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The authors investigated asymmetric anionic polym­
erizations of N-substituted maleimide (RMI) with chiral 
ligand-organometal complexes. In the previous work,1- 6 

optical activity of poly(RMI) was mainly attributed to 
asymmetric carbons on the polymer main chain, i.e., con­
figurational chirality. Main-chain carbons of poly(RMI) 
show chirality in the case of trans structures, i.e., threo­
diisotactic and threo-disyndiotactic. But the polymer 
consisting of threo-disyndiotactic structure as a whole 
cannot exhibit optical activity because (S, S)- and (R, R)­

configurational pairs equivalently exist. Excess of (S, S)­
or (R, R)-configuration for threo-diisotactic main chain 
leads to optical activity. 

Previously, G. B. Butler et al. synthesized racemic 
trans-3,4-dimethyl-N-phenylsuccinimide (trans-DMPhSI) 
to establish the structure and stereochemistry of N­
phenylmaleimide (PhMI) / vinyl ether alternating co­
polymer. 7 We prepared racemic trans-3,4-dimethyl-N­
cyclohexylsuccinimide3'8 (trans-DMCHSI) as model com­
pound for optically active poly(N-cyclohexylmaleimi­
de)1·3-5 (CHMI) to clarify the main chain structure that 
would account for optical activity from 13C NMR spectra. 
Optical activity, i.e., specific optical rotation was not dis­
cussed because trans-DMPhSI was not resolved and it 
was difficult to resolve trans-DMCHSI. Therefore, spe­
cific optical rotation due to two asymmetric centers in 
monomeric unit was not clear. The relationship between 
N-substituent and specific optical rotation was unknown 
because other optically active model compounds were 
not prepared. 

This work describes the synthesis of two trans-3, 4-
dimethyl-N-substituted succinimide (N-substituent: 1-
naphthyl, trans-DMNSI; phenyl, trans-DMPhSI) as 
model compounds of corresponding poly(RMI) such as 
poly(N-1-naphthylmaleimide)9 (1-NMI) and poly(N­
phenylmaleimide)1-5 (PhMI). ( - )-Isomers (trans-(-)­
DMNSI and trans-( - )-DMPhSI) were successfully re­
solved to clarify configurational chirality of the corre­
sponding polymer and relationship between specific op­
tical rotation and N-substituent. 

EXPERIMENTAL 

Materials 
Solvents for synthesis, measurement, and HPLC were 

tTo whom all correspondence should be addressed. 
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purified in the usual manner. Commercially available L­

( - )-sparteine (Sp, Aldrich) was used after distillation 
under reduced pressure. 

Model Compounds 
Model compounds were synthesized by method re­

ported previously. 7 Synthetic path is shown in Scheme 1. 

3,4-Dimethyl-N-1-naphthylmaleimide (DMNMI) 
A solution of 1-naphthylamine (0.5 g, 3.5 mmol) in ace­

tic acid (15 mL) was added slowly dropwise to a solution 
of excess 3, 4-dimethylmaleic anhydride (0.5 g, 4.0 
mmol) in acetic acid (15 mL) at r.t. The solution was 
stirred overnight and poured into a large amount of 
water (300 mL). The precipitate was separated by filtra­
tion with a glass filter, and washed with water (20 mL) 3 
times, followed by dried under vaccum at 25 °C to obtain 
DMNMI as a white powder (0.8 g, 3.2 mmol, 90%). mp 
170-174°C. 1HNMR (8 in ppm from tetramethylsilane 
(TMS) in CDC13) 2.13 (s, 6H,-CH3), 7.32-7.95 (m, 7H, 
aromatic protons). 13C NMR (8 in ppm from TMS in 
CDC13) 8.95 (-CH3), 124.44, 125.30, 126.34, 126.70, 
126.82, 128.34, 129.45, 130.44, 134.34 (aromatic car­
bons), 137.74 (C-3, 4), 171.39 (C-2, 5). 

