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ABSTRACT: The osmotic compressibility up to high concentrations as well as the second virial coefficient were

measured for low molecular weight polystyrenes dissolved in a poor solvent cyclohexane at 35, 25, and 15 �C, by sed-

imentation equilibrium. The results of the osmotic compressibility over wide concentration ranges were favorably com-

pared with a recently developed thermodynamic perturbation theory based on the spherocylinder model bearing a

square-well potential, and from the comparison, the hard-core diameter d and the depth " of the attractive square-well

potential including in the theory were determined for polystyrene in cyclohexane. Compared with the previous results

of d and " for the same polymer in 15 �C toluene (a good solvent), it turned out that " increases and d decreases with

reducing the solvent quality. [DOI 10.1295/polymj.36.747]
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The distribution function theories for polymer solu-
tions1–3 express the polymer intermolecular interac-
tion in terms of the potential U12ð1; 2Þ of mean force,
where the arguments 1 and 2 represent all coordinates
specifying the position, orientation, and conformation
of polymer chains 1 and 2, respectively. If the poly-
mer chain is divided into N0 identical (spherical) seg-
ments, U12ð1; 2Þ may be given by

U12ð1; 2Þ ¼
XN0

i1¼1

XN0

i2¼1

uðRi1i2Þ ð1Þ

where uðRi1i2Þ is the pair potential of mean force be-
tween segments i1 and i2 belonging to polymer chains
1 and 2, respectively, which is a function of the dis-
tance Ri1i2 of the two segments. For neutral polymers,
the potential uðRi1i2Þ consists of short-ranged repulsive
and long-ranged attractive interaction parts.
The two-parameter theory1–3 and also the renormal-

ization-group theory4–7 assume that the intermolecular
excluded volume effect on the virial coefficients and
the osmotic pressure can be expressed as a function
of the binary cluster integral �2 defined by

�2 � 4�

Z 1

0

f1� exp½�uðRÞ=kBT�gR2dR ð2Þ

(kB: the Boltzmann constant; T: the absolute temper-
ature) instead of the full function of uðRÞ. However,
this assumption does not necessarily hold. Near the
theta condition where �2 vanishes, the ternary cluster
integral or the three-segment interaction becomes im-

portant in virial coefficients against the two-parameter
theory.8 When the polymer concentration is beyond
the semidilute regime, the osmotic pressure or the os-
motic compressibility cannot be described by the re-
normalization-group theory.9

Alternatively, the thermodynamic perturbation
theory chooses a system of particles interacting by
the hard-core potential as a reference system, and
treats the long-ranged attractive interaction in a per-
turbative way. For example, Barker and Henderson
proposed a perturbation theory for the system of
spherical particles with a square-well potential. Their
theory includes all perturbation terms using the Padé
approximation. Recently, Koyama and Sato10 extend-
ed the Barker–Henderson theory to the wormlike
spherocylinder system. In the theory, the intermolecu-
lar interaction is characterized in terms of the hard-
core diameter d and the depth " of the attractive
square-well potential, instead of �2, and the three-
body interaction is included in the theory. This theory
is however based on the single contact approximation,
so that it is applicable only to polymers with a suffi-
ciently small number of Kuhn’s statistical segments.
Koyama and Sato demonstrated previously that the
osmotic compressibility of low molecular weight
polystyrenes (lower than ca. 10,000) dissolved in a
good solvent toluene can be accurately described by
this perturbation theory over a wide range of the poly-
mer concentration.
In the present study, we have examined the applica-

bility of the perturbation theory to low molecular
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weight polystyrenes dissolved in a poor solvent cyclo-
hexane. For the poor solvent system, the attractive in-
teraction among polymers is enhanced and the pertur-
bation term in the theory becomes important.
Therefore, we can more critically test the perturbation
theory by comparing it with the poor solvent system.
So far, the osmotic compressibility of cyclohexane

solutions of polystyrene was investigated over wide
ranges of the concentration by several workers11–15

However, most of them used rather high molecular
weight polystyrene samples, and may not be suitable
for the purpose of the present study. On the other
hand, the second virial coefficient A2 of oligo- and
polystyrenes in cyclohexane over a wide molecular
weight range was measured by Yamakawa et al.16,17

We have utilized their A2 data to determine the inter-
action parameters d and " of polystyrene in cyclohex-
ane, as explained below.

