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ABSTRACT: The object of this review article is to introduce and digest Yamakawa's new book, "Helical Wormlike Chains 
in Polymer Solutions." A brief description is given of a new model for polymer chains, called the helical wormlike chain, and 
its applications to dilute solution behavior of polymers, that is, equilibrium, steady-state transport, and dynamical properties. 
The description follows most of the chapters of the book. It is shown that all theoretical and experimental investigations on 
the basis of this model provide a new framework of polymer solution science, which takes the place of the Flory-Kirkwood 
framework. 
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The object of this review article is to introduce and 
digest Yamakawa's new book1 entitled" Helical Wormlike 
Chains in Polymer Solutions." As stated in its Preface, 
it is intended to give a comprehensive and systematic 
description of the statistical-mechanical, transport, and 
dynamic theories of dilute solution properties of both 
flexible and semiflexible polymers, including oligomers, 
developed on the basis of the "helical wormlike (HW) 
chain" model, along with an analysis of extensive ex
perimental data. Much of the material in the book arises 
from his research reported since the year of publication 
of his earlier (1971) book. 2 The results of this research 
were already very often reviewed. 3- 7 

Now the framework of polymer solution theory con
structed by Flory8 •9 consists of three concepts: (I) the 
excluded-volume effect in long flexible (Gaussian) poly
mer chains, (2) the universality of the unperturbed ( EJ) 
state without that effect, and (3) the rotational iso
meric state (RIS) model for (unperturbed) real chains 
of arbitrary length. The study of dilute solution behavior 
of flexible polymers based on the first two concepts was 
almost completed around 1970, leading to the so-called 
two-parameter (TP) theory. 2 It is at almost the same time 
that the statistical-mechanical method for treating the 
RIS model, which takes account of the details of the 
chemical structure and local conformations of the chain 
on the atomic level, was established by Flory and co
workers.9 However, for many equilibrium and steady
state transport problems on stiff or semiflexible poly
mers, such details are not amenable to mathematical 
treatments, and moreover are often unnecessary to 
consider. Some coarse-graining may then be introduced 
to replace this discrete model by continuous models. In 
1976, for this purpose we proposed a general continuous 
model, called the HW chain. 10 This new model may 
describe equilibrium conformational and steady-state 
transport properties of all kinds of real chains, both 
flexible and stiff, on the bond length or somewhat longer 
scales, thus bridging a gap between the RIS model and 
the classical continuous model, that is, the Kratky
Porod (KP) wormlike chain. 11 Specifically, the transport 
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coefficients were evaluated using the HW cylinder and 
touched-bead models. Necessarily, these models may be 
applicable also to short chains or oligomers. In particular, 
the latter model can give the Einstein intrinsic viscosity 
for a single bead, although the classical Kirkwood pro
cedure12·13 fails to do this. For the study of dynamical 
properties, the discreteness must be, to some extent, 
recovered. Thus we devised the dynamic HW chain (with 
holonomic constraints). 14 This model enables us to 
evaluate various dynamical properties, both global and 
local, in contrast to the Kirkwood (conventional bond) 
chain. 13 

On the experimental side, since the late 1980s precise 
measurements have been extended to the oligomer region 
for a data analysis based on the HW theory. 15 These 
have been made possible because well-characterized 
samples, including oligomers, have become available 
owing to the progress in polymer synthesis and charac
terization techniques such as ionic polymerization, 
GPC, and NMR and also in scattering methods. 

All these theoretical and experimental investigations 
on the basis of the HW model lead to the establishment 
of a new framework of polymer solution science, 16 which 
takes the place of the Flory-Kirkwood framework. 

THE HELICAL WORMLIKE CHAIN 

The (unperturbed) HW chain is a general elastic wire 
model with both bending and torsional energies such 
that its total elastic (potential) energy becomes a min
imum of zero when its contour becomes a regular helix. 
This helix is called the characteristic helix. Specifical
ly, the model may be described in terms of four basic 
model parameters: the differential-geometrical curvature 
K 0 and torsion r0 of its characteristic helix, the static 
stiffness parameter A - 1, and the shift factor ML as 
defined as the molecular weight per unit contour length. 
The radius p and pitch h of the characteristic helix are 
given by 

p = K0/(KJ + rJ) 

h = 2nr0/(KJ + rJ) 
(I) 
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Thus the model takes account of the stiffness and local 
conformations of the chain, and may be regarded as a 
coarse-grained, continuous RIS model. Note that the 
chain is stiffer for larger A - 1 ; the parameter A repre
sents the degree of thermal fluctuation in the chain 
conformation, and that the total contour length of the 
chain L is related to its molecular weight M and the 
number of repeat units in it (or the degree of polym
erization) x by 

(2) 

with M 0 the molecular weight of the repeat unit. For 
the details of its statistical mechanics, the reader is 
referred to Chapter 4 of HWCPS. 1 

The original KP chain 11 is a special case of the HW 
chain with K 0 =0 and with vanishing torsional energy, 
and the chain with Ko = 0 but with the torsional energy 
is called the generalized KP chain. The characteristic 
helix becomes a straight line in both cases, as seen from 
eq 1. The latter may be classified into two types: type 1 
with r 0 #0 and type 2 with r 0 =0. In this review the 
original KP chain is referred to simply as the KP chain. 
Its model parameters are only A- 1 and M v 

EQUILIBRIUM PROPERTIES 

Mean-Square Radius of Gyration 
We begin by making a comparison of theory with ex

periment with respect to the dependence on x of the 
(unperturbed) mean-square radius of gyration (S2 ) for 
several flexible and semiflexible polymers to determine 
their HW or KP model parameters. 

