrm{E})}=0$ and with eqs 14 and $18-25$ with \tilde{z} in place of z in eq 14 . We note that the values $0.43,0.12$, and 0.080 of λB have been determined from $\alpha_{S}{ }^{2}$ for a-P $\alpha \mathrm{MS}$ in toluene, 4-tert-butyltoluene, and n-butyl chloride, respectively, at $25.0^{\circ} \mathrm{C}$, and that the curves for a-P $\alpha \mathrm{MS}$ for $\lambda B=0.12$ and 0.080 are not clearly separated from each other. The light solid curve represents the values of $g=g_{2}+g_{3}$ for a-P $\alpha \mathrm{MS}$ in toluene obtained with the values of g_{3} from eq 15 with $A_{3}^{(\mathrm{E})}=0$ and $h=1$ (the single-contact approximation to A_{2}). The values of the HW model parameters used for the calculation of g_{3} for a-P $\alpha \mathrm{MS}$ are $\lambda^{-1} \kappa_{0}=3.0, \lambda^{-1} \tau_{0}=0.9$, and $\lambda^{-1}=46.8 \AA$, which have been determined from the unperturbed mean-square radius of gyration $\left\langle S^{2}\right\rangle_{0},{ }^{27}$ along with the above-given values of λB and $\lambda^{3} B_{3}=0.060$. We note that $\lambda^{3} B_{3}$ has been calculated from eq 4 with the above-given value $5.0 \times 10^{-4} \mathrm{~cm}^{6}$ $\mathrm{mol} / \mathrm{g}^{3}$ of A_{3}^{0} and the value ${ }^{27} 39.8 \AA^{-1}$ of the shift factor ${ }^{1,2} M_{\mathrm{L}}(=M / L)$ as defined as the molecular weight per unit contour length, assuming that the solvent dependence of β_{3} is small. [However, note that the (residual) contribution of β_{3} itself (and hence g_{3}) cannot be ignored even for good-solvent systems, although probably smaller than that in the Θ solvent, ${ }^{9}$ in contrast to the case of A_{2} (see Figure 3 and also below).] The values of the HW model parameters used for a-PS are $\lambda^{-1} \kappa_{0}=3.0, \lambda^{-1} \tau_{0}=6.0$, and $\lambda^{-1}=20.6 \AA$, which have been determined from $\left\langle S^{2}\right\rangle_{0},{ }^{1,36}$ along with $\lambda B=0.33$ and $\lambda^{3} B_{3}=0.040$, the value of $\lambda^{3} B_{3}$ hav-
ing been calculated from eq 4 with $A_{3}^{0}=5.0 \times$ $10^{-4} \mathrm{~cm}^{6} \mathrm{~mol} / \mathrm{g}^{3}$ and $M_{\mathrm{L}}=35.8 \AA^{-1} .^{1,36}$

The theoretical curves for a-P α MS for the different values of λB (heavy solid curves) and for a-PS (dashed curve) are clearly separated from each other as $\alpha_{S}{ }^{3}$ is decreased from $c a .3$ to 1 . In the range of $\alpha_{S}{ }^{3}$ in which the data points are plotted $\left(M_{\mathrm{w}} \gtrsim 10^{5}\right)$, however, the separation of the curves is rather small, and they form nearly a single-composite curve, being consistent with the above-mentioned behavior of the experimental data. It is seen that the upward deviation of the data points from the dotted curve $\left(g_{2}\right)$ for $\alpha_{S}{ }^{3} \lesssim$ 2 is mainly due to the contribution of g_{3}, i.e., the effects of three-segment interactions, indicating that the effects of chain stiffness on g_{2} are of minor importance. If the latter effects are considered, as done by Norisuye et al., ${ }^{26}$ then the theoretical values of g are appreciably overestimated for $\alpha_{S}{ }^{3} \lesssim 2$. Further, the single-contact approximation $h=1$ to A_{2} (light solid curve) made by them in the calculation of g_{3} is not justified, as seen from the difference between the heavy solid curve for $\lambda B=0.43$ and the light solid curve for $\alpha_{S}{ }^{3} \lesssim 2$. However, we note that our theoretical values of g_{3} and therefore still g are slightly overestimated for $\alpha_{S}{ }^{3} \lesssim 2$ because of the possible overestimate of the values of β_{3} assumed for good-solvent systems ${ }^{9}$ or of the fact that eq 18 somewhat underestimates h (or Ψ) (see Figures 8 and 9 of ref 7).

CONCLUSIONS

We have analyzed A_{3} data obtained from the previous LS measurements for a-P α MS over a wide range of M_{w}, including the oligomers with very small M_{w}, in both Θ and good solvents on the basis of the HW chain model. It has been found that $A_{3, \Theta}$ in cyclohexane at $30.5^{\circ} \mathrm{C}$ becomes a constant of $5.0 \times 10^{-4} \mathrm{~cm}^{6}$ $\mathrm{mol} / \mathrm{g}^{3}$ independent of M_{w} for $M_{\mathrm{w}} \gtrsim 10^{4}$ and deviates from it for $M_{\mathrm{w}} \lesssim 10^{4}$ as in the cases of a-PS and aPMMA previously ${ }^{25}$ studied. The observed dependence of $A_{3, \Theta}$ on M_{w} may be well explained by the HW theory that takes account of the effects of chain ends. For good-solvent systems, the behavior of the factor $g \equiv A_{3} /\left[A_{2}^{(\mathrm{HW})}\right]^{2} M_{\mathrm{w}}$ as a function of $\alpha_{S}{ }^{3}$ in toluene, 4-tert-butyltoluene, and n-butyl chloride at $25.0^{\circ} \mathrm{C}$ has been examined. It has then been found that the present data points for the a-P $\alpha \mathrm{MS}$ samples with $M_{\mathrm{w}} \gtrsim 10^{5}$ together with those obtained by Sato et al. ${ }^{11}$ and by Nakamura et al. ${ }^{12}$ for a-PS in benzene at $25.0^{\circ} \mathrm{C}$ form nearly a single-composite curve, being consistent with the HW theory prediction. As found by Norisuye et al., ${ }^{26}$ the observed values of g (for $M_{\mathrm{w}} \gtrsim 10^{5}$) may be well explained by the TP (or SC) theory ${ }^{22}$ for $\alpha_{S}{ }^{3} \gtrsim 2$ but are appreciably larger than the latter values for $\alpha_{S}{ }^{3} \lesssim 2$. However, this disa-
greement arises mainly from the effects of three-segment interactions, the effects of chain stiffness being of minor importance.

