Synthesis and Optical Properties of Novel Through-Space π -Conjugated Polymers Having a Dithia[3.3]metacyclophane Skeleton in the Main Chain

Yasuhiro MORISAKI, Tamao ISHIDA, and Yoshiki CHUJO[†]

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606–8501, Japan

(Received December 27, 2002; Accepted April 7, 2003)

ABSTRACT: Palladium-catalyzed polymerization of 6,15-dibromo-2,11-dithia[3.3]metacyclophane **5** and 2,5dialkoxy-1,4-diethynylbenzenes **6a–b** was carried out to give the corresponding polymers **7a–b** having dithia[3.3]metacyclophane as a repeating unit. The structures of the polymers were supported by ¹H, ¹³C NMR, and IR spectra. The polymers obtained were soluble in common organic solvents such as tetrahydrofuran (THF), CH₂Cl₂, CHCl₃, and toluene. The polymer **7b** showed an extension of π -delocalization *via* the through-space with π - π stacking according to the UV-vis absorption spectrum in comparison with those of the model compounds **8** and **9**. In the fluorescence emission spectrum of **7b** in chloroform solution, an intense emission peak was observed at 439 nm (Φ = 0.51) in the visible blue region. The monomer **5**, polymers **7a–b**, and the model compound **9** adopted the *syn* conformation of the dithia[3.3]metacyclophane moieties according to the ¹H NMR spectra.

KEY WORDS Through-Space / π-π Stacking / π-Conjugated Polymer / Dithia[3.3]metacyclophane / *syn* Conformation / Blue Emission /

Recently, attention has been paid to the structure, reactivity, and physical properties of [n,n]meta- or paracyclophanes, in which two aromatic rings are faced one another in proximity.¹ Several cyclophane derivatives have been prepared and their physical properties derived from the transannular interactions have been investigated in detail.² In addition, several polymers having a paracyclophane unit in the main chain (in the course of developing new processes for crosslinking resins)³ or in the side chain⁴ have been studied to date. However, few π -conjugated polymers using the longitudinal π - π interactions of cyclophane as a repeating unit have been reported so far.5-7In 1985, Mizogami and Yoshimura reported that the first synthesis of polymetacyclophane achieved by a polycondensation reaction using an oxidative dimer of 8,16-dihydroxy[2.2]metacyclophane, which exhibited a conductivity of 0.25 S cm⁻¹ by doping with H₂SO₄ vapor.⁸ Recently, we reported the synthesis and physical properties of the first welldefined [2.2] paracyclophane-containing π -conjugated polymers⁷ based on poly(*p*-phenylene-ethynylene)s (PPEs) and poly(*p*-phenylenevinylene)s (PPVs). In these study, we demonstrated that the polymer 1 was capable of extended π -delocalization via the throughspace with π - π stacking of [2.2] paracyclophane.^{7a}

In addition, dithia[3.3]cyclophanes have played an important role in cyclophane chemistry as synthetic intermediates for [2.2]cyclophanes (through sulfur elimination), and also for [2.2]cyclophane-dienes.¹ Fur-

Polymer 1

thermore, dithia[3.3]metacyclophane in solution involves a syn/anti conversion of the aromatic rings and a chair/boat conversion of the -CH2-S-CH2bridging framework, while as a crystal, it constitutes both syn conformation and a chair/chair conformation.^{1,9-11} Although the conformational behavior of [3.3]metacyclophane derivatives is not straightforward, dithia[3.3]metacyclophane appears to be a promising candidate for the aryl unit of through-space π -conjugated polymers. Changing the conformations of the [3.3]metacyclophane moiety by varying the temperature can fine-tune the optical and electrochemical properties of the resulting polymers. This paper reports the synthesis and properties of novel throughspace π -conjugated polymers based on PPEs having a dithia[3.3]metacyclophane skeleton in the main chain as a repeating unit.