Figure 1 shows double-logarithmic plots of (S 2)/x (in 
A 2) against x for atactic polystyrene (a-PS) with the 
fraction of racemic diads fr = 0.59 in cyclohexane at 
34.SOC (8)17 •18 and in toluene at 15.0°C/9 atactic 
poly(methyl methacrylate) (a-PMMA) with fr=0.79 in 
acetonitrile at 44.0°C (8)20 and in acetone at 25.0°C,21 

isotactic (i-) PMMA with fr=O.Ol in acetonitrile at 
28.0°C (8)22 and in acetone at 25.0°C,23 poly(n-butyl 
isocyanate) (PBIC) in tetrahydrofuran (THF) at 40°C,24 

and schizophyllan in O.ol N NaOH at 25°C.25 The data 
have been obtained from light scattering measurements 
except for fractions of the flexible polymers with 
(S2 ) 1i 2 ;:S80A, for which those have been obtained 
from small-angle X-ray scattering (SAXS) measure
ments. In this figure, the solid curves represent the best
fit HW or KP theoretical values in the 8 solvents 
calculated with the values of the model parameters listed 
in Table I, and the dashed curves connect smoothly the 

data points for the flexible polymers in the good solvents. 
In the table are also given the parameter values for 
polyisobutylene (PIB) in isoamyl isovalerate (IAIV) at 
25.0°C (8)26 and DNA in 0.2moll- 1 NaCl at 25°C.27 

Note that for the above typical semiflexible polymers 
(PBIC, DNA, and schizophyllan), which may be re
presented by the KP chain, the excluded-volume effect 
may be ignored. The data for the flexible polymers in 
the good solvents in Figure 1 are discussed later. 

Chain Stiffness and Local Chain Conformations 
The discussion is limited to the unperturbed chain. In 

general, the parameter A - 1 may be considered smaller 
and larger than about 100 A for flexible and semiflexible 
polymers, respectively. This is rather the definition of the 
chain stiffness from the point of view of the continuous 
model. It may also be defined by the behavior of the 
(unperturbed) ratio (S 2 )/x; that is, this ratio becomes 
independent of x for x 300 for flexible polymers but 
levels off only at much larger x for semiflexible poly
mers, as seen from Figure 1. 

Now the asymptotic ratio ((S2 )/x) 00 for x= oo, which 
is proportional to the characteristic ratio Coo, 9 is equal 
to 8.1 3 , 6.57 , and 9.3 1 A2 for a-PS, a-PMMA, and 
i-PMMA, respectively, and cannot be directly correlated 
to the chain stiffness A- 1 , as seen from Table I. The 
results for A - 1 in the table indicate that the a-PMMA 
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Figure 1. Double-logarithmic plots of (S2 )/x (in A2) against x for 
a-PS in cyclohexane at 34.SOC (B) (e)' 7•18 and in toluene at 15.0°C 
(0), 19 a-PMMA in acetonitrile at 44.0oC (B) (•)20 and in acetone at 
25.ooc (D)/' i-PMMA in acetonitrile at 28.ooc (B) (£)22 and in 
acetone at 25.0°C (L:,.)/ 3 PBIC in THF at 40°C (()),24 and 
schizophyllan in 0.01 N NaOH at 25oC ( ). 25 The solid curves 
represent the best-fit HW or KP theoretical values, and the dashed 
curves connect smoothly the data points. 

Table I. Values of the HW model parameters for typical flexible and semiflexible polymers 

Polymer (f;) 

a-PS (0.59) 
a-PMMA (0.79) 
i-PMMA (0.01) 
PIB 
PBIC 
DNA 
Schizophyllan 

110 

Solvent 

Cyclohexane 
Acetonitrile 
Acetonitrile 
I AIV 
THF 
0.2 moll- 1 NaCl 
0.01 N NaOH 

Temp 
;.-t Ko 

oc 

34.5 3.0 
44.0 4.0 
28.0 2.5 
25.0 1.0 
40 0 
25 0 
25 0 

;.-t ML 
;.-1 <o ref (Obs.) 