cis-3,4-Dimethyl-N-1-naphthylsuccinimide ( cis-DMNSI) 
DMNMI (0.10 g, 0.40 mmol), 10% palladium-activated 

carbon (0.03 g, 30 wt%) and ethyl acetate (20 mL) were 
put in a Schlenk reaction tube, and replaced by hydro­
gen atmosphere. The solution was vigorously stirred at 
r.t. for 12 h. The solution was filtered, and the filtrate 
was concentrated and recrystallized from hexane-ethyl 
acetate (1/1, v/v) to give cis-DMNSI as a white crystal 
(0.07 g, 0.29 mmol, 72 %). mp 144-145°C. 1H NMR (8 in 
ppm from TMS in CDC13) 1.37-1.52 (m, 6H,-CH3), 3.18 
-3.40 (m, 2H, H-3, 4), 7.27-7.98 (m, 7H, aromatic pro­
tons). 13C NMR (8 in ppm from TMS in CDC13) 11.63, 
11.97 (-CH3), 38.80, 38.92 (C-3, 4), 121.38, 121.82, 
125.23, 128.28, 126.13, 126.16, 126.38, 126.41, 126.99, 
127.12, 128.55, 128.61, 129.78, 129.81, 134.27 (aromatic 
carbons), 179.75, 179.80 (C-2, 5). 

trans-3,4-Dimethyl-N-1-naphthylsuccinimide (trans-DM 
NS/) 

cis-DMNSI (0.15 g, 0.59 mmol) and three drops of Sp 
were dissolved in DMSO-d6 (0.4 mL) into a NMR tube. 
The solution was heated at 60°C. The reaction was con-
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Scheme 1. 

Table I. Isomerizations of cis-DMNSI and cis-DMPhSI with Sp" in DMSO-d/ at 60°C 

Reaction Conversion d [a]43s e 

Run Compound' Time Recovery of trans- isomer of trans- isomer e.e. f 

day % % degree % 

1 cis-DMNSI 6 100 43 -9.9 17.4 
2 cis-DMPhSI 12 75 67 -0.7 -o 

"3 drops. 6 0.4 mL. 'cis-DMNSI: 0.15 g, cis-DMPhSI: 0.20 g. d Determined by 1H NMR spectra. e Based on trans-isomer, c=0.42 g 
dL 1 (run 1), 0.74 g dL -, (run 2), l=lO cm, in THF. fEnantiomer excess. Determined by HPLC. 

tinued until isomerization was complete judging from 1 H 
and 13C NMR spectra (reaction time: 6 days). The solu­
tion was concentrated, and purified by column chroma­
tography (hexane/ethyl acetate= 1/1, v/v) to remove 
small amount of DMSO-d6 . The obtained sample (white 
solid, recovery 100%) was mixture of cis- and trans­
DMNSI (conversion 46.1%) from 1H NMR spectrum. mp 
(mixture of cis- and trans-DMNSI) 133-146°C. 1H NMR 
(8 in ppm from TMS in CDC13) 1.42-1.50 (m, 6H,-CH3), 

2.62-2.76 (m, 2H, H-3, 4), 7.24-7.88 (m, 7H, aromatic 
protons). 13C NMR (8 in ppm from TMS in CDC13) 15.24, 
15.74 (-CH3), 43.58, 43.72 (C-3, 4), 121.69, 125.36, 
125.50, 126.25, 126.51, 127.15, 128.23, 128.70, 129.29, 
129.92, 134.41, 135.74 (aromatic carbons), 178.89 (C-2, 
5). 

