Micellization Protocols for Amphiphilic Polyelectrolytes in Water. How Do Polymers Undergo Intrapolymer Associations?


Copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and N-dodecylmethacrylamide (C12MAm) undergo intrapolymer hydrophobic association in water, but depending on micellization procedures, the polymers may or may not form completely unimolecular micelles. Various protocols for the preparation of aqueous solutions of the polymers were examined to clarify how the polymers form preferentially unimolecular micelles. In solid polymer samples purified by reprecipitation followed by lyophilization, kinetically-frozen multimolecular micelles, formed by hydrophobic associations in entangled polymer chains during purification, may already exist. When a solid polymer sample is added to water, kinetically-frozen micelles are simply re-dissolved in water as such. Virtually unimolecular micelles were obtained when the solid sample was first dissolved in pure water at an elevated temperature (≥90°C), followed by addition of salt at the same temperature. Micelles formed from the copolymers with C12MAm content ≥40 mol% were not equilibrium micelles but kinetically-frozen. The micelles were not completely unimolecular. The number of polymer chains comprising a micelle increased with C12MAm content.


  1. 1

    Y. X. Zang, A. H. Da, T. E. Hogen-Esch, and G. B. Butler, in “Water Soluble Polymers: Synthesis, Solution Properties and Application,” S. W. Shalaby, C. L. McCormick, and G. B. Butler, Ed., ACS Symposium Series 467, American Chemical Society, Washington, D.C., 1991, p159.

    Google Scholar 

  2. 2

    R. Varadaraj, K. D. Branham, C. L. McCormick, and J. Bock, in “Macromolecular Complexes in Chemistry and Biology,” P. L. Dubin, J. Bock, R. M. Davis, D. N. Schulz, and C. Thies, Es., Springer-Verlag, Berlin and Heidelberg, 1994, p15. And references cited therein.

    Google Scholar 

  3. 3

    J. Bock, R. Varadaraj, D. N. Schulz, and J. J. Maurer, in “Macromolecular Complexes in Chemistry and Biology,” P. L. Dubin, J. Bock, R. M. Davis, D. N. Schulz, and C. Thies, Ed., Springer-Verlag, Berlin and Heidelberg, 1994, p33.

    Google Scholar 

  4. 4

    I. R. Schmolka, J. Am. Oil. Chem. Soc., 68, 206 (1991).

  5. 5

    M. Almgren, P. Bahadur, M. Jansson, P. Li, W. Brown, and A. Bahadur, J. Colloid Interface Sci., 151, 157 (1992).

  6. 6

    C. L. McCormick, J. Bock, and D. N. Schulz, in “Encyclopedia of Polymer Science and Engineering,” 2nd ed, J. I. Kroschwitz, Ed., John Wiley, New York, N.Y., 1989, Vol. 11.

    Google Scholar 

  7. 7

    A. Laschewsky, Adv. Polym. Sci., 124, 1 (1995).

  8. 8

    Y. Morishima, in “Solvents and Self-Organization of Polymers,” S. E. Webber, D. Tuzar, and P. Munk, Ed., Kluwer Academic Publishers, Dordrecht, 1996, p331.

    Google Scholar 

  9. 9

    S. E. Webber, J. Phys. Chem. B, 102, 2618 (1998).

  10. 10

    C. L. McCormick, R. S. Armentrout, G. C. Cannon, and G. G. Martin, in “Molecular Interactions and Time-Space Organization in Macromolecular Systems,” Y. Morishima, T. Norisuye, and K. Tashiro, Ed., Springer-Verlag, Berlin, 1999, p125. And Reference cited therein.