A A-' 

6.0 20.6 35.8 17, 18 
1.1 57.9 36.3 20 
1.3 38.0 32.5 22 
0 15.3 20.9 26 

1320 55.1 24 
1360 195 27 
3000 217 25 
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a-PS (/, = 0.59) a-PMMA (/, = 0.79 ) i-PMMA (/, = O.Ql ) 

Figure 2. Representative instantaneous contours of HW Monte Carlo chains (see the text). 

chain is much stiffer than the i-PMMA chain, which is 
stiffer than the a-PS chain, in contrast to the earlier 
view that the chain is stiffer for larger C 00 • Thus Coo is 
not a measure of chain stiffness. Further, if R is the 
end-to-end vector of the continuous chain and if u0 is 
its initial unit tangent vector, the Kuhn segment length 
AK and the persistence length q are defined by1 

AK = lim ( <R 2 )/ L) (3) 

q = lim < R · u0 ) (4) 

We then have 1 

(5) 

with 

4+(A- 1r 0? 
c 

00 4+(J,-1Ko?+(J,-1ro)z 
(6) 

Note that C00 ::::; 1, where the equality holds only for the 
KP chain (Ko = 0). Therefore neither AK nor q is a measure 
of chain stiffness except for the KP chain. 

According to the HW model, a flexible polymer chain 
in dilute solution may be pictured as a regular helix (the 
characteristic helix) disturbed (or destroyed) by thermal 
fluctuations or a random coil retaining more or less 
helical portions. The regular helical structure is destroyed 
to a lesser extent in the chain with larger A - 1 . In 
general, the chain with large p (compared to h) and 
large A - 1 is of strong helical nature; that is, it retains 
rather large and clearly distinguishable helical portions 
in dilute solution. The chain with vanishing p (the KP 
chain) has no helical nature irrespective of the value of 
A- 1 and the chain with small A- 1 is not of strong helical 
nature irrespective of the shape of its characteristic 
helix. We note that the values of (p, h) calculated from 
eq 1 with the parameter values given in Table I are 
(1.3 7 , 17. 3), (13. 5 , 23. 3), and (12. 0 , 39. 1)A for a-PS, 
a-PMMA, and i-PMMA, respectively. 

In order to visualize the difference in local chain con
formation, representative instantaneous contours of HW 
Monte Carlo chains are depicted in Figure 2 for a-PS, 
a-PMMA, and i-PMMA, each with x= 500, where their 
radii of gyration S are just equal to the respective val
ues of <S 2 ) 112 • The shaded sphere has the radius S, 
which is nearly proportional to The a-PS 
chain seems just the random-flight chain. On the other 
hand, several helical portions are clearly observed in the 
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Figure 3. Kratky plots of F,(k) against k for a-PS (0),28 a-PMMA 
(e).29 and i-PMMA (6),30 each with M:o= 104 , in the respective e 
solvents, and s-PMMA (f;=0.92) with M=3.76x 104 in acetonitrile 
at 44.ooc ( 6J) (D). 31 The solid curves represent the HW theoretical 
values for the first three polymers. 

picture for a-PMMA, for example, in its bottom-right 
part, as was expected from the above discussion, while 
such portions do not appear for i-PMMA. Thus the 
i-PMMA chain tends to take more extended confor
mations than the a-PMMA chain, so that the ratio 
( <S 2 )/x),0 is larger for the former despite the fact that 
A - 1 is smaller for the former. However, the chain contour 
of i-PMMA is still rather smooth compared to that of 
a-PS. This is due to the fact that A - 1 is larger for the 
former than for the latter. It is because of this chain 
stiffness that the ratio ( <S 2 )/x) 00 is even larger for 
i-PMMA than for a-PS. (The ratio is smaller for 
a-PMMA than for a-PS because of the strong helical 
nature of the former.) For the chain of strong helical 
nature such as a-PMMA, <S 2 )/x exhibits a maximum, 
as shown in Figure 1. 

Scattering Function 
We consider the Kratky function F,(k) = Mk2 P5(k) 

instead of the scattering function Ps(k) itself, where k is 
the magnitude of the scattering vector. Figure 3 shows 
Kratky plots of F5(k) against k for fractions of a-PS, 28 

a-PMMA, 29 and i-PMMA, 30 each with 104 , in the 
respective e solvents. It also includes data for a fraction 
of syndiotactic (s-) PMMA (fr = 0.92) with M = 3. 76 x 
104 in acetonitrile at 44.ooc (B). 31 All the data have been 
obtained by the use of a point-focussing SAXS camera. 
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Figure 4. Double-logarithmic plots of [17] (in dl g- 1 ) against M for 
a-PS in cyclohexane at 34SC (EJ) (0), 17 · 18 ·4 1.42 a-PMMA in 
acetonitrile at 44.0"C ( EJ) (e), 18 •21 •43 PIB in IAIV at 25.0°C ( EJ) 
(,&,), 18 ·44 PDMS in MEK at 20.0°C (EJ) (6).45 PHIC inn-hexane at 
25'C (0),46 and schizophyllan in water at 25°C ( 0 ).47 The solid 
curves represent the best-fit HW or KP theoretical values, each line 
segment connecting the HW values for N =I and 2. 

The solid curves represent the HW theoretical values 
calculated for the first three polymers by taking account 
of the spatial distribution of electrons as the scatterers 
around the chain contour. There is seen to be rather 
good agreement between theory and experiment. 