EXPERIMENTAL

General

¹H and ¹³C NMR spectra were recorded on a JEOL JNM-EX270 instrument at 270 and 67.5 MHz, respec-

 $^{^{\}dagger}\text{To}$ whom correspondence should be addressed.

tively. The chemical shift values were expressed relative to Me₄Si as an internal standard. IR spectra were obtained on a PerkinElmer 1600 spectrometer. UVvis spectra were obtained on a JASCO V-530 spectrophotometer, and samples were analyzed in CHCl₃ at room temperature. Fluorescence emission spectra were recorded on a PerkinElmer LS50B luminescence spectrometer, and samples were analyzed in CHCl₃ at room temperature. Gel permeation chromatography was carried out on a TOSOH UV-8020 and RI-8020 (TOSOH TSK-GEL α -3000 column) using THF as an eluent after calibration with standard polystyrene. Analytical thin-layer chromatography (TLC) was performed with silica gel 60 Merck F254 plates. Column chromatography was performed with Wakogel C-300 silica gel. Elemental analysis was performed at the Microanalytical Center of Kyoto University.

Materials

THF was distilled from sodium benzophenone ketyl. NEt₃ was distilled from KOH. Toluene was distilled from CaH₂. Methanol, ethanol, and benzene were used without purification. NaBH₄, NaOH, Cul, 5-bromo-*m*-xylene, thiourea, PdCl₂(PPh₃)₂, PPh₃, and Bun₄NF (1.0 M in THF solution) were obtained commercially, and used without further purification. Pd(PPh₃)₄ was prepared as described in the literature.¹² 5-Bromo-*m*-xylene dibromide 4,¹³ 2,5dialkoxy-1,4-diethynylbenzenes (6a and 6b),¹⁴ and 1,4-bis(phenylethynyl)-2,5-didodecyloxybenzene 8^{14a} were also prepared as described in the literature. 6,15-Dibromo-2,11-dithia[3.3]metacyclophane 5 was prepared as described in the literature with minor modification.¹⁵ All of the new products are characterized below.

1,3-Bis(isothiouroniummethyl)-5-bromobenzene Dibromide **2**. A mixture of 5-bromo-*m*-xylene dibromide **4** (2.0 g, 5.8 mmol), thiourea (0.99 g, 13 mmol), and ethanol (10 mL) was placed in a 100 mL Pyrex flask equipped with a magnetic stirring bar under a flow of nitrogen. The reaction mixture was refluxed for 2 h with stirring. After cooling, the white solid precipitated. The product was separated by filtration, washed with ethanol, and dried under vacuum to give **2** (2.7 g, 5.5 mmol, 94%). A white solid; mp 254–255 °C. ¹H NMR (270 MHz, DMSO-*d*₆): δ 4.50 (s, 4 H), 7.45 (s, 1 H), 7.63 (s, 2 H), 9.05 (s, 4 H), 9.20 (s, 4 H); ¹³C NMR (67.5 MHz, DMSO-*d*₆): δ 33.2, 121.8, 128.5, 131.1, 138.5, 168.6. Anal. calcd for C₁₀H₁₅Br₃N₄S₂: C 24.26; H 3.05; found: C 24.41; H 2.99.

6,15-Dibromo-2,11-dithia[3.3]metacyclophane 5. To a solution of 2 (4.9 g, 10 mmol) in 100 mL of methanol was added NaBH₄ (1.5 g, 40 mmol) slowly with rapid stirring to generate thiol. This solution and a solution of 4 (3.4 g, 10 mmol) in 100 mL of ethanolbenzene (4:1) were added dropwise simultaneously to a boiling solution of NaOH (0.79 g, 20 mmol) in 100 mL of ethanol. After the complete addition (24 h), the solution was refluxed for additional 24 h. The reaction mixture was allowed to cool to room temperature and evaporated. The residue was dissolved in CH₂Cl₂. The organic layer was washed with water and dried over Na₂SO₄. The solvent was removed under vacuum and the crude product was subjected to column chromatography on SiO₂ with CH₂Cl₂ as an eluent to give the compound 5 (1.8 g, 4.2 mmol, 42%). A white solid; mp 187–189°C. ¹H NMR (270 MHz, CDCl₃): δ 3.73 (s, 8 H), 6.96 (s, 2 H), 7.05 (s, 4 H); ¹³C NMR (67.5 MHz, CDCl₃): δ 37.6, 122.3, 130.0, 130.2, 139.0. Anal. calcd for C₁₄H₁₄Br₂S₂: C 44.67; H 3.28; found: C 44.38; H 3.19.