Acknowledgment. This research was supported in part by the 21st century COE program "COE for a United Approach to New Materials Science" from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

1. H. Yamakawa, "Helical Wormlike Chains in Polymer Solutions," Springer, Berlin, 1997.
2. H. Yamakawa, Polym. J., 31, 109 (1999).
3. H. Yamakawa, F. Abe, and Y. Einaga, Macromolecules, 26, 1898 (1993).
4. Y. Einaga, F. Abe, and H. Yamakawa, Macromolecules, 26, 6243 (1993).
5. F. Abe, Y. Einaga, and H. Yamakawa, Macromolecules, 27, 3262 (1994).
6. M. Kamijo, F. Abe, Y. Einaga, and H. Yamakawa, Macromolecules, 28, 4159 (1995).
7. W. Tokuhara, M. Osa, T. Yoshizaki, and H. Yamakawa, Macromolecules, 36, 5311 (2003).
8. H. Yamakawa, Macromolecules, 25, 1912 (1992).
9. H. Yamakawa and T. Yoshizaki, J. Chem. Phys., 119, 1257 (2003).
10. T. Norisuye and H. Fujita, ChemTracts-Macromol. Chem., 2, 293 (1991).
11. T. Sato, T. Norisuye, and H. Fujita, J. Polym. Sci., Part B: Polym. Phys., 25, 1 (1987).
12. Y. Nakamura, T. Norisuye, and A. Teramoto, J. Polym. Sci., Part B: Polym. Phys., 29, 153 (1991).
13. Y. Nakamura, T. Norisuye, and A. Teramoto, Macromolecules, 24, 4904 (1991).
14. Y. Nakamura, K. Akasaka, K. Katayama, T. Norisuye, and A. Teramoto, Macromolecules, 25, 1134 (1992).
15. K. Akasaka, Y. Nakamura, T. Norisuye, and A. Teramoto, Polym. J., 26, 363 (1994).
16. Y. Nakamura, N. Inoue, T. Norisuye, and A. Teramoto, Macromolecules, 30, 631 (1997).
17. C. E. H. Bawn, R. F. J. Freeman, and A. R. Kamalidin, Trans. Faraday Soc., 46, 862 (1950).
18. H. Vink, Eur. Polym. J., 10, 149 (1974).
19. H. Murakami, T. Norisuye, and H. Fujita, Polym. J., 7, 248 (1975).
20. B. L. Hager, G. C. Berry, and H.-H. Tsai, J. Polym. Sci., Part B: Polym. Phys., 25, 387 (1987).
21. S.-J. Chen and G. C. Berry, Polymer, 31, 793 (1990).
22. W. H. Stockmayer and E. F. Casassa, J. Chem. Phys., 20, 1560 (1952).
23. H. Yamakawa, "Modern Theory of Polymer Solutions," Harper \& Row, New York, N.Y., 1971. Its electronic edition is available on-line at the URL: http://www.molsci.polym. kyoto-u.ac.jp/archives/redbook.pdf
24. J. Li, Y. Wan, Z. Xu, and J. W. Mays, Macromolecules, 28, 5347 (1995).
25. H. Yamakawa, F. Abe, and Y. Einaga, Macromolecules, 27, 3272 (1994).
26. T. Norisuye, Y. Nakamura, and K. Akasaka, Macromolecules, 26, 3791 (1993).
27. M. Osa, T. Yoshizaki, and H. Yamakawa, Macromolecules, 33, 4828 (2000).
28. M. Osa, Y. Ueno, T. Yoshizaki, and H. Yamakawa, Macromolecules, 34, 6402 (2001).
29. T. Kawaguchi, M. Osa, T. Yoshizaki, and H. Yamakawa, Macromolecules, 37, 2240 (2004).
30. T. Norisuye and Y. Nakamura, Macromolecules, 27, 2054 (1994).
31. The factor $A_{2}{ }^{2}$ on the right-hand side in the first line of eq 8.139 of ref 1 should be replaced by $\left[A_{2}^{(\mathrm{HW})}\right]^{2}$.
32. C. Domb and A. Barrett, Polymer, 17, 179 (1976).
33. H. Yamakawa and W. H. Stockmayer, J. Chem. Phys., 57, 2843 (1972).
34. H. Yamakawa and J. Shimada, J. Chem. Phys., 83, 2607 (1985).
35. J. Shimada and H. Yamakawa, J. Chem. Phys., 85, 591 (1986).
36. F. Abe, Y. Einaga, T. Yoshizaki, and H. Yamakawa, Macromolecules, 26, 1884 (1993).

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed (E-mail: yoshizaki@molsci.polym.kyoto-u.ac.jp).

[^1]: ${ }^{\mathrm{a}}$ The values of M_{w} have been reproduced from refs 7 and 29 .