It is important to see that for a-PMMA (and even for 
s-PMMA) the observed Kratky plot exhibits the (first) 
maximum and minimum but not the second ones (or 
oscillation) such as observed by Kirste and Wunder
lich, 32 · 33 being consistent with the HW theory predic
tion. We believe that the desmeared SAXS data obtained 
by them are not correct for large k. We note that the RIS 
model for a-PMMA can also explain the maximum of 
<S 2 )/x at xc::::50 in Figure I but predicts the oscillation 
in the Kratky plot. 34•35 This oscillation indicates the 
"crystal-like" behavior of the RIS chain with discrete 
internal-rotation angles, and this should be regarded as 
its defect. Further, we note that the difference in the 
observed height of the so-called plateau in the Kratky 
plot between a-PS and a-PMMA cannot be explained by 
the Gaussian chain model. Although the height is equal 
to 2Mf<S 2 ) for this model, these a-PS and a-PMMA 
fractions have almost the same <S 2 )/M. 

Some Other Topics 
It has been shown that there is rather good agreement 

between theory and experiment with respect to the 
dependence on x of the mean-square optical anisotropy 
<F 2 ) for a-PS/ 5 ·36 a-PMMA, 36 and i-PMMA 37in the 
respective e solvents, and also of the mean-square 
electric dipole moment <11 2 ) for a- and i-PMMAs in the 
respective e solvents38 and poly( dimethylsiloxane) 
(PDMS) in cyclohexane at 25.0oC. 39 However, an ex
planation of <11 2 ) for a- and i-PMMAs requires a 
consideration of possible effects of chain ends since their 
moments arise from the side groups; this is in contrast 
to the case of PDMS having rigid perpendicular (type-B) 
dipoles. We note that the PDMS chain is also of rather 
strong helical nature and that such a chain has the positive 
temperature coefficient of <R 2 ) (in the coillimit).40 
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Figure 5. Double-logarithmic plots of 17 0 M D/k8 T (in em - 1 ) against 
M for a-PS in cyclohexane at 34-YC ( EJ) ( 0 ), 18 ·48 a-PMMA in 
acetonitrile at 44.0'C ( EJ) (e), 18 ·49 · 50 and PDMS in bromocyclohexane 
at 29.5'C (EJ) (v), 18.4 5 and semi-logarithmic plots of 17 0 MD/k 8 T 
against M for PHIC in 11-hexane at 25oC (0)46 and schizophyllan in 
water at 25C ( 0 )47 (sec legend for Figure 4). 

TRANSPORT PROPERTIES 

HW Cylinder and Touched-Bead Models 
For the evaluation of the steady-state transport co

efficients which are valid over a wide range of M, 
including short chains or oligomers, the polymer chain 
must be treated as a body of finite volume whose surface 
exerts the frictional force on the solvent fluid. The HW 
cylinder and touched-bead models are adopted as such 
polymer hydrodynamic models. Necessarily, the results 
may be expressed in terms of the cylinder diameter d or 
the bead diameter db in addition to the four basic HW 
model parameters, as the case may be. Recall that the 
Kirkwood procedure, 12 •13 which treats the beads as point 
sources of friction, fails to give the Einstein intrinsic 
viscosity of the single bead in the extreme the number 
of them in the chain N is equal to one. For the details, 
the reader is referred to Chapter 6 of HWCPS. 1 

Intrinsic Viscosity and Translational Diffusion Coefficient 
We consider the intrinsic viscosity [ry] and the 

translational diffusion coefficient D. In particular, for the 
HW touched-bead model [ry] is given by a sum of the 
Kirkwood-Riseman intrinsic viscosity [ry]<KR) and the 
Einstein intrinsic viscosity [l'J]E of the single bead. Note 
that [ry](KR> vanishes for N= I, whileD has the Stokes 
law value for N = 1. It is convenient to use the HW 
touched-bead model for flexible polymers, and the KP 
cylinder model for semiflexible polymers. 

Figure 4 shows double-logarithmic plots of [ry] (in 
dl g - 1) against M for a-PS in cyclohexane at 34.SOC 
(B)/ 7 · 18 ·4 1.42 a-PMMA in acetonitrile at 44.ooc 
(6), 18 ·2 1.43 PIB in IAIV at 25.0oC (EJ)/ 8 •44 PDMS in 
methyl ethyl ketone (MEK) at 20.ooc (6),45 poly(n
hexyl isocyanate) (PHIC) in n-hexane at 25°C,46 and 
schizophyllan in water at 25oC.47 Figure 5 shows 
double-logarithmic plots of ry 0 MD/k8 T (in em - 1) against 
M for a-PS in cyclohexane at 34.5oC (6),1 8 •48 a-PMMA 
in acetonitrile at 44.0°C (EJ)/ 8 •49•50 and PDMS in 
bromocyclohexane at 29.5oC (6),1 8 .4 5 and semi
logarithmic plots of ry 0 MD/k8 T against M for PHIC in 
n-hexane at 25°C46 and schizophyllan in water at 25°C,47 
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Figure 6. Double-logarithmic plots of <P and p- 1 against M for a-PS 
in cyclohexane at 34.5"C (B) (0), 18 ·41 ·48 a-PMMA in acetonitrile at 
44.ooc (B) (e).20 •43 ·49 and PHIC in n-hexane at 25°C (0)46 The 
solid curves represent the HW or KP theoretical values (see the text). 

where '1o is the solvent viscosity, k 8 the Boltzmann 
constant, and T the absolute temperature. In Figures 4 
and 5, the solid curves represent the best-fit HW or KP 
theoretical values, each dashed line segment connecting 
the HW values for N = I and 2. 