EXPERIMENTAL

Standard polystyrene samples F1, A5000, and
A2500 purchased from Tosoh Corp., were divided in-
to several fractions by fractional precipitation using
toluene as the solvent and methanol as the precipitant
and middle fractions (F1-2, A5000-3, and A2500-5)
were used for the following experiments.
Sedimentation equilibrium measurements were

made for dilute through concentrated cyclohexane so-
lutions of the polystyrene fractions at 35, 25, and
15 �C, using a Beckman–Coulter Optima XL-I ultra-
centrifuge, equipped with a Rayleigh interferometer
with a 675-nm light emitting from a diode laser. Alu-
minum 12-mm double-sector cells were used, and the
height of the solution column was adjusted to ca.
2.5mm. Rotor speeds were chosen in the range from
5000 to 20000 rpm, depending on the polymer con-
centration. The apparent molecular weight Mapp was
calculated from the equation

Mapp ¼
2RTðcb � caÞ

!2ðrb2 � ra2Þc0ð@�=@cÞ
ð3Þ

where rb and ra are the distance from the center of rev-
olution to the cell bottom and meniscus respectively,
cb and ca are polymer mass concentrations at rb and
ra respectively under the centrifugal field which are
estimated by interferometry; ! is the angular velocity,
� and c are the density and mass concentration of the
solution respectively, c0 is c at ! ¼ 0, and R is the gas
constant.
If the concentration difference �c � cb � ca is

much smaller than the average concentration �cc �
ðcb þ caÞ=2, Mapp is related to the reciprocal of the os-
motic compressibility @�=@c at c ¼ �cc by18,19

1

Mapp

¼
1

RT

@�

@c
ð4Þ

On the other hand, for dilute solutions, Mapp is written
in the form18,19

1

Mapp

¼
1

Mw

þ 2A2 �ccþ Oð �cc2Þ ð5Þ

where Mw is the weight-average molecular weight,
and A2 is the second virial coefficient.
Densities � and excess refractive indices �n of cy-

clohexane solutions of the three polystyrene fractions
were measured at 35, 25, and 15 �C as functions of the
polymer concentration c to obtain @�=@c and @n=@c
necessary to calculate Mapp. Detailed procedures are
described in the previous paper,10 and the results of
@�=@c and @n=@c are listed in Table I.

RESULTS

Figure 1 shows double logarithmic plots of
ð@�=@cÞ=RT (¼ Mapp

�1) vs. �cc for cyclohexane solu-
tions of three low molecular weight polystyrene frac-
tions at 35 �C (circles), 25 �C (triangles), and 15 �C
(diamonds) over wide ranges of the concentration.
The concentration dependence of ð@�=@cÞ=RT is very
weak at low �cc, but becomes steep at high �cc for all the
fractions at all the temperatures. For the fraction
A2500-5 with Mw ¼ 2400, ð@�=@cÞ=RT increases
with �cc rather smoothly even at the low temperature.

Table I. Characteristics of polystyrene fractions used

Sample Temperature @�=@c
@n=@c

(cm3 g�1)
Mw

A2

(10�4 cm3 mol�1 g�2)

F1-2 35 �C 0.286 0.165 10,500 0.45

25 �C 0.279 0.162 10,500 �0:75

15 �C 0.273 0.159 10,500 �2:3

A5000-3 35 �C 0.283 0.159 6,000 0.6

25 �C 0.276 0.156 6,000 �0:6

15 �C 0.270 0.153 6,000 �2:3

A2500-5 35 �C 0.273 0.153 2,400 1.5

25 �C 0.267 0.150 2,400 0.0

15 �C 0.261 0.147 2,400 �1:8
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On the other hand, ð@�=@cÞ=RT for the fraction F1-2
with Mw ¼ 10500 takes a minimum around �cc � 0:1
g/cm3 at 15 �C. Similar concentration dependencies
of ð@�=@cÞ=RT for cyclohexane solutions of polysty-
rene with Mw � 104 near the � temperature have al-
ready been reported previously.14,15

From data points at low �cc, we have determined Mw

and A2 for each fraction, using eq 5. The results are
listed in Table I. As shown in Figure 2a, our results
(filled circles) of A2 obtained at 35, 25, and 15 �C
agree with Yamakawa et al.’s results16,17 (unfilled cir-
cles) in cyclohexane at 34.5, 25, and 15 �C, respec-
tively. In a high Mw region, A2 tends to zero at
34.5 �C (the � temperature), and approaches to nega-
tive asymptotic values at 25 and 15 �C. Strong molec-
ular weight dependencies of A2 in a low Mw region
come from the chain end effect as analyzed below.

