Abstract
A series of poly(ethylene glycol) (PEG)-grafted hyaluronic acid (HA) was prepared by condensation reaction with hydrazide-terminated PEG using water soluble carbodiimide. PEG-grafted HA (PgH) solutions exhibited hydrogelation on adding α-cyclodextrin (α-CD). The solid-state 13C CP/MAS NMR spectroscopic and powder X-Ray diffraction measurements revealed the formation of inclusion complex between the PEG grafts and α-CD. The gel-melting temperature increased with increasing the degree of substitution of the PEG grafts and decreasing pH of aqueous medium. These results indicate that PgH hydrogels were constructed by inclusion complexation between the PEG grafts and α-CD, and the gel-melting temperature could be controlled by both the degree of substitution of the PEG grafts and pH.
References
- 1
T. Nishikawa, K. Akiyoshi, and J. Sunamoto, J. Am. Chem. Soc., 118, 6110 (1996).
- 2
S. J. de Jong, B. van Eerdenbrugh, C. F. Van Nostrum, J. J. Kettenes-van den Bosch, and W. E. Hennink, J. Control. Release, 72, 47 (2001).
- 3
B. S. Lele and A. S. Hoffman, J. Control. Release, 69, 237 (2000).
- 4
J. Li, A. Harada, and M. Kamachi, Polym. J., 26, 1019 (1994).
- 5
T. Ooya and N. Yui, Crit. Rev. Ther. Drug Carrier Syst., 16, 289 (1999).
- 6
T. Ooya and N. Yui, Macromol. Chem. Phys., 199, 2311 (1998).
- 7
T. Ooya and N. Yui, J. Control. Release, 58, 251 (1999).
- 8
T. Ooya, M. Eguchi, and N. Yui, J. Am. Chem. Soc., 125, 13016 (2003).
- 9
J. Watanabe, T. Ooya, and N. Yui, Chem. Lett., 10, 1031 (1998).
- 10
J. Watanabe, T. Ooya, and N. Yui, J. Biomater. Sci., Polym. Ed., 10, 1275 (1999).
- 11
T. Ichi, J. Watanabe, T. Ooya, and N. Yui, Biomacromolecules, 2, 204 (2001).
- 12
K. M. Huh, T. Ooya, W. K. Lee, S. Sasaki, I. C. Kwon, S. Y. Jeong, and N. Yui, Macromolecules, 34, 8657 (2001).
- 13
H. S. Choi, K. Kontani, K. M. Huh, S. Sasaki, T. Ooya, and N. Yui, Macromol. Biosci., 2, 298 (2002).
- 14
K. Moriyama, T. Ooya, and N. Yui, J. Control. Release, 59, 77 (1999).
- 15
S. T. Lim, G. P. Martin, D. J. Berry, and M. B. Brown, J. Control. Release, 15, 281 (2000).
- 16
Y. Luo, M. R. Ziebell, and G. D. Prestwich, Biomacromolecules, 1, 208 (2000).
- 17
Y. Luo, R. Kirker, and G. D. Prestwich, J. Control. Release, 3, 169 (2000).
- 18
M. R. Kim and T. G. Park, J. Control. Release, 23, 69 (2002).
- 19
L. S. Liu, A. Y. Thompson, M. A. Heidaran, and J. W. Poster, Biomaterials, 20, 1097 (1999).
- 20
S. Ohya, Y. Nakayama, and T. Matsuda, Biomacromolecules, 2, 856 (2001).
- 21
S. N. Park, J. C. Park, H. O. Kim, M. J. Song, and H. Suh, Biomaterials, 23, 1205 (2002).
- 22
N. Yui, T. Okano, and Y. Sakurai, J. Control. Release, 22, 105 (1992).
- 23
N. Yui, J. Nihira, T. Okano, and Y. Sakurai, J. Control. Release, 25, 133 (1993).
- 24
T. Pouyani, G. S. Harbison, and G. D. Prestwich, J. Am. Chem. Soc., 116, 7515 (1994).
- 25
A. Harada, J. Li, and M. Kamachi, Macromolecules, 26, 5698 (1993).
- 26
M. J. Gidley and S. M. Bociek, J. Am. Chem. Soc., 110, 3820 (1988).
- 27
T. Nakama, T. Ooya, and N. Yui, Macromol. Rapid Commun., in press (2004).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Nakama, T., Ooya, T. & Yui, N. Temperature- and pH-Controlled Hydrogelation of Poly(ethylene glycol)-Grafted Hyaluronic Acid by Inclusion Complexation with α-Cyclodextrin. Polym J 36, 338–344 (2004). https://doi.org/10.1295/polymj.36.338
Published:
Issue Date:
Keywords
- Hyaluronic Acid
- Inclusion Complex
- α-Cyclodextrin
- Poly(ethylene glycol)
- Hydrogelation
Further reading
-
Biomimetic Membrane-Structured Nanovesicles Carrying a Supramolecular Enzyme to Cure Lung Cancer
ACS Applied Materials & Interfaces (2020)
-
Natural-based Hydrogels: A Journey from Simple to Smart Networks for Medical Examination
Current Medicinal Chemistry (2020)
-
α-Cyclodextrin-Based Polypseudorotaxane Hydrogels
Materials (2019)
-
Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields
Polymer Chemistry (2018)
-
Strategies and Molecular Design Criteria for 3D Printable Hydrogels
Chemical Reviews (2016)