There is seen to be rather good agreement between 
theory and experiment over a wide range of M. In Figure 
4, most important is the fact that for flexible polymers 
the exponent law for the relation between [ry] and M 
holds only in a limited range of M, although the exponent 
becomes asymptotically equal to 1/2 for large M. In 
particular, it is interesting to see that for a-PMMA the 
double-logarithmic plot of [ry] against M follows an 
inverse S-shaped curve, exhibiting the asymptotic 
behavior only for M 105 , as also predicted by the 
theory. As seen from Figure 5, on the other hand, the 
deviation of the double-logarithmic plot of MD against 
M from the asymptotic relation (with slope 1/2) for 
flexible polymers is rather small, but for a-PMMA the 
plot clearly follows an S-shaped curve corresponding to 
the plot of [ry]. Such behavior of [ry] and D of a-PMMA 
is characteristic of the chain of strong helical nature. 

Some Remarks 
First, we make some remarks on the reduced hy

drodynamic volume If> and radius p -l, which may be 
defined by 

(7) 

(8) 

where VH=6- 312 M[ry] and RH=k8 T/6nry 0D are the 
hydrodynamic (molar) volume and radius, respectively. 
Note that If> is just the Flory-Fox factor. Figure 6 shows 
double-logarithmic plots of If> and p- 1 against M for 
a-PS in cyclohexane at 34.SOC (8)/ 8 •41 .4 8 a-PMMA in 
acetonitrile at 44.0°C (8),20•43 •49 and PHIC inn-hexane 
at 25°C.46 The solid curves represent the HW or KP 
theoretical values, which have been multiplied by the 
constant ratios of the experimental to theoretical If> oo and 
p;;, 1 , respectively, for the flexible polymers, where If> oo 

and Poo are the asymptotic values of If> and p for large 
M, respectively. It is interesting to see that both theo-
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Figure 7. Plots of([17] -17*)/ M 112 and '7oM 112 D/k8 Tagainst M 112 for 
a-PS in cyclohexane at 34.5°C (B) (with '7*=0) (0) 17 · 18 ·41 ·42 •48 and 
PDMS in bromocyclohexane at 29.5"C (B) (with 17*= -O.O!Sdlg- 1 ) 

('\7). 18 ·45 The solid curves connect the data points smoothly. The HW 
theoretical values of (S 2 )/M are almost independent of M to the right 
of the respective vertical line segments. 

retically and experimentally, If> and p -l increase with de
creasing M for small M, and in particular, they exhibit 
a minimum for PHIC. More important is the fact that 
even in the limit of M --HXJ, the values of If> 00 and p;;, 1 

for a-PMMA are definitely different from those for a-PS, 
indicating that If> and p are not necessarily universal 
constants in contrast to the Flory view. Furthermore, 
the experimental If> oo and p 00 for flexible polymers are 
appreciably smaller than the Kirkwood values2 •12•13 

2.87 x 1023 (exactly 2.862 x 1023) of !f> 00 and 1.505 of Pro 
(even the Zimm value 51 1.479 of p 00 ), respectively, as has 
often been pointed out. As for the theoretical values, we 
only note that the HW theory 52 with a consideration of 
fluctuating hydrodynamic interaction gives the values 
1.34--1.37 of Poo (dependent on the system) for flexible 
polymers and its Zimm value for stiff polymers, which 
are consistent with experimental results, while it still fails 
to explain the non-universality of !f> 00 • (For earlier the
oretical investigations, see Chapter 6 of HWCPS. 1) 

Second, we note that the values of [ry] of PIB and 
PDMS in the oligomer region become negative, and 
therefore have not been plotted in Figure 4. In this 
case [ry] may be written in the form, 44 

(9) 

where [ryJ<HWJ is a sum of [ry]<KRJ and [IJ]E, and ry* is an 
empirical additional nonpositive parameter independent 
of M. The negative [ry] may be regarded as arising from 
specific interactions between solute and solvent molecules 
such that a liquid structure of some kind existing in the 
solvent is destroyed in the vicinity of a solute molecule. 

The final remark is concerned with the so-called 
"draining effect." Figure 7 shows plots of ([ry]- '1 *)/ M 112 

and ry 0 M 1i2 D/k8 T against M 112 for a-PS in cyclohexane 
at 34.5°C (8)17•18 •41 •42 •48 and PDMS in bromocyclohex
ane at 29.5°C (8). 18 .4 5 The solid curves connect the data 
points smoothly, and the vertical line segments with 
shadows indicate the values of M above which the HW 
theoretical values of (S2 )/ Mbecome almost independent 
of M for the respective polymers. It is seen that for PDMS 
([ry] -ry *)/ M 112 decreases and M 112 D increases with de
creasing M even in the range of M where the (unper-
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Figure 8. Double-logarithmic plots of iX§ against z for a-PS in toluene 
at 15.0°C ( 0 ), 19 a-PMMA in acetone at 25.ooc (0) and in chloroform 
at 25.0°C ( <> ), 21 and i-PMMA in chloroform at 25.ooc (\7). 23 The 
solid and dotted curves represent the QTP and TP theory values, 
respectively. 

turbed) static properties such as <S 2 ) exhibit the Gaus
sian chain behavior, in contrast to the case of a-PS. This 
indicates that the effect exists for PDMS. An analysis of 
such data by the use of the HW theory leads to remark
ably small values of db, suggesting that the nonslip bound
ary condition on the bead surface may break down. 