DISCUSSION

Theories
Under the single-contact approximation, we can de-

fine a pair of the closest approaching contour points s1
and s2 on two interacting polymer chains, and the in-
termolecular interaction potential uðrÞ can be written
as a function of the distance r between s1 and s2.
For the (helical-wormlike) spherocylinder model with
a square-well potential, we may use the following
uðrÞ:

uðrÞ ¼

1 (0 � r < d)

�"X d � r <
3

2
d

� �

0
3

2
d � r

� �

8>>>>><
>>>>>:

ð6Þ

where d is the cylinder diameter and "X is the depth of
the square well potential. The closest approaching
contour points s1 and s2 are assumed to be on the cyl-
inder axes with a length Lc: 0 � si � Lc (i ¼ 1, 2). If
polymer-chain ends are chemically different from the
middle chain, "X depends on the relative configuration
of the two interacting spherocylinders: "X ¼ "ee when
s1 and s2 equal to 0 or Lc, "X ¼ "me when s1 ðor s2Þ ¼
0 or Lc and 0 < s2 ðor s1Þ < Lc, and "X ¼ "mm when
s1 and s2 are between 0 and Lc.
The thermodynamic perturbation theory10 gives the

Figure 1. Double logarithmic plot of ð@�=@cÞ=RT vs. �cc for cy-

clohexane solutions of three low molecular weight polystyrene

fractions at 35 �C (circles), 25 �C (triangles), and 15 �C (dia-

monds). The solid curves connect the data point smoothly.

Figure 2. Molecular weight dependence of A2 of oligo- and

polystyrenes in cyclohexane at different temperature. (a) Filled

circles, data obtained in the present study (at 35, 25, and 15 �C);

unfilled circles, data of Yamakawa et al.16,17 (at 34.5, 25, and

15 �C); solid curves, A2 calculated by eq 16; dashed curves, A2

calculated by eq 16 without the end-effect terms. (b) symbols,

the same as those in Panel a; solid curves, A2 calculated by

eq 14 with d þ � ¼ �0:03 nm (35, 34.5 �C), �0:05 nm (25 �C),

and �0:085 nm (15 �C).
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reciprocal of the osmotic compressibility @�=@c of the
spherocylinder solution in the form

@�

@c
¼

@�0

@c
þ

@�w,mm

@c
þ

@�w,me

@c
þ

@�w,ee

@c
ð7Þ

where @�0=@c is the term for the reference system of
the hard spherocylinder with "X ¼ 0, and @�w,mm=@c,
@�w,me=@c, and @�w,ee=@c are perturbation terms aris-
ing from the attractive interactions between chain
middle portions, between middle and end portions,
and between two chain end portions, respectively.
The first term may be formulated by the scaled parti-
cle theory for the (isotropic) hard spherocylinder sys-
tem, of which result is written as20

@�0

@c
¼

RT

Mð1� vc0Þ2

� 1þ B
c0

1� vc0
þ 2C

c0

1� vc0

� �2
" #

ð8Þ

where M, v, and c0 are the molar mass, volume, and
number concentration of spherocylinders in the solu-
tion, respectively. The coefficients B and C are de-
fined by

B ¼
�

2
Lc

2d þ 6v;

C ¼ vþ
�

12
d3

� �
B� 2v�

�

6
d3

� �
ð9Þ

The perturbation terms are given by

@�w,X

@c
¼

2RTML

3d2M2
bX

�
2�ð"̂"XÞc0�

þ 4
d�ð"̂"XÞ
dc0�

c0�2 þ
d2�ð"̂"XÞ
dc0�2

c0�3
�

ð10Þ

where ML is the molar mass per unit contour length of
the spherocylinder, and "̂"X, bX, and c0� are defined
by20

"̂"X �
"X

kBT
; bmm �

3Lc
2d

8
;

bme �
3Lcd

2

2
; bee � d3; c0� �

6

�
vc0 ð11Þ

and �ð"̂"XÞ is the function of Barker and Henderson21

given by

�ð"̂"XÞ �
Pð1Þf ð1Þ

2

"̂"X

f ð1Þ �
1

2
f ð2Þ"̂"X

ð12Þ

with

f ðiÞ ¼ 1þ QðiÞc0� þ
CðiÞ

c0�
1� exp �

�ðiÞc0�

�ðiÞ � c0�

� �� �

�
�ðiÞCðiÞ

�ðiÞ ði ¼ 1; 2Þ ð13Þ

The parameters QðiÞ, CðiÞ, �ðiÞ, and �ðiÞ in eq 13, as well
as Pð1Þ in eq 12 are given in Table I of ref 10. The
functions f ð1Þ and f ð2Þ are related to the first and sec-
ond order perturbations, respectively.21

From the virial expansion of eq 7, the second virial
coefficient A2 is written as