Polymerization

A typical procedure is as follows. A 50 mL Pyrex flask was charged with **5** (126 mg, 0.29 mmol), **6** (0.29 mmol), Pd cat. (0.014 mmol), PPh₃ (16 mg, 0.060 mmol), CuI (3.9 mg, 0.020 mmol), toluene (3.0 mL), NEt₃ (3.0 mL), and a magnetic stirring bar under a flow of nitrogen. The reaction was carried out at 80 °C for 48 h with stirring. After the reaction mixture was cooled, the precipitated ammonium salts were filtered off and washed with THF. The filtrate was concentrated and poured into methanol (50 mL) to precipitate the polymer. The polymer was separated by filtration, washed with methanol, and dried in vacuo to give the polymer **7** as an orange powder.

Polymer 7a. Yield: 107 mg, 62%. ¹H NMR (CD-Cl₃, 270 MHz): δ 0.92 (br, 6 H), 1.37 (br, 8 H), 1.52 (br, 4 H), 1.82 (br, 4 H), 3.74 (brs, 8 H), 3.98 (br, 4 H), 6.85– 7.11 (m, 6 H), 7.34–7.60 (m, 2 H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 14.0, 22.6, 25.6, 29.0, 31.5, 37.3, 37.6, 69.7, 85.8, 95.1, 117.6, 122.4, 130.2, 130.4, 137.0, 139.0, 154.8. IR (KBr): 2203 cm⁻¹. Anal. calcd for C₃₈H₄₂O₂S₂: C 76.72, H 7.12; found: C 78.30, H 7.30.

Polymer 7*b.* Yield: 128 mg, 58%. ¹H NMR (CD-Cl₃, 270 MHz): δ 0.85 (br, 6 H), 1.24 (br, 32 H), 1.52 (br, 4 H), 1.82 (br, 4 H), 3.72 (brs, 8 H), 3.98 (br, 4 H), 6.84–7.11 (m, 6 H), 7.30–7.45 (br, 2 H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 14.1, 22.7, 25.9, 26.1, 29.4, 29.7 (overlapping signals), 31.9, 37.3, 37.6, 69.6, 85.9, 94.4, 116.9, 122.4, 130.2, 130.4, 136.9, 139.0, 153.5. IR (KBr): 2206 cm⁻¹. Anal. calcd for C₅₀H₆₆O₂S₂: C 78.69, H 8.72; found: C 77.20, H 7.82.

Model Compound **9**. A mixture of **5** (152 mg, 0.35 mmol), 1,4-didodecyloxy-2-ethynyl benzene¹⁴ (333 mg, 0.71 mmol), Pd(PPh₃)₄ (46 mg, 0.040 mmol),

Buⁿ₄NF (1.0 mL, 1.0 M solution in THF), and THF (7.0 mL) was placed in a 50 mL Pyrex flask equipped with a magnetic stirring bar under a flow of nitrogen. ¹⁶ The reaction mixture was refluxed for 3 d. After cooling, the reaction mixture was diluted with CHCl₃, washed with water, and the organic layer was dried over Na₂SO₄. The solvent was evaporated and the crude product was subjected to column chromatography on SiO_2 with CH_2Cl_2 /hexane (1:1) as an eluent to give the compound 9 (199 mg, 0.16 mmol, 47%). A yellow solid; mp 45–47 °C. ¹H NMR (CDCl₃, 270 MHz): δ 0.88 (m, 12 H), 1.27 (br, 76 H), 1.50 (br, 8 H), 1.82 (m, 4 H), 3.71 (s, 8 H), 3.82 (t, J = 6.5 Hz, 4 H), 3.95 (t, J = 6.2 Hz, 4 H), 6.65 (s, 2 H), 6.77 (s, 4 H), 6.93 (s, 2 H), 7.20 (s, 4 H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 14.1, 22.7, 26.0, 26.1, 29.3, 29.4, 29.5, 29.6 (overlapping signals), 31.9, 36.9, 68.6, 69.9, 86.1, 93.0, 113.7, 114.2, 116.6, 118.1, 124.0, 130.4, 131.7, 137.0, 152.8, 154.1. Anal. Calcd for C₈₀H₁₂₀O₄S₂: C 79.41; H 10.00. Found: C 79.16; H 10.11.