EXCLUDED-VOLUME EFFECTS 

Gyration-Radius Expansion Factor 
In order to treat the excluded-volume effect, we con

sider the HW chain on which n + 1 beads are arrayed 
with spacing a between them along the contour, so that 
L = na, and suppose that there exist excluded-volume 
interactions between them expressed in terms of the usual 
binary-cluster integral {3. 2 

In this subsection we consider the gyration-radius 
expansion factor rxs defined by 

(10) 

Here and hereafter, the subscript 0 indicates the un
perturbed value. The TP theory2 predicts that rx5 is a 
function only of the conventional excluded-volume 
parameter z. For the perturbed HW chain, however, rx5 

is a function only of the intramolecular scaled excluded
volume parameter z; that is, 53 - 55 

( 11) 

with 

z = (3j4)K(),L)z (12) 

where the function K of A.L represents the effect of chain 
stiffness. As ).L is increased from 0 to oo, K increases 
from 0 to 4/3, so that z approaches z. The parameter z 
is now defined by 

z = (3/2n) 312().B)(Uf12 

with B the excluded-volume strength given by 

B=f3/a 2 c3),2 

( 13) 

(14) 

where a= M 0 / M L if the repeat unit is taken as a single 
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Figure 9. Double-logarithmic plots against z with the same data 
as those in Figure 8 along with those for a-PS in benzene at 25.0oC 
((})and in MEK at 35.0'C (()), 57 a-PMMA in nitroethane at 30.ooc 
( <J> ), 21 i-PMMA in acetone at 25.0°C (,6.), 23 PIB inn-heptane at 25.ooc 
( CD), 26 •42 and PDMS in toluene at 25.0"C ( 8 ). 58 The solid curve 
represents the QTP theory values. 

bead, and cCJC is given by eq 6. The function rx5(z) may 
be obtained by replacing z by z in a TP expression for 
Xs(z). This is the quasi-two-parameter (QTP) scheme. It 
is then convenient to adopt the Domb--Barrett expression 
for rl.s. 56 

Now <S 2 ) 0 in a given good solvent cannot be directly 
determined since it may in general depend on solvent 
and temperature. However, the (intramolecular) exclu
ded-volume effect must disappear in the oligomer region, 
so that we have <S 2 ) = <S 2 ) 0 there. Therefore, if we 
choose the solvent and temperature so that in the 
oligomer region <S 2 ) coincides with the unperturbed 
mean-square radius of gyration in a proper e solvent 
(at T= 8), which we denote by <S 2 )e, then the latter 
may be regarded as equal to <S 2 ) 0 in that good solvent 
for all values of M; that is, 

(15) 

Taking this e solvent as a reference standard, we may 
then determine rx5 from rx§=<S 2 )/<S 2 )e. It is seen that 
the good-solvent systems in Figure l fulfil the re
quirement of eq 15. 

Figure 8 shows double-logarithmic plots of against 
z for a-PS in toluene at 15.0°C, 19 a-PMMA in acetone 
at 25.ooc and in chloroform at 25.0°C, 21 and i-PMMA 
in chloroform at 25.0°C. 23 The solid and dotted curves 
represent the QTP and TP theory values, respectively. 
There is good agreement between the QTP theoretical 
and experimental values. The solid curves (or data 
points) do not form a single-composite curve but deviate 
downward progressively from the dotted curve with 
decreasing z (or M) because of the effect of chain stiffness. 
The effect is larger for better solvents (with larger A.B). 
It is surprising to see that the effect on rx5 remains rather 
large even at z 0 or at M 106 . Figure 9 shows 
double-logarithmic plots of rx§ against z with the same 
data as those in Figure 8 along with those for a-PS in 
benzene at 25.ooc and in MEK at 35.0°C,57 a-PMMA 
in nitroethane at 30.0°C, 21 i-PMMA in acetone at 
25.0°C,23 PIB in n-heptane at 25.0°C, 26 •42 and PDMS 
in toluene at 25.0aC. 58 The solid curve represents the 
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Figure 10. Double-logarithmic plots of :x" against z with the data for 
the same systems as those in Figure 9. The solid and dashed curves 
represent the QTP theory values of :x" and :xH, respectively, calculated 
from the Barrett equations 59 with z in place of z. 

QTP theory values. It is seen that all the data points 
form a single-composite curve and are fitted by the 
solid curve irrespective of the differences in polymer 
species (chain stiffness and local chain conformation) 
and solvent condition, indicating that the QTP scheme 
is valid for rx5. 

