Self-Association in Water of Copolymers of Sodium 2-(Acrylamido)-2-methylpropanesulfonate and N-Oleylmethacrylamide Characterized by Fluorescence Quenching


Associative properties of copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS) and N-oleylmethacrylamide (OleMAm) with varying OleMAm content (fOle) in aqueous solutions were characterized by fluorescence quenching using naphthalene-labeled polymers. Fluorescence emitted from naphthalene labels was quenched when the labels were incorporated in hydrophobic microdomains formed from oleyl groups. It was thus possible to monitor the formation of hydrophobic microdomains and hence the self-association behavior of polymers via fluorescence quenching. The self-association of oleyl groups occurred progressively from fOle=3 to 20 mol%, as in the case of copolymers of AMPS and N-octadecylmethacrylamide, a methacrylamide N-substituted with a saturated alkyl chain of the same length as the oleyl group. Time-dependent fluorescence and absorption spectral data suggested that the cis double bonds in the oleyl groups from a cluster when the polymer-bound oleyl groups associate to form hydrophobic microdomains. Quasielastic light scattering data indicated that the AMPS-OleMAm copolymers had a stronger tendency for intrapolymer association than copolymers of AMPS and N-octadecylmethacrylamide.


  1. 1

    Principles of Polymer Science and Technology in cosmetics and Personal Care,” E.D. Goddard and J.V. Gruber, Ed., Marcel Dekker, New York, N.Y., 1999.

  2. 2

    C. L. McCormick, J. Bock, and D. N. Schulz, in “Encyclopedia of Polymer Science and Engineering,” John Wiley, New York, N.Y., 1989, Vol. 17, p730.

    Google Scholar 

  3. 3

    J. Bock, R. Varadaraj, D. N. Schulz, and J. J. Maurer, in “Macromolecular Complexes in Chemistry and Biology,” P. L. Dubin, J. Bock, R. M. Davies, D. N. Schulz, and C. Thies, Ed., Springer-Verlag, Berlin and Heidelberg, 1994, p33.

    Google Scholar 

  4. 4

    Polymers as Rheology Modifiers,” D. N. Schulz and J. E. Glass, Ed., Advances in Chemistry Series 462, American Chemical Society, Washington, D.C., 1991.

  5. 5

    Hydrophilic Polymer, Performance with Environmental Acceptability,” J. E. Glass, Ed., Advances in Chemistry Series 248, American Chemical Society, Washington, D.C., 1996.

  6. 6

    P. L. Valint Jr., J. Bock, and D. N. Schulz, in “Polymers in Aqueous Media: Performance through Association,” J. E. Glass, Ed., Advances in Chemistry Series 223, American Chemical Society, Washington, D.C., 1989, p399.

    Google Scholar 

  7. 7

    S. E. Webber, J. Phys. Chem. B, 102, 2618 (1998).

  8. 8

    P. L. Dubin and U. P. Strauss, J. Phys. Chem., 74, 2842 (1970).

  9. 9

    Y. Morishima, in “Solvents and Self-Organization of Polymers,” S. E. Webber, D. Tuzar, and P. Munk, Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, p331.

    Google Scholar 

  10. 10

    X. Xie and T. E. Hogen-Esch, Macromolecules, 29, 1734 (1996).

  11. 11

    Y. Morishima, Y. Tominaga, S. Nomura, and M. Kamachi, Macromolcules, 25, 861 (1992).

  12. 12

    Y. Hu, R. S. Armentrout, and C. L. McCormick, Macromolecules, 30, 3538 (1997).

  13. 13

    H. Yamamoto, I. Tomatsu, A. Hashidzume, and Y. Morishima, Macromolecules to be published.

  14. 14

    C. L. McCormick and Y. Chang, Macromolecules, 27, 2151 (1994).

  15. 15

    H. Yamamoto, M. Mizusaki, K. Yoda, and Y. Morishima Macromolecules, 31, 3588 (1998).

  16. 16

    Y. Morishima, Y. Tominaga, M. Kamachi, T. Okada, Y. Hirata, and N. Mataga, J. Phys. Chem., 95, 6027 (1991).

  17. 17

    Y. Morishima, S. Nomura, T. Ikeda, M. Seki, and M. Kamachi, Macromolecules, 28, 2874 (1995).

  18. 18

    Y. Morishima, M. Tsuji, M. Seki, and M. Kamachi, Macromolecules, 26, 3299 (1993).

  19. 19

    O. Anthony and R. Zana, Macromolecules, 27, 3885 (1994).

  20. 20

    Y. Morishima, T. Kobayashi, and S. Nozakura, Polym. J., 21, 267 (1989).

  21. 21

    A. Hashidzume, H. Yamamoto, M. Mizusaki, and Y. Morishima, Polym. J., 31, 1009 (1999).

  22. 22

    H. Yamamoto and Y. Morishima, Macromolecules, 32, 7469 (1999).

  23. 23

    M. Mizusaki, Y. Morishima, and F. M. Winnik, Macromolecules, 32, 4317 (1999).

  24. 24

    M. Koetse, A. Laschewsky, B. Mayer, O. Rolland, and E. Wischerhoff, Macromolecules, 31, 9316 (1998).

  25. 25

    Y. Morishima, Y. Itoh,and S. Nozakura, Makromol. Chem., 182, 3135 (1981).

  26. 26

    D. Ng and J. E. Guillet, Macromolecules, 15, 724 (1982).

  27. 27

    P. L. Dubin, C. H. Chew, and L. M. Gan, J. Colloid Interface Sci., 128, 566 (1989).

  28. 28

    T. Imae and S. Ikeda, Colloid Polym. Sci., 262, 497 (1984).

  29. 29

    T. Imae and S. Ikeda, Langmuir, 7, 1734 (1991).

  30. 30

    N. M. van Os, J. R. Haak, and L. A. M. Rupert, in “Physico-Chemical Properties of Selected Anionic, Cationic and Non-ionic Surfactants,” Elsevier, Amsterdam, 1993, Chapter I.2.

    Google Scholar 

  31. 31

    I. Alig, M. Jarek, and G. P. Hellmann, Macromolecules, 31, 2245 (1998).

  32. 32

    J. Jakes, Czech. J. Phys., B38, 1305 (1988).

  33. 33

    J. B. Birks, in “Photophysics of Aromatic Molecules,” Wiley-Interscience, London and New York, 1970, Chapter 9.

    Google Scholar 

  34. 34

    N. J. Turro, in “Modern Molecular Photochemistry,” The Benjamin/Cummings Publishing, CA, 1978.

    Google Scholar 

  35. 35

    J. G. Calvent and J. N. Pitts Jr., in “Photochemistry,” John Wiley and Sons, New York, N.Y., 1966.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamamoto, H., Hashidzume, A. & Morishima, Y. Self-Association in Water of Copolymers of Sodium 2-(Acrylamido)-2-methylpropanesulfonate and N-Oleylmethacrylamide Characterized by Fluorescence Quenching. Polym J 32, 737–744 (2000).

Download citation


  • Amphiphilic Polyelectrolytes
  • Self-Association
  • Hydrophobic Association
  • Unimolecular Micelles
  • Sodium 2-(Acrylamido)-2-methylpropanesulfonate
  • N-Oleylmethacrylamide
  • Fluorescence Quenching

Further reading