RESULTS AND DISCUSSION

The synthesis of 6,15-dibromo-2,11-dithia[3.3]metacyclophane 5^{15} and polymers 7a-b is shown in Scheme 1. The key monomer **5** was synthesized by direct coupling of 5-bromo-1,3-benzenedimethanethiol **3**, generated by reduction of 5-bromo-1,3-bis(isothiouroniummethyl)benzene dibromide **2**, with 5-bromo-1,3-bis(bromomethyl)benzene **4** in 42% yield. Assignment of the *syn* conformation of **5** in solution at 25 °C was confirmed by the ¹H NMR spectrum.¹⁰ The internal aromatic proton of **5** was not affected by the transannular shielding and appeared at $\delta =$ 6.96 ppm in the normal range (Figure 1A). In the case of the *anti*-conformers, inner protons H_i are shifted

Scheme 1.

F up-field ($\delta = 4 \sim 5$ ppm), and can be used to assign the two conformers.¹ In addition, the bridge protons appeared as a singlet at $\delta = 3.73$ ppm in ¹H NMR spectrum, indicating **5** likewise exists in three rapidly interconverting isomeric forms, *i.e.*, pseudo-

chair/chair, pseudo-boat/chair, pseudo-boat/boat, in solution at 25 °C (Scheme 2). Comonomers **6a–b** were prepared as described in the literature.¹⁴

The procedure for the synthesis of the polymer proceeded as follows (Scheme 3),¹⁷ and the results are

Figure 1. Schematic representation of the conformers of the dithia[3.3]metacyclophane moiety, and ¹H NMR spectra (270 MHz) in CDCl₃ solution at 25 °C; (A) monomer **5**, (B) polymer **7b**, and (C) model compound **9**. H_i and H_e stand for the internal and external aromatic protons of the dithia[3.3]metacyclophane moieties, respectively.

pseudo-chair/chair

pseudo-boat/chair

pseudo-boat/boat

Scheme 2.

Table I. Synthesis and Optical Properties of the Polymers 7a-b

entry	R	Pd cat.	additive	polym.	yield/%a	$M_{\rm w}{}^{\rm b}$	$M_{\rm n}{}^{\rm b}$	$M_{\rm w}/M_{\rm n}{}^{\rm b}$	UV $\lambda_{\rm max}/{\rm nm^c}$	ε^{c}	PL $\lambda_{max}/nm^{c,d}$
1	<i>n</i> -C ₆ H ₁₃ (6a)	$PdCl_2(PPh_3)_2$	PPh ₃	7a	62	7600	4900	1.6	377	16000	440
2	n-C ₁₂ H ₂₅ (6b)	$PdCl_2(PPh_3)_2$	PPh ₃	7b	58	13500	7500	1.8	373	29900	439
3	n-C ₁₂ H ₂₅ (6b)	$Pd(PPh_3)_4$	none	7b	47	14000	7600	1.9	372	27500	438

^aIsolated yields after reprecipitation into MeOH. ^bGPC (THF), polystyrene standards. ^cAbsorption and emission spectra were recorded in dilute CHCl₃ solutions at room temperature. ^dExcited at 375 nm (1.0×10^{-5} M).