Viscosity- and Hydrodynamic-Radius Expansion Factors 
The viscosity- and hydrodynamic-radius expansion 

factors and rxH are defined by 

[1J]=[1]] 0 rx,i (16) 

(17) 

Even if eq 15 holds, there are several difficulties in the 
experimental determination of and rxH because of the 
solvent dependence of (/J e and also because of the specific 
interaction 17 * and/or the solvent dependence of db. For 
the details, the reader is referred to Chapter 8 of 
HWCPS. 1 

Figure 10 shows double-logarithmic plots of against 
z for a-PS in toluene at 15.0°C,42 in benzene at 25.0°C, 57 

and in MEK at 35.0°C, 57 a-PMMA in acetone at 25.0°C, 
in chloroform at 25.0°C, and in nitroethane at 30.0°C,21 

i-PMMA in acetone at 25.0°C and in chloroform at 
25.0°C,23 PIB in n-heptane at 25.0°C,42 and PDMS in 
toluene at 25.0oC. 58 The data points for rxH, which have 
not been plotted in Figure 10, coincide with those for 
within experimental error. (This is surprising.) The solid 
and dashed curves represent the QTP theory values of 

and rxH, respectively, calculated from the Barrett 
equations59 with z in place of z. Thus there is good 
agreement between theory and experiment for but this 
is not the case with ocH. This disagreement for rxH may 
be regarded as arising from the effect of fluctuating hy
drodynamic interaction. 60 •61 However, it may be con
cluded that the QTP scheme is valid for both and 
aH as well as for rx5. 

Second Virial Coefficient 
We assume that the two end beads are different from 

the n- 1 intermediate ones and also from each other in 
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Figure 11. Double-logarithmic plots of A 2 (in cm3 molg- 2 ) against 
M for a-PS in cyclohexane at 34.5'C (19) (e) and in toluene at 15.0°C 
( 0 ). 63 The solid curves represent the theoretical values, and the dashed 
and dotted curves those of and for the latter system, 
respectively. 
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Figure 12. Double- and semi-logarithmic plots of A 2 against M for 
a-PMMA in acetonitrile at 44.ooc (El) <•J and in acetone at 25.0°C 
( 0)69 The curves have the same meaning as those in Figure II. 

species. According to the HW theory,62 the second virial 
coefficient A 2 may then be written in the form, 

(18) 

where represents the contribution of possible effects 
of chain ends to A 2 , and is the part of A 2 without 
those effects, or A 2 for the (fictitious) chain composed 
of n + 1 identical beads. 

The first term may be written in the form, 

= 4n312 N A( <S2)3f2 I Mz)'P (19) 

where N A is the Avogadro constant and 'P is the in
terpenetration function given by 

'P =(6)"<S 2 ) 0 /c 00 L)- 312(zja£)h(z, z) (20) 

In eq 20, z is the intermolecular scaled excluded-volume 
parameter defined by 

z = [Q()"L)/2.865]z (21) 

where the function Q of also represents the effect of 
chain stiffness and becomes equal to 2.865 in the limit 
of AL-HXJ. In this limit, therefore, z also approaches z, 
and the function h becomes the so-called h function in 
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Figure 13. Plots of the theoretical 'l' against cx;i for a-PS. The solid 
and dashed curves represent the values at constant AB and JcL, 
respectively. The dotted curve represents the TP theory values. 
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Figure 14. Plots of the theoretical 'l' against cx;i for a-PMMA. The 
curves have the same meaning as those in Figure 13. 

the TP theory. 2 Thus, in general, neither the TP nor the 
QTP scheme is valid for The second term may 
be written in the form, 

(22) 

where the coefficients a 1 and a2 involve the binary-cluster 
integrals associated with the end beads but are m
dependent of M, so that vanishes for large M. 

At the B temperature, which is now defined as the 
temperature at which A 2 vanishes for large M, 
and (3 must vanish, so that A 2 at the B temperature, which 
we denote by A 2 ,e, is given by 

(23) 

This indicates that A 2 ,e does not vanish except at large 
M. Thus the TP scheme is valid also for A 2 only in the 
limit of M--+oo. 

Figure II shows double-logarithmic plots of A 2 (in 
cm3 molg- 2 ) against M for a-PS in cyclohexane at 
34.SOC (B) and in toluene at 15.oac. 63 The solid curves 
represent the theoretical values, and the contributions of 
A<]iw> and for the latter system are shown by the 
dashed and dotted curves, respectively. It is seen that 
there is rather good agreement between theory and 
experiment, and that remains appreciable up to 
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Figure 15. Plots of 'l' against cx;i for a-PS: 0. in toluene at 15.0oC; 
e. in n-butyl chloride at 15.0"C; in 4-t-butyltoluene at 50.0°C; {), 
in cyclohexane (CH) at 55.0"C; in CH at 50.0°C; in CH at 
45.0°C; e. inCH at 40.ooc; 0, inCH at 42.ooc; 0, inCH at38.0°C; 
@,inCH at 36.0°C. 64 - 66 Various directions of pips indicate different 
values of M. The solid and dashed curves connect smoothly the data 
points at constant Band M, respectively. The dotted curve represents 
the TP theory values. 
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Figure 16. Plots of 'l' against for a-PMMA;64 0, in acetone at 
25.0"C; e. in chloroform at 25.0"C; in nitroethane at 30.0"C; (), 
in acetonitrile (AN) at 55.0°C; (), in AN at 50.0oC; e, in AN at 
47.0oC (see legend for Figure 15). 