3,4-Dimethyl-N-phenylmaleimide (DMPhMI) 
DMPhMI was synthesized as reported previously.7 mp 

89-90°C (lit. 7 mp 90-91°C). 1H NMR (8 in ppm from 
TMS in CDC13) 2.06 (s, 6H,-CH3), 7.30-7.47 (m, 5H, 
aromatic protons). 13C NMR (8 in ppm from TMS in 
CDC13) 8.86 (-CH3), 125. 75, 127.39, 128.97, 131.95 (aro­
matic carbons), 137.41 (C-3, 4), 170.91 (C-2, 5). 

cis-3,4-Dimethyl-N-phenylsuccinimide (cis-DMPhSI) 
cis-DMPhSI was synthesized by the same method as 

cis-DMNSI. Yield 97% (white crystal). mp 127-128°C 
(lit. 7 mp 128-129°C). 1H NMR (8 in ppm from TMS in 
CDC13) 1.30-1.38 (q, 6H,-CH3), 3.09-3.16 (m, 2H, H-3, 
4), 7.27-7.50 (m, 5H, aromatic protons). 13C NMR (8 in 
ppm from TMS in CDC13) 11.61 (-CH3), 38.47 (C-3, 4), 
126.33, 128.37, 128.84, 129.02, 131.93 (aromatic car­
bons), 179.37 (C-2, 5). 

trans-3,4-Dimethyl-N-phenylsuccinimide (trans-DMPhSI) 

trans-DMPhSI was synthesized by the same method 
for trans-DMNSI (reaction time: 12 days). Recovery 75% 
(white solid). Conversion of trans-DMPhSI 67%. mp 
(mixture of cis- and trans-DMPhSI) 133-146°C(lit.7 mp 
145-147°C). 1H NMR (8 in ppm from TMS in CDC13) 

1.18-1.34 (q, 6H,-CH3), 2.43-2.54 (m, 2H, H-3, 4), 7.25 
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-7.39 (m, 5H, aromatic protons). 13C NMR (8 in ppm 
from TMS in CDC13) 14.86 (-CH3), 43.02 (C-3, 4), 125.36, 
126.22, 128.07, 128.25, 128.91, 131.97 (aromatic car­
bons), 178.27 (C-2, 5). 

Resolution of Model Compounds 
Enantiomers of trans-( -)-DMNSI and trans-(-)­

DMPhSI were completely resolved by HPLC (e.e. almost 
100%) under conditions at CHIRALPAK AD (Daicel 
Chemical IND., LTD., Tokyo, Japan) as column, hexane/ 
2-propanol (9/1, v/v) as eluent, concentration 5.1 mg 
mL - 1, injected volume 0.5 mL, flow rate 0.5 mL min - l 

(trans-DMPhSI), 1.0 mL min -l (trans-DMNSI), tem­
perature r.t. mp 178-l 79°C (trans-( - )-DMNSI), 176-
1770C (trans-( - )-DMPhSI). 

Measurements 
Specific optical rotation ([a] 435 ) was measured at 25°C 

using a JASCO DIP-140. 1H and 13C NMR spectra were 
recorded with a JEOL EX-270 operating at 270 and 68 
MHz, respectively. HPLC was monitored by a Shimadzu 
CHROMATOPAC C-R 7 Ae plus equipped with a Shi­
madzu SPD-lOA UV detector (254 nm) and a JASCO-OR 
990 polarimetric detector (350-900 nm). CD spectra 
were obtained by a JASCO J-20C. UV spectra were re­
corded by a Shimadzu UV-2200 apparatus. 

RESULTS AND DISCUSSION 

Table I summarizes the results of the isomerization of 
cis-DMNSI and cis-DMPhSI at 60°C performed with 
chiral Sp to obtain predominant optical isomers and cal­
culate specific optical rotations of pure optical isomers. 
cis-DMNSI (run 1) was converted to a trans-DMNSI 
mixture [(S, S) and (R, R)] in 43% yield. Specific optical 
rotation ([a] 435) of the trans-DMNSI mixture was-9.9°, 
and ( - )-isomer was excessively formed (e.e. = 17.4%). In 
the case of cis-DMPhSI (run 2), conversion and specific 
optical rotation oftrans-DMPhSI mixture were 67% and 
-0.7°, respectively. Specific optical rotations of pure 
trans compounds could not be calculated because of low 
e.e. 
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Figure 1. HPLC chromatograms oftrans-DMNSI (left) and trans-DMPhSI (right) before (A, C) and after (B, D) resolution. Top and bottom 
curves were monitored by polarimetric and UV detectors, respectively. 
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Figure 2. 13C NMR spectra of resolved model compounds: (A) 
trans-( - )-DMNSI; (BJ trans-( - )-DMPhSI in CDC13 • 