summarized in Table I. Treatment of 5 with 6 in the presence of a catalytic amount of $PdCb(PPh_3)_2$ (2.5 mol% to an acetylene unit), PPh3, and CuI in toluene–NEt₃ (v/v = 1:1) at 80 °C for 48 h under a nitrogen atmosphere gave dark fluorescent solutions. After the reaction was complete, inorganic by-products were filtered off and the filtrate was reprecipitated into a large amount of MeOH to obtain the corresponding titled polymers 7a-b in moderate yields as an orange powder. The polymers obtained were readily soluble in common organic solvents such as THF, CH₂Cl₂, CHCl₃, and toluene. A self-standing thin film of the polymer was obtained easily by casting from a CHCl₃ solution. All polymers were thermally stable as well as air stable, both in solution and the solid state. The molecular weight measurements were performed by gel permeation chromatography (GPC) in THF eluent using a calibration curve of polystyrene as the standard (Table I). The polymer 7b had a numberaverage molecular weight (M_n) of 7500, which corresponded to a degree of polymerization of 10 (Table I, entry 2). The Pd(PPh₃)₄/CuI system showed almost the same catalytic activity for this polymerization, giving 7b in a 47% isolated yield with $M_n =$ 7600 (Table I, entry 3). All polymers were characterized by ¹H NMR and IR spectra. For example, in 7b, the aryl protons of the alkoxybenzene and metacyclophane units appeared broadly at $\delta = 7.30 \sim 7.60$ and $\delta = 6.75 \sim 7.15$, respectively. The internal protons of dithia[3.3]metacyclophane in the polymer ($\delta =$ 6.75~7.15) were not shifted upfield (Figure 1B). It

Compounds 8 and 9

is implied that the dithia[3.3]metacyclophane units in the polymer backbone exist predominantly in the *syn* conformation in solution at room temperature. The acetylenic moiety of **7b** was characterized by ¹³C NMR spectrum (δ 85.9 and 94.4 ppm) and by IR spectrum ($\nu_{C=C} = 2206 \text{ cm}^{-1}$), respectively.

The optical properties of the polymers 7a-b obtained above were examined, and the results are also summarized in Table I. The UV-vis absorption spectra of 7a-b in a dilute CHCl₃ solution at room temperature exhibited absorption maxima at around 310 and 375 nm. The polymer 7b exhibited strong absorption peaks at 311 and 373 nm, which agreed with the absorption of the PPEs backbone (Table I, entry 3). As shown in Figure 2, the UV-vis spectrum of 7b was compared with those of two model compounds 8 and 9. The internal proton H_i of the compound 9 appeared at $\delta = 6.65$ ppm (Figure 1C), indicating 9 likewise adopts the syn conformation in solution at room temperature. The UV-vis spectrum of the compound 8 was already reported,^{14a} but we wish to show here our own result. The spectra showed a red shift of 12 nm for the absorption of **7b** ($\lambda_{max} = 373 \text{ nm}$) relative to 8 ($\lambda_{max} = 361 \text{ nm}$) and 42 nm relative to 9 having a dithia[3.3]metacyclophane core ($\lambda_{max} = 331$ nm). Furthermore, the absorption edges were also red-shifted about 100 nm, as shown in Figure 2. These results

Figure 2. Absorption spectra of the polymer 7b and the model compounds 8 and 9 in CHCl₃.

Figure 3. Fluorescence spectra of the polymer 7b in dilute $CHCl_3$ solution and in the film state (excitation wavelength at 375 nm).

suggest the extension of π -delocalization length only *via* the through-space based on the two benzene rings of 2,11-dithia[3.3]metacyclophane. The lone pairs of the two sulfur atoms in dithia[3.3]metacyclophane were not involved in the π -conjugated system because they were remote from the benzene rings. In addition, the absorption spectra of **7a–b** in the solid state were very similar to those in solution.

In the fluorescence emission spectra of the polymers **7a–b** in dilute CHCl₃ solution at room temperature on excitation at 375 nm, the emission peaks were observed near 440 nm in the visible blue region (Table I, Figure 3). The polymer solutions showed high quantum efficiency; for example, **7b** had an efficiency of 0.51 in CHCl₃ solution at room temperature, as demonstrated by using 9-anthracenecarboxylic acid in CH₂Cl₂ as a standard ($\Phi = 0.442$).¹⁸ In the solid thin film of **7b**, the weak emission peak maximum at 502 nm was redshifted about 60 nm from that in solution. This result indicates relatively strong π - π stacking, *i.e.*, ex-

cimer formation.¹⁹ For polymers **7a** and **7b**, the physical properties were almost the same and independent on the length of the alkoxy side chain.

