Backbone Stiffness of Comb-Branched Polymers

Abstract

The free energy change accompanying the bending of the main chain of a comb-branched polymer is evaluated in terms of excluded-volume interactions among side chains to obtain λb-1 (the increase of the Kuhn segment length). It is assumed that without such interaction, the polymer backbone has a Kuhn length of λ0-1 and each side chain consisting of n (»1) bonds is Gaussian. At the theta point where the effective binary cluster integral (a linear combination of the binary cluster integral β2 and the ternary cluster integral β3) vanishes, λb-1 in the first-order perturbation approximation increases in proportion to n2β3. On the other hand, it is proportional to n2β2 in the good solvent limit, in which the mean-field approximation is used for the calculation. These results give a fairly satisfactory explanation of the experimentally observed n-dependence of the total Kuhn length (λ0-1b-1) for polystyrene polymacromonomers in cyclohexane at the theta point and in toluene (a good solvent).

References

  1. 1

    M. Wintermantel, M. Schmidt, Y. Tsukahara, K. Kajiwara, and S. Kohjiya, Macromol. Rapid Commun., 15, 279 (1994).

  2. 2

    N. Nemoto, M. Nagai, A. Koike, and S. Okada, Macromolecules, 28, 3854 (1995).

  3. 3

    M. Wintermantel, M. Gerle, K. Fischer, M. Schmidt, I. Wataoka, H. Urakawa, K. Kajiwara, and Y. Tsukahara, Macromolecules, 29, 978 (1996).

  4. 4

    K. Terao, Y. Takeo, M. Tazaki, Y. Nakamura, and T. Norisuye, Polym. J., 31, 193 (1999).

  5. 5

    K. Terao, Y. Nakamura, and T. Norisuye, Macromolecules, 32, 711 (1999).

  6. 6

    K. Terao, T. Hokajo, Y. Nakamura, and T. Norisuye, Macromolecules, 32, 3690 (1999).

  7. 7

    K. Terao, S. Hayashi, Y. Nakamura, and T. Norisuye, Polym. Bull., 44, 309 (2000).

  8. 8

    T. Hokajo, K. Terao, Y. Nakamura, and T. Norisuye, Polym. J., 33, 481 (2001).

  9. 9

    O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas, 68, 1106 (1949).

  10. 10

    Y. Rouault and O. V. Borisov, Macromolecules, 29, 2605 (1996).

  11. 11

    M. Saariaho, O. Ikkala, I. Szleifer, I. Erukhimovich, and G. Brinke, J. Chem. Phys., 107, 3267 (1997).

  12. 12

    M. Saariaho, I. Szleifer, O. Ikkala, and G. Brinke, Macromol. Theory Simul., 7, 211 (1998).

  13. 13

    Y. Rouault, Macromol. Theory Simul., 7, 359 (1998).

  14. 14

    K. Shiokawa, K. Itoh, and N. Nemoto, J. Chem. Phys., 111, 8165 (1999).

  15. 15

    T. M. Birshtein, O. V. Borisov, Ye. B. Zhulina, A. R. Khokhlov, and T. A. Yurasova, Polym. Sci. U.S.S.R., 29, 1293 (1987).

  16. 16

    E. B. Zhulina and T. A. Vilgis, Macromolecules, 28, 1008 (1995).

  17. 17

    G. H. Fredrickson, Macromolecules, 26, 2825 (1993).

  18. 18

    A. Subbotin, M. Saariaho, O. Ikkala, and G. Brinke, Macromolecules, 33, 3447 (2000).

  19. 19

    H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper & Row, New York, N.Y., 1971.

    Google Scholar 

  20. 20

    T. Norisuye and Y. Nakamura, Polymer, 34, 1440 (1993).

  21. 21

    L. D. Landau and E. M. Lifshitz, “Statistical Physics,” 3rd ed, Pergamon Press, Oxford, 1980, section 127.

    Google Scholar 

  22. 22

    T. Odijk, J. Polym. Sci., Polym. Phys. Ed., 15, 477 (1977).

  23. 23

    J. Skolnick and M. Fixman, Macromolecules, 10, 944 (1977).

  24. 24

    B. J. Cherayil, J. F. Douglas, and K. F. Freed, J. Chem. Phys., 83, 5293 (1985).

  25. 25

    Y. Nakamura, T. Norisuye, and A. Teramoto, Macromolecules, 24, 4904 (1991).

  26. 26

    F. Abe, Y. Einaga, T. Yoshizaki, and H. Yamakawa, Macromolecules, 26, 1884 (1993).

  27. 27

    M. Okumoto, K. Terao, Y. Nakamura, T. Norisuye, and A. Teramoto, Macromolecules, 30, 7493 (1997).

  28. 28

    M. Okumoto, Y. Tasaka, Y. Nakamura, and T. Norisuye, Macromolecules, 32, 7430 (1999).

  29. 29

    Y. Miyaki, Y. Einaga, and H. Fujita, Macromolecules, 11, 1180 (1978).

  30. 30

    T. Norisuye and H. Fujita, Polym. J., 14, 143 (1982).

  31. 31

    H. Yamakawa, “Helical Wormlike Chains in Polymer Solutions,” Springer-Verlag GmbH & Co. KG, Berlin, 1997.

    Google Scholar 

  32. 32

    T. Norisuye, Prog. Polym. Sci., 18, 543 (1993).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakamura, Y., Norisuye, T. Backbone Stiffness of Comb-Branched Polymers. Polym J 33, 874–878 (2001). https://doi.org/10.1295/polymj.33.874

Download citation

Keywords

  • Comb Polymer
  • Chain Stiffness
  • Kuhn Segment Length
  • Ternary Cluster Interaction
  • Polymacromonomer

Further reading

Search