Each trans compound mixture was resolved by HPLC 
with CHIRALPAKAD to evaluate the properties of pure 
trans compound. Figure 1 shows HPLC chromatograms 
before (A, C) and after (B, D) resolution for trans-DMNSI 
and trans-DMPhSI recorded by UV and polarimetric 
(aHgl detector. Chromatogram of cis-DMNSI exhibited 
broad peaks because of conformers. For both model com­
pounds, only trans-( - )-isomers could be isolated in pure 
form. Specific optical rotations ([a] 435 ) of the resolved 
trans-( - )-DMNSI and trans-( - )-DMPhSI were -126. 7° 
and -127 .6° (c = 0. 7 g dL -i, l = 10 cm, THF), respective­
ly. These values were almost the same in spite of differ­
ent structures of N-substituent, suggesting that magni­
tude of specific optical rotation for optically active poly­
(RMI) is not affected by species of N-substituent. 

Figure 2 shows 13C NMR spectra of resolved-model 
compounds (A: trans-(- )-DMNSI, B: trans-( - )-DMPh 
SI) in CDCl3• The peaks of carbons on 3- and 4-positions 
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Figure 3. CD (top) and UV (bottom) spectra of trans-( - )-DMNSI 
(1), poly(l-NMI) (2, [a] 435 -20.0°) trans-(- )-DMPhSI (3), and poly­
(PhMI) (4, [a] 435~37.6°) in THF. 

for model compounds were assigned to main-chain car­
bons for corresponding poly(RMI) having threo­
diisotactic or threo-disyndiotactic structure. Two peaks 
due to methyl groups and two peaks due to 3- and 4-
position carbons of trans-( - )-DMNSI appeared at 15.24, 
i5.74 ppm and 43.58, 43.72 ppm, respectively, because of 
conformational change induced by rotation of naphthyl 
groups. Signals due to naphthyl groups were more com­
plicated. Judging from these results, peak positions of 
corresponding signals for poly(l-NMI) may depend not 
only on the main chain structure but conformation of 
naphthyl group as well. In the case of trans-( - )­
DMPhSI, signals of methyl groups and 3- or 4-position 
carbons were observed as one peak at 14.86 ppm and 
43.02 ppm, respectively. In an earlier work on trans­
DMCHSI, 3·8 each signal was recognized as one peak 
(methyl: 15.04 ppm, C-3 and C-4: 42.70). This indicates 
that these signal patterns are not influenced by the rota-
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tion of phenyl and cyclohexyl groups. That is, main chain 
signals for poly-(PhMI) and poly(CHMI) may be little af­
fected by conformation of the N-substituent. 

Figure 3 displays CD and UV spectra of resolved­
model compounds (1: trans-(- )-DMNSI, 3: trans-( - )­

DMPhSI) and corresponding polymers (2: poly(l-NMI), 
[a] 435 = -20.0°, 4: poly(PhMI), [a] 435 = -37.6°) in THF. 
In all spectra, CD peaks appeared at the range of UV ab­
sorption band due to 1t-1t* and n-1t* transitions. Com­
pared with the model compound and corresponding poly­
mer, UV curves were similar, but CD curves were ex­
tremely different in spite of the same sign of specific op­
tical rotation, suggesting that chirality of the model com­
pounds was affected by substituents bonding to asym­
metric carbons of 3- and 4-positions of imide ring. That 
is, to clarify the optical property of poly(RMI) in detail, 
model compounds having more suitable structure are de­
sired. Further studies on this point are in progress. 
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