CONCLUSION

Novel π -conjugated polymers having dithia[3.3]metacyclophane in the main chain have been designed, synthesized, and characterized. The monomer, polymers, and the model compound adopted the *syn* conformation of dithia[3.3]metacyclophane units as shown by the ¹H NMR spectra. The extension of π conjugation *via* the through-space was observed according to the UV-vis absorption spectral data in comparison with those of the model compounds. The polymers emitted bright blue light ($\lambda = 440$ nm, $\Phi =$ 0.51) in solution. Further studies of the electronic properties, thermal properties, and thermochromism accompanying the *syn/anti* conformational changes of dithia[3.3]metacyclophane moieties in the polymer backbone are now underway.

REFERENCES AND NOTES

1. For recent reviews, see:

a) F. Vögtle, "Cyclophane Chemistry", John Wiley & Sons, New York, N.Y., 1993.

- b) J. Shultz and F. Vögtle, Top. Curr. Chem., 42, 172 (1994).
- Bazan, Mukamel, and co-workers recently reported the unique photophysical properties of a series of stilbenoids having a [2.2]paracyclophane core. See:

a) G. C. Bazan, W. J. Oldham Jr., R. J. Lachicotte, S. Tretiak, V. Chernyak, and S. Mukamel, *J. Am. Chem. Soc.*, **120**, 9188 (1998).

b) S. Wang, G. C. Bazan, S. Tretiak, and S. Mukamel, J. Am. Chem. Soc., **122**, 1289 (2000).

c) J. Zyss, I. Ledoux, S. Volkov, V. Chernyak, S. Mukamel,
G. P. Bartholomew, and G.C. Bazan, *J. Am. Chem. Soc.*, **122**, 11956 (2000).

d) G. P. Bartholomew and G. C. Bazan, J. Am. Chem. Soc., **124**, 5183 (2002).

- a) R. A. Meyers, J. W. Hamersma, and H. E. Green, *J. Polym. Sci., Polym. Lett. Ed.*, **10**, 685 (1972).
 b) K. P. Sivaramakrishnan, C. Samyn, I. J. Westerman, D. T. Wong, and C. S. Marvel, *J. Polym. Sci., Polym. Chem. Ed.*, **13**, 1083 (1975).
 c) D. M. Chang and C. S. Marvel, *J. Polym. Sci., Polym. Chem. Ed.*, **13**, 2507 (1975).
 d) S, Lin and C. S. Marvel, *J. Polym. Sci., Polym. Chem. Ed.*, **21**, 1151 (1983).
 a) J. Furukawa and J. Nishimura, *J. Polym. Sci., Polym. Lett.*
 - *Ed.*, 14, 85 (1976).
 b) D. T. Longone and D. T. Glatzhofer, *J. Polym. Sci., Polym. Chem. Ed.*, 24, 1725 (1986).

c) D. T. Longone and J. H. Glans, *J. Polym. Sci., Polym. Chem. Ed.*, **26**, 405 (1988).

d) S. Iwatsuki, T. Itoh, M. Kubo, and H. Okuno, *Polym. Bull.*, **32**, 27 (1944).

- D. M. Collard and B. Lee, *Polym. Prepr.*, (Am. Chem. Soc., Div. Polym. Chem.), 41 (1), 241 (2000).
- 6. Independently, synthesis of the π-conjugated polymers having thiophene and [2.2]paracyclophane as a repeating unit by electrochemical polymerization has been reported.
 a) L. Guyard and P. Audebert, *Electrochem. Commun.*, **3**, 164 (2001).

b) L. Guyard, D. A. M. Nguyen, and P. Audebert, *Adv. Mater.*, **13**,133 (2001).

c) F. Salhi and D. M. Collard, *Polym. Mater. Sci. Eng.*, 222 (2002).

d) F. Salhi and D. M. Collard, Adv. Mater., 15, 81 (2003).

