New Solvents for Cellulose. II. Ethylenediamine/Thiocyanate Salt System

Article metrics

Abstract

The ethylenediamine/thiocyanate salt system was found to be a new solvent for cellulose. The solubility, dissolution behavior, solution properties, and cellulose recovered from the solutions were investigated. The dissolution took place at room temperature, and the maximum solubility achieved was 16 % (w/w) for cellulose of DP210 in the ethylenediamine/sodium thiocyanate 54/46 (w/w). The dependence of cellulose solubility on DP is also described. Tracing the dissolution behavior of the cellulose by CP/MAS 13C NMR measurements revealed the polymorphic conversion of cellulose I to III to amorphous structure during the dissolution process. The cellulose dissolved was stable for 30 days storage at room temperature. Microscopic observations and steady-shear viscosity measurements of the solutions indicated mesophase formation of cellulose in the ethylenediamine/sodium thiocyanate system. This anisotrpoic phase appeared from ca. 10 % (w/w) cellulose with DP210 and greatly depended on the cellulose concentrations. Coagulation studies disclosed that cellulose II and amorphous cellulose were recovered from the cellulose/ethylenediamine/thiocyanate salt solutions when water and alcohol were used as a coagulant, respectively. It was suggested that this solvent system has high potential for cellulosic fiber and film formations.

References

  1. 1

    K. Hattori, J. A. Cuculo, and S. M. Hudson, J. Polym. Sci., Part A: Polym. Chem., 40, 601 (2002).

  2. 2

    For example, K. Hattori, in “Kirk-Othmer Encyclopedia of Chemical Technology,” 3rd Ed., J. Kroschwitz, Ed., John Wiley & Sons, Hoboken, N.J., 2003, Chapter on Cellulose.

  3. 3

    T. R. Dawsey and C. L. McCormick, J. Macromol. Sci.— Rev. Macromol. Chem. Phys., C30, 405 (1990).

  4. 4

    H.-P. Fink, P. Weigel, H. J. Purz, and J. Ganster, Prog. Polym. Sci., 26, 1473 (2001).

  5. 5

    A. Dubosc, Bull. Soc. Ind. Rouen, 33, 318 (1905).

  6. 6

    R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc., 124, 4794 (2002).

  7. 7

    J. A. Cuculo and S. M. Hudson, U.S. Patent 4 367 191 (Jan. 4, 1983).

  8. 8

    N. Aminuddin, MS Thesis, Department of Textile Engineering, Chemistry, and Science, North Carolina State University, 1993.

  9. 9

    Y.-S. Chen and J. A. Cuculo, J. Polym. Sci., Part A: Polym. Chem., 24, 2075 (1986).

  10. 10

    C. R. La Marre, J. A. Cuculo, S. M. Hudson, and A. Ciferri, Mol. Cryst. Liq. Cryst. Lett., 7, 193 (1991).

  11. 11

    A. W. De Groot, D. E. Guinnup, M. H. Theil, and J. A. Cuculo, J. Polym. Sci., Part B: Polym. Phys., 29, 557 (1991).

  12. 12

    K.-S. Yang, J. A. Cuculo, and M. H. Theil, J. Polym. Sci., Part B: Polym. Phys., 30, 315 (1992).

  13. 13

    M. W. Frey, J. A. Cuculo, and R. J. Spontak, J. Polym. Sci., Part B: Polym. Phys., 34, 2049 (1996).

  14. 14

    J.-X. Guo and D. G. Gray, in “Cellulosic Polymers, Blends and Composites,” R. D. Gilbert, Ed., Hanser, Munich, 1994, Chap 2, pp 25–45.

  15. 15

    ASTM Method D4243, in “Annual Book of ASTM Standards,” American Society for Testing and Materials, Philadelphia, P.A., 1999.

  16. 16

    ASTM Method D1795, in “Annual Book of ASTM Standards,” American Society for Testing and Materials, Philadelphia, P.A., 1999.

  17. 17

    J. A. Cuculo, C. B. Smith, U. Sangwatanaroj, E. O. Stejskal, and S. S. Sankar, J. Polym. Sci., Part A: Polym. Chem., 32, 241 (1994).

  18. 18

    P. C. Scherer, J. Am. Chem. Soc., 53, 4009 (1931).

  19. 19

    S. M. Hudson and J. A. Cuculo, J. Polym. Sci., Polym. Chem. Ed., 18, 3469 (1980).

  20. 20

    M. Hattori, T. Koga, Y. Shimaya, and M. Saito, Polym. J., 30, 43 (1998).

  21. 21

    T. Matsumoto, D. Tatusmi, N. Tamai, and T. Takaki, Cellulose, 8, 275 (2001).

  22. 22

    R. H. Atalla, J. C. Gast, D. W. Sindorf, V. J. Bartuska, G. E. Maciel, J. Am. Chem. Soc., 102, 3249 (1980).

  23. 23

    Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc., 124, 9074 (2002).

  24. 24

    The C1, C4, and C6 peaks of cellulose III and amorphous cellulose appear typically at 105, 88, and 63 ppm and 105, 84, and 63 ppm, respectively; see A. Isogai, M. Usuda, T. Kato, T. Uryu, and R. H. Atalla, Macromolecules, 22, 3168 (1989).

  25. 25

    For example, E. Bianchi, A. Ciferri, G. Conio, A. Cosani, and M. Terbojevich, Macromolecules, 18, 646 (1985).

  26. 26

    H. Chanzy and A. Peguy, J. Polym. Sci., Polym. Phys. Ed., 18, 1137 (1980).

  27. 27

    A. Isogai, in “Cellulosic Polymers, Blends and Composites,” R. D. Gilbert, Ed, Hanser, Munich, 1994, Chap 1, pp 1–24.

  28. 28

    J. A. Cuculo, N. Aminuddin, S. M. Hudson, and A. V. Wilson, in “Polymeric Materials Encyclopedia,” J. C. Salamone, CRC Press, Boca Raton, F.L., 1996, vol 2, pp 1029–1035.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hattori, K., Abe, E., Yoshida, T. et al. New Solvents for Cellulose. II. Ethylenediamine/Thiocyanate Salt System. Polym J 36, 123–130 (2004) doi:10.1295/polymj.36.123

Download citation

Keywords

  • Cellulose
  • Cellulose Solvent
  • Cellulose Solution
  • Amine
  • Thiocyanate
  • Dissolution Mechanism
  • Regenerated Cellulose

Further reading