A2 ¼
�NA

4ML
2

"
d þ �þ

8

3
d þ �0

� �
dML

M

þ
4

9
d þ �00

� �
dML

M

� �2
#

ð14Þ

where NA is the Avogadro constant, and �, �0, and �00

are defined by20

�

d
¼

3Pð1Þ"̂"mm

�ð2� "̂"mmÞ
;

�0

d
¼

12Pð1Þ"̂"me

�ð2� "̂"meÞ
�

4

3

�

d
;

�00

d
¼

8Pð1Þ"̂"ee

�ð2� "̂"eeÞ
�

4

9

�

d
�

2

3

�0

d
ð15Þ

It is noted that eq 14 is based on the single-contact ap-
proximation.
On the other hand, A2 can be formulated also by the

cluster expansion theory for the helical wormlike
beads model.3,22,23 Retaining the first order terms of
the binary and ternary cluster integrals, we can write

A2 ¼
NAc1

3=2

2ML
2

B2 þ 2
3

2�

� �3=2

�2B3IðNÞ

" #

þ
a2;1

M
þ

a2;2

M2
ð16Þ

where c1 is the characteristic ratio, B2 and B3 are the
excluded-volume strengths of the two- and three-seg-
ment interactions,3 proportional to the binary and ter-
nary cluster integrals, respectively, ��1 is the stiffness
parameter, and a2;1 and a2;2 are the parameters charac-
terizing interchain interactions between the chain mid-
dle and end portions and between two chain end por-
tions, respectively. The function IðNÞ of the reduced
contour length N (¼ �M=ML) was recently calculated
by Yamakawa and Yoshizaki.23 In eq 16, the B2 term
is the single-contact one, and the B3 term represents
the three-segment interaction between two chains
which involves two segments of one chain and one
segment of the other chain interacting at a point (a
special case of double-contact interactions). The dou-
ble-contact term with B3 is not included in eq 14.
Finally, the cluster expansion theory for the beads

model gives the third virial coefficient A3
0 at the �

condition as3
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A3
0 ¼

NA
2c1

3

3ML
3

B3 ð17Þ

This equation, however, does not include the polymer
chain end effect, so that it may be applicable only at
sufficiently high molecular weights.

Comparison between Theory and Experiment
As explained above, the intermolecular interaction

between polymer chains is characterized in terms of
the hard-core diameter (d) and the depths ("mm, "me,
and "ee) of the square-well potential in the perturba-
tion theory, and of the excluded-volume strengths
(B2 and B3) and the end-effect parameters (a2;1 and
a2;2) in the cluster expansion theory. To determine
those parameters, we also need the helical wormlike
chain parameters, the molar mass per unit contour
lengthML, the characteristic ratio c1, and the stiffness
parameter ��1, all of which have been already deter-
mined for polystyrene in cyclohexane to be 358 nm�1,
0.816, and 2.06 nm, respectively.3

Nakamura et al.8 and Yamakawa et al.24 measured
the third virial coefficient A3

0 of polystyrene in cyclo-
hexane at 34.5 �C (the � temperature), from which an
asymptotic value of A3

0 was estimated to be 4:7�
10�4 cm6 mol/g3. This result gives a value of 0.33
nm3 for B3 using eq 17, which is smaller than that
in toluene (¼ 1:4 nm3).10 The two-parameter theory
cannot explain this residual three-segment interaction
at the � condition.
As shown in Figure 2a, A2 obtained by Yamakawa

et al.16,17 and in the present study are independent of
the molecular weight atMw & 5; 000 for the three tem-
peratures, and the asymptotic values can be identified
with ðNAc1

3=2=2ML
2Þ½B2 þ 2ð3=2�Þ3=2�2B3Ið1Þ� in

eq 16, where Ið1Þ ¼ 1:465.23 Furthermore, Nakamura
et al.25 demonstrated that B3 of polystyrene is almost
independent of temperature in a poor solvent, so that
we can estimate B2 at the three temperatures from
the asymptotic values of A2 and the above B3 value
at the � temperature. The results are listed in Table II.

Because the � condition is defined as the state where
the two-segment and three-segment interactions cancel
out in the present cluster expansion theory,23,26,27 B2 it-
self does not vanish at the � temperature.
The remaining end-effect parameters a2;1 and a2;2

were determined so as to lead best fits of eq 16 to
the A2 data in the lower molecular weight region,
which are also listed in Table II. The values of a2;1
and a2;2 are slightly larger and smaller, respectively,
than the results17 obtained without considering the ef-
fect of the three-segment interaction. The solid curves
in Figure 2a represent the values calculated by eq 16
with the parameters thus determined. On the other
hand, the dashed curves in the same figure represent
the theoretical A2 without the end-effect terms in
eq 16. The end effect becomes important at Mw .