    Google Scholar 

  11. 11

    P. Alexandridis, Macromolecules, 31, 6935 (1998).

  12. 12

    A. L. Borovinskii and A. R. Khokhlov, Macromolecules, 31, 1180 (1998).

  13. 13

    J. R. Quintana, M. D. Jánez, E. Hernáez, A. Garcia, and I. Katime, Macromolecules, 31, 6865 (1998).

  14. 14

    T. Rager, W. H. Meyer, G. Wegner, and M. A. Winnik, Macromolecules, 30, 4911 (1997).

  15. 15

    S. Creutz, J. van Stam, S. Antoun, F. C. De Schryver, and R. Jérôme, Macromolecules, 30, 4078 (1997).

  16. 16

    J. Ding and G. Liu, Macromolecules, 31, 6554 (1998).

  17. 17

    A. Harada and K. Kataoka, Macromolecules, 31, 288 (1998).

  18. 18

    E. B. Jörgensen, S. Hvidt, W. Brown, and K. Schillén, Macromolecules, 30, 2355 (1997).

  19. 19

    R. P. Mondescu and M. Muthukumar, Macromolecules, 30, 6358 (1997).

  20. 20

    Z. Tuzar, H. Pospisil, J. Plestil, A. B. Lowe, F. L. Baines, N. C. Billingham, and S. P. Armes, Macromolecules, 30, 2509 (1997).

  21. 21

    Y. Morishima, Trends Polym. Sci., 2, 31 (1994).

  22. 22

    Y. Morishima, S. Nomura, T. Ikeda, M. Seki, and M. Kamachi, Macromolecules, 28, 2874 (1995).

  23. 23

    H. Yamamoto and Y. Morishima, Macromolecules, 32, 7469 (1999).

  24. 24

    C. Tanford, in “The Hydrophobic Effects,” 2nd ed, Wiley, New York, N.Y., 1980.

    Google Scholar 

  25. 25

    H. G. Elias, J. Macromol. Sci., Part A, 7, 601 (1973).

  26. 26

    Z. Tuzar and P. Kratochvil, in “Surface and Colloid Science,” E. Matijevic, Ed., Plenum Press, New York, N.Y., 1993.

    Google Scholar 

  27. 27

    H. Yamamoto, M. Mizusaki, K. Yoda, and Y. Morishima, Macromolecules, 31, 3588 (1988).

  28. 28

    G. Nemethy and H. A. Scherage, J. Phys. Chem., 66, 1773 (1962).

  29. 29

    W. P. Jencks, in “Catalysis in Chemistry and Enzymology,” McGraw-Hill, New York, N.Y., 1969, p393.

    Google Scholar 

  30. 30

    Y. Morishima, T. Kobayashi, and S. Nozakura, Polym. J., 21, 267 (1989).

  31. 31

    Y. Morishima, Y. Tominaga, S. Nomura, and M. Kamachi, Macromolecules, 25, 861 (1992).

  32. 32

    Y. Morishima, Y. Tominaga, M. Kamachi, T. Okada, Y. Hirata, and N. Mataga, J. Phys. Chem., 95, 6027 (1991).

  33. 33

    J. Jakes, Czech. J. Phys., B38, 1305 (1988).

  34. 34

    S. E. Webber, Chem. Rev., 90, 1469 (1990).

  35. 35

    F. M. Winnik, Polymer, 31, 2125 (1990).

  36. 36

    H. Ringsdorf, J. Simon, and F. M. Winnik, Macromolecules, 25, 7306 (1992).

  37. 37

    Y. Hu, M. C. Kramer, C. J. Boudreaux, and C. L. McCormick, Macromolecules, 28, 7100 (1995).

  38. 38

    M. C. Kramer, J. R. Steger, Y. Hu, and C. L. McCormick, Macromolecules, 29, 1992 (1996).

  39. 39

    I. B. Berlman, in “Energy Transfer Parameters of Aromatic Compounds,” Academic Press, New York, N.Y., 1973.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamamoto, H., Hashidzume, A. & Morishima, Y. Micellization Protocols for Amphiphilic Polyelectrolytes in Water. How Do Polymers Undergo Intrapolymer Associations?. Polym J 32, 745–752 (2000). https://doi.org/10.1295/polymj.32.745

Download citation


  • Protocol
  • Entanglement
  • Sodium 2-(Acrylamido)-2-methylpropanesulfonate
  • N-Dodecylmethacrylamide
  • Interpolymer Association
  • Intrapolymer Association
  • Kinetically-Frozen Micelle

Further reading


Quick links