- a) Y. Morisaki and Y. Chujo, *Macromolecules*, **35**, 587 (2002).
 b) Y. Morisaki and Y. Chujo, *Chem. Lett.*, 194 (2002).
 - c) Y. Morisaki, T. Ishida, and Y. Chujo, *Macromolecules*, **35**, 7872 (2002).
 - d) Y. Morisaki and Y. Chujo, Polym. Bull., 49, 209 (2002).
 - e) Y. Morisaki, F. Fujimura, and Y. Chujo. *Organometallics*, in press.
- S. Mizogami and S. Yoshimura, J. Chem. Soc., Chem. Commun., 1736 (1985).
- a) W. Anker, G. W. Bushnell, and R. H. Mitchell, *Can. J. Chem.*, 57, 3080 (1979).

b) M. F. Semmelhack, J. J. Harrison, D. C. Young, A. Gutiérrez, S. Raffi, and J. Clardy, *J. Am. Chem. Soc.*, **107**, 7508 (1985).

- 10. R. H. Mitchell, J. Am. Chem. Soc., 124, 2352 (2002).
- Unusual boat/boat conformation of the bridging framework of *syn*-[3.3]metacyclophanes in the crystal has been reported.
 a) G. J. Bodwell, J. N. Bridson, T. J. Houghton, and B. Yarla-gadda, *Tetrahedron Lett.*, **38**, 7475 (1997).

b) G. R. Newkome, S. Pappalardo, and F. R. Fronczek, *J. Am. Chem. Soc.*, **105**, 5152 (1983).

c) K. Sako, H. Tatemitsu, S. Onaka, H. Takemura, S. Osada,G. Wen, J. M. Rudzinski, and T. Shinmyozu, *Liebigs Ann.*,

1645 (1996).

- 12. D. R. Coulson, Inorg. Synth., 13, 121 (1972).
- M. Ashram, D. O. Miller, J. N. Bridson, and P. E. Georghiou, J. Org. Chem., 62, 6476 (1997).
- a) H. Li, D. R. Powell, R. K. Hayashi, and R. West, *Macro-molecules*, **31**, 52 (1998).
 b) M. Moroni and J. L. Moigne, *Macromolecules*, **27**, 562 (1994).
- T. Kawashima, S. Kurioka, Y. Tohda, M. Ariga, Y. Mori, and S. Misumi, *Chem. Lett.*, 1289 (1985).
- a) A. Mori, J. Kawashima, T. Shimada, M. Suguro, K. Hirabayashi, and Y. Nishihara, *Org. Lett.*, **2**, 2935 (2000).
 b) A. Mori, T. Kondo, T. Kato, and Y. Nishihara, *Chem. Lett.*, 286 (2001).
- a) H. A. Dieck and R. F. Heck, *J. Organomet. Chem.*, **93**, 259 (1975).
 b) K. Sonogashira, Y. Tohda, and N. Hagihara, *Tetrahedron Lett.*, **16**, 4467 (1975).
- 18. The absorbance of each sample was below 0.05 at the excitation wavelength at 375 nm, in the measurement of the fluorescence quantum yield. The quantum yield (Φ_{unk}) of unknown sample was calculated by the following equation: $\Phi_{unk} = \Phi_{std}[A_{std}F_{unk}/A_{unk}F_{std}][n_{D,unk}/n_{D,std}]^2$ where A_{std} and A_{unk} are the absorbance of the standard and unknown sample, respectively, F_{std} and F_{unk} are the corresponding relative integrated fluorescence intensities, and n_D is the refractive index [CH₂Cl₂ ($n_D = 1.424$) and CHCl₃ ($n_D = 1.446$) were used].
- 19. For review on excimer formation and luminescence in conjugated polymers, see:

E. Conwell, Trends Polym. Sci., 5, 218 (1997). See also:

a) H. Li, D. R. Powell, R. K. Hayashi, and R. West, *Macro-molecules*, **31**, 52 (1998).

b) J. Cornil, D. A. dos Santos, X. Crispin, R. Silbey, and J. L. Bredas, *J. Am. Chem. Soc.*, **120**, 1289 (1998).

c) C. E. Halkyard, M. E. Rampey, L. Kloppenburg, S. L. Studer-Martinez, and U. H. F. Bunz, *Macromolecules*, **31**, 8655 (1998).