Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering

Abstract

β-(1→3)-D-glucan with (1→6) branching (L-FV-I) from Lentinus edodes in water was degraded into seven fractions of different molecular weights by ultrasonic irradiation. Weight-average molecular weight Mw, radius of gyration ‹s2z1/2 and intrinsic viscosity [η] of the β-D-glucan and its fractions in 0.5 M NaCl aqueous solution and dimethylsulfoxide (DMSO) were studied by multi-angle laser light scattering (MALLS), GPC combined with MALLS, and viscometry. Mw dependence of [η] for the glucan in 0.5 M NaCl aqueous solution was represented approximately by [η]=7.69×10−6Mw1.32 (cm3 g−1) at Mw from 1.87×105 to 1.20×106 at 25°C. GPC chromatograms of the glucans in aqueous solution contained two peaks, a main peak corresponding to triple-stranded chains with molecular weight Mw,m, and small second peak corresponding to fragments of single chains with Mw,s (about 20±5% content). Analysis of Mw,m and ‹s2z,m1/2 in term of the known theory for wormlike chains yielded 2180±100 nm−1, 120±10 nm and 0.31 nm for molar mass per unit contour length ML, persistence length q, and contour length h per main-chain glucose residue, respectively, which agree closely with theory data of triple-helical chains and reported parameters for triple-helix schizophyllan in 0.01 M NaOH aqueous solution. The ratios of Mw,m in 0.5 M NaCl to Mw in DMSO were calculated to be roughly 3. The predominant species of the glucan in 0.5 M NaCl aqueous solution exist as triple-helical chains with high rigidity, and in DMSO as single-flexible chains.

References

  1. 1

    M. Mizuno, M. Morimoto, K. Minato, and H. Tsuchida, Biosci., Biotechnol., Biochem., 62, 434 (1998).

  2. 2

    G. Chihara, Y. Maeda, J. Hamuro, T. Sasaki, and F. Fukuoka, Nature, 222, 687 (1996).

  3. 3

    Y. Y. Maeda and G. Chihara, Nature, 229, 634 (1971).

  4. 4

    Y. Y. Maeda, J. Hamuro, and G. Chihara, Int. J. Cancer, 8, 41 (1971).

  5. 5

    T. Okuda, Y. Yoshioka, T. Ikekawa, G. Chihara, and K. Nishioka, Nature New Biology, 238 (80), 59 (1972).

  6. 6

    Y. Y. Maeda and G. Chihara, Int. J. Cancer, 11, 153 (1973).

  7. 7

    J. Hamuro and G. Chihara, Nature, 245, 40 (1973).

  8. 8

    J. Zakany, G. Chihara, and J. Fachet, Int. J. Cancer, 25, 371 (1980).

  9. 9

    T. Suga, T. Shiio, Y. Y. Maeda, and G. Chihara, Cancer Res., 44, 5132 (1984).

  10. 10

    T. Suga, Y. Y. Maeda, H. Vchida, M. Rokutanda, and G. Chihara, Int. J. Immunopharmacol., 8(4), 637 (1986).

  11. 11

    J. Zakany, G. Chihara, and J. Fachet, Int. J. Cancer, 26, 783 (1980).

  12. 12

    S. Sipka, G. Abel, J. Csonger, G. Chihara, and J. Fachet, Int. J. Immunopharmacol., 7 (5), 747 (1985).

  13. 13

    Y. Y. Maeda, S. T. Watanabe, C. Chihara, and M. Rokutanda, Cancer Res., 48, 671 (1988).

  14. 14

    N. Suzuki and A. Wada, Carbohydr. Res., 109, 295 (1982).

  15. 15

    T. L. Bluhm and A. Sarko, Can. J. Chem., 55, 293 (1977).

  16. 16

    H. Saito, T. Ohki, N. Takasuka, and T. Sasaki, Carbohydr. Res., 58, 293 (1977).

  17. 17

    H. Saito, R. Tabeta, Y. Yashioka, C. Hara, T. Kiho, and S. Ukai, Bull. Chem. Soc. Jpn., 60, 4267 (1987).

  18. 18

    H. Saito, T. Ohki, and T. Sasaki, Carbohydr. Res., 74, 227 (1979).

  19. 19

    H. Saito, Y. Yoshioka, M. Yakoi, and J. Yamada, Biopolymers, 29, 1689 (1990).

  20. 20

    A. Yoshiyuki, O. Masumi, and Y. Toshiro, Chem. Pharm. Bull., 38, 477 (1990).

  21. 21

    G. Chihara, J. Hamuro, Y. Maeda, Y. Arai, and F. Fukyok, Nature, 225, 943 (1970).

  22. 22

    T. Kiho, I. Yoshida, K. Nagai, S. Ukai, and C. Hara, Carbohydr. Res., 189, 273 (1989).

  23. 23

    P. Zhang, L. Zhang, and S. Cheng, Biosci., Biotechnol., Biochem., 63, 1197 (1999).

  24. 24

    T. Yanaki, T. Norisuye, and H. Fujita, Macromolecules, 13, 1462 (1980).

  25. 25

    T. Saito, T. Norisuye, and H. Fujita, Polym. J., 16, 341 (1984).

  26. 26

    L. Zhang and L. Yang, Biopolymers, 36, 695 (1995).

  27. 27

    B. Zimm, J. Chem. Phys., 16, 1093 (1948).

  28. 28

    Y. Kashiwagi, T. Norisuye, and H. Fujita, Macromolecules, 14, 1220 (1981).

  29. 29

    T. Saito, T. Norisuye, and H. Fujita, Macromolecules, 16, 185 (1983).

  30. 30

    L. Zhang, X. Xu, and S. Pan, J. Polym. Sci., Part B: Polym. Phys., 38, 1352 (2000).

  31. 31

    H. Benoit and P. Doty, J. Phys. Chem., 57, 958 (1953).

  32. 32

    L. Zhang, W. Liu, T. Norisuye, and H. Fujita, Biopolymers, 26, 333 (1987).

  33. 33

    S. V. Bushin, V. N. Tsvetkov, E. B. Lysenkov, and V. N. Emel’yanov, Vysokamol. Soedin. Ser. A, 23, 2494 (1981).

  34. 34

    T. Yanaki and T. Norisuye, Polym. J., 13, 1135 (1981).

  35. 35

    H. Yamakawa and T. Yoshizaki, Macromolecules, 13, 633 (1980).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, L., Zhang, X., Zhou, Q. et al. Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering. Polym J 33, 317–321 (2001). https://doi.org/10.1295/polymj.33.317

Download citation

Keywords

  • Lentinan
  • β-D-Glucan
  • Molecular Weight
  • Intrinsic Viscosity
  • Conformation
  • Triple-Helix Chain
  • Light Scattering
  • Gel Permeation Chromatography

Further reading