Electrostatic Contributions to Chain Stiffness and Excluded-Volume Effects in Sodium Poly(styrenesulfonate) Solutions

Abstract

Intrinsic viscosities for sodium poly(styrenesulfonate) in aqueous sodium chloride at 25°C have been determined for 15 samples ranging in weight-average molecular weight from 3.8×103 to 6.5×105 at five salt concentrations Cs between 0.05 and 2M. Their molecular weight dependence at each Cs is fairly satisfactorily explained by the theory of Yoshizaki et al. for unperturbed wormlike chains combined with the quasi-two-parameter theory for excluded-volume effects. The estimated persistence length q and excluded-volume strength B both increase with decreasing Cs. This increase in q is not quantitatively described by the known theories for the electrostatic persistence length when the previously determined q of 0.69nm in 4.17M aqueous NaCl at the theta point is used for the intrinsic persistence length. It is. also shown that the values of B computed on the conventional bead model and the rodlike segment model in the Debye—Hüeckel approximation with the ion condensation hypothesis are too large compared to the experimental estimates at lower Cs of 0.05 and 0.1M though the latter model gives considerably smaller B than does the former one.

References

  1. 1

    T. Odijk, J. Polym. Sci: Polym. Phys. Ed., 15, 477 (1977).

  2. 2

    J. Skolnick and M. Fixman, Macromolecules, 10, 944 (1977).

  3. 3

    M. Le Bret, J. Chem. Phys., 76, 6243 (1982).

  4. 4

    M. Fixman, J. Chem. Phys., 76, 6346 (1982).

  5. 5

    O. Kratky and G. Porod, Rec. Trav. Chim., 68, 1106 (1949).

  6. 6

    See ref 7 and 8 and references cited therein.

  7. 7

    K. Hayashi, K. Tsutsumi, F. Nakajima, T. Norisuye, and A. Teramoto, Macromolecules, 28, 3824 (1995).

  8. 8

    E. Hirose, Y. Iwamoto, and T. Norisuye, Macromolecules, 32, 8629 (1999).

  9. 9

    H. Yamakawa, “Helical Wormlike Chains in Polymer Solutions,” Springer, Berlin, 1997.

    Google Scholar 

  10. 10

    H. Yamakawa and W. H. Stockmayer, J. Chem. Phys., 57, 2843 (1972).

  11. 11

    J. Shimada and H. Yamakawa, J. Chem. Phys., 85, 591 (1986).

  12. 12

    T. Norisuye, A. Tsuboi, and A. Teramoto, Polym. J., 28, 357 (1996).

  13. 13

    K. Hayashi, K. Tsutsumi, T. Norisuye, and A. Teramoto, Polym. J., 28, 922 (1996).

  14. 14

    K. Tsutsumi and T. Norisuye, Polym. J., 30, 345 (1998).

  15. 15

    N. Mizukoshi and T. Norisuye, Polym Bull., 40, 555 (1998).

  16. 16

    M. Fixman and J. Skolnick, Macromolecules, 11, 863 (1978).

  17. 17

    T. Yoshizaki, I. Nitta, and H. Yamakawa, Macromolecules, 21, 165 (1988).

  18. 18

    A. Takahashi, T. Kato, and M. Nagasawa, J. Phys. Chem., 71, 2001 (1967).

  19. 19

    H. Fujita, “Polymer Solution,” Elsevier, Amsterdam, 1990.

    Google Scholar 

  20. 20

    A. J. Barrett, Macromolecules, 17, 1566 (1984).

  21. 21

    P. J. Hagerman, Biopolymers, 22, 811 (1983).

  22. 22

    G. S. Manning, J. Chem Phys., 51, 924 (1969).

  23. 23

    M. Tricot, Macromolecules, 17, 1698 (1984).

  24. 24

    S. Ghosh, X. Li, C. E. Reed, and W. F. Reed, Biopolymers, 30, 1101 (1990).

  25. 25

    K. Kawakami and T. Norisuye, Macromolecules, 24, 4898 (1991).

  26. 26

    T. Norisuye, “Yamada Conference L Polyelectrolytes,” I. Noda and E. Kokufuta, Ed., Yamada Science Foundations, Osaka, Japan, 1999, p37.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iwamoto, Y., Hirose, E. & Norisuye, T. Electrostatic Contributions to Chain Stiffness and Excluded-Volume Effects in Sodium Poly(styrenesulfonate) Solutions. Polym J 32, 428–434 (2000). https://doi.org/10.1295/polymj.32.428

Download citation

Keywords

  • Polyelectrolyte
  • Poly(styrenesulfonate)
  • Wormlike Chain
  • Chain Stiffness
  • Electrostatic Persistence Length
  • Excluded-Volume Effect

Further reading

Search