5,000.
Substituting the end-effect terms determined above

into eq 14, we searched values of d þ � leading to best
fits of eq 14 to the A2 data in a lower Mw region.
Figure 2b shows the best fit results by the solid curves,
which slightly deviate downward from the data points
at Mw & 104. The deviations arise from the effect of
the double contact including in eq 16 (the B3 term)
but not in eq 14. Corresponding to B2 in eq 16, the val-
ue of d þ � and thus the asymptotic value of the theo-
retical A2 at the � temperature is slightly negative, as
seen from the top solid curve in Figure 2b. The disa-
greement between the thermodynamic perturbation
theory using the single-contact approximation and ex-
periment with respect to A2 was observed in the good
solvent toluene too,10 but it is less remarkable in the
poor solvent cyclohexane. This may be due to smaller
contributions of multiple-contact effects expressed in
terms of power series of B2 and B3 to A2, because of
smaller jB2j and B3 in the poor solvent (cf. Table II).
To separate the value of d from d þ � thus deter-

mined, we compared theoretical values of ð@�=@cÞ=
RT calculated by eqs 7, 8, and 10 for different values
of d with experimental results for low molecular
weight polystyrene up to high polymer concentrations
shown in Figure 1. If a value of d is chosen, �, �0, and
�00 can be determined from d þ �, a2;1, and a2;2 (cf.
eqs 14 and 16), and "mm, "me, and "ee can be calculat-
ed from �, �0, and �00 using eq 15. As shown by the sol-
id curves in Figure 3, the values of d and also "mm,
"me, and "ee listed in Table II closely fit eqs 7, 8,
and 10 to the experimental ð@�=@cÞ=RT for different
molecular weights over the wide concentration range.
Therefore, the perturbation theory using the single-
contact approximation is valid for expressing the os-
motic compressibility for flexible polymers with low
molecular weights dissolved in the poor solvent. The
previous study10 demonstrated that the same theory
was favorably compared with the osmotic compressi-

Table II. Interaction parameters of polystyrene

in cyclohexane (CH) and toluene (TOL)

CH CH CH TOLa

(34.5, 35 �C) (25 �C) (15 �C) (15 �C)

B2/nm �0:075 �0:12 �0:185 0.74

B3/nm
3 0.33 0.33b 0.33b 1.4

a2;1/cm
3 g�1 0.55 0.30 0.05 2.0

a2;2/cm
6 mol�1 100 120 150 �150

d/nm 0.45 0.425 0.43 0.56

"mm/10
�21 J 1.6 1.6 1.6 0.72

"me/10
�21 J 0.82 1.1 1.4 �0:68

"ee/10
�21 J �0:72 �1:0 �0:97 0.60

aResults obtained previously.10;20 bAssumed.
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bility for toluene solutions of polystyrene with
Mw . 104. Therefore, we can say that the perturbation
theory has a wide applicability with respect to the sol-
vent quality.
Table II compares the interaction parameters of

polystyrene in toluene determined previously10 and
in cyclohexane. The values of "mm in cyclohexane
are independent of temperature, but larger than that
in toluene, i.e., the attractive force between polysty-
rene chains is stronger in cyclohexane as expected.
Since the thermal energy diminishes with decreasing
temperature, the attractive potential in cyclohexane
plays more important roles in solution properties at
lower temperatures. The signs of "me and "ee indicate
that the interactions between the middle and end por-
tions and between end portions of polystyrene chains
are attractive and repulsive, respectively, in cyclohex-

ane, both of which are opposite in the case of the tol-
uene solution. It may be possible for "ee to be nega-
tive, if the initiation and termination ends of the
polystyrene chain have different chemical structures.
Although the hard-core diameter d in cyclohexane

is almost constant at different temperatures, it is con-
siderably smaller than that in toluene. Since the inter-
action parameter d characterizes the potential of mean
force, the solvent intermediating between interacting
two polymer chains may implicitly affect d. At pres-
ent, we know little the relationship between the poten-
tial of mean force and bare potentials of the polymer–
polymer, polymer–solvent, and solvent–solvent pairs.
Our result indicates that the repulsive interaction
range of the potential of mean force between polymer
chains diminishes with decreasing the solvent quality,
but its theoretical justification is left in future work.

Figure 3. Comparison of ð@�=@cÞ=RT for cyclohexane solutions of low molecular weight polystyrene fractions at 35 �C (unfilled

circles), 25 �C (filled circles), and 15 �C (squares) with theoretical ones calculated by eqs 7, 8, and 10 with the interaction parameters listed

in Table II (solid curves).
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