M= 104-105 . Figure 12 shows similar plots for 
a-PMMA in acetonitrile at 44.oac (B) and in acetone at 
25.0°C.64 The curves have the same meaning as those in 
Figure 11. It is interesting to see that A 2 ,e for a-PMMA 
exhibits a minimum. 

Now we examine the behavior of 'I'. Its theoretical 
values as a function of a§ are plotted in Figures 13 and 
14 for a-PS and a-PMMA, respectively. The dotted curves 
represent the TP theory values. The solid curves represent 
the values· for the case in which )oL (or M) is changed 
at constant ).B, while the dashed curves represent the 
values for the case in which )oB is changed at constant 
JcL (or M). It is seen that the TP theory prediction is 
obtained as the asymptotic limit of JcL--+ oo or JcB---+0, 
that for finite )oL and )oB, 'I' always deviates upward from 
the TP theory prediction, and that the behavior of 'I' 
depends remarkably on chain stiffness and local chain 
conformation. 

Figures 15 and 16 show plots of 'I' against for 
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a-PS64 - 66 and a-PMMA,64 respectively, where various 
types of circles indicate different solvent conditions 
(different B), and various directions of pips attached to 
them indicate different values of M. The solid and dashed 
curves connect smoothly the data points at constant B 
and M, respectively. There is semiquantitative agree
ment between theory and experiment, as seen from a 
comparison of Figures 15 and 16 with Figures 13 and 
14, respectively. In particular, it is interesting to see 
that as a£ (or M) is decreased in their respective good 
solvents of almost the same )"B, toluene ()"B = 0.26) and 
acetone (AB= 0.22), for a-PS 'l' increases steeply (at 
a8 = 1) after passing through a maximum and then a 
minimum at c::::: 1, while for a-PMMA it decreases 
monotonically and then drops suddenly after reaching a 
finite value at a8 = 1. 

Some Remarks 
We make some remarks on the behavior of a8 and 

A 2 below e. With experimental values of f3 correctly 
determined, it has been found that the QTP scheme is 
valid for a8 also below e, while the TP scheme is valid 
for AiHW) below e in contrast to its behavior above 
e. 67 - 70 In particular, we note that f3 is not proportional 
to 1-8/Tfor a-PS below @. 68 ·70 As for the third virial 
coefficient A 3 , we only note that it may be given by a 
sum of terms explicitly involving the ternary-cluster 
integral [3 3 , a term involving only (effective) [3, and 
a term representing effects of chain ends, so that it 
does not vanish at e even for large M. 71 - 7 3 

DYNAMICAL PROPERTIES 

Dynamic HW Chains 
We consider a chain composed of N identical rigid 

subbodies (beads), not necessarily spherical, joined 
successively with bonds of fixed length a, where their 
centers are located nearly on the contour of the con
tinuous HW chain of length L and each subbody has 
translational and rotatory friction constants ( 1 and (,. 
The bond length a is not equal to the spacing a introduced 
in the last section. For flexible chains one subbody as a 
motional unit may be regarded as corresponding to two 
successive skeletal bonds of the real chain, that is, the 
repeat unit, so that L/ N = M 0 / M L· This is the dynamic 
HW chain. 14 In the preaveraging approximation to its 
constraining matrix, for this constrained chain we can 
derive two types of diffusion equations which are suitable 
for the treatments of global and local motions, res
pectively. 74 Recall that in the same approximation the 
Kirkwood or Fixman-Kovac conventional bond chain 75 

fails to treat local motions since the associated eigen
values become negative. In the following we discuss only 
two recent topics on dynamic light scattering. For the 
details of the chain dynamics and also classical 
problems such as dielectric and magnetic relaxation, the 
reader is referred to Chapters 9 and 10 of HWCPS. 1 

Dynamic Depolarized Light Scattering 
Let lr(t1w) be the depolarized component of the dy

namic light scattering intensity such that it gives the 
mean-square optical anisotropy <T2 ) when integrated 
over the difference t1w between the angular frequencies 
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Figure 17. Double-logarithmic plots of rr/r? against x for a-PS in 
cyclohexane at 34SC ( EJ) ( 0 ), 76 a-PMMA in acetonitrile at 44.ooc 
(EJ) (e), 77 and i-PMMA in acetonitrile at 28.0"C (EJ) (L',). 78 The heavy 
solid. dashed, and dotted curves represent the respective HW theoretical 
values, and the light curves represent the respective theoretical values 
for the rigid sphere model. 

of the scattered and incident light waves at vanishing 
magnitude k of the scattering vector. We then define 
a depolarized scattering correlation time r r as the 
reciprocal of the half-width at half-maximum of the 
spectrum lr. The ratio rr/r7 of 'r to its value r7 for the 
monomer in the limit of oo may be regarded as a 
measure of dynamic chain stiffness. (Such measures may 
be defined also for dielectric and magnetic correlation 
times.) 

Figure 17 shows double-logarithmic plots of rr/r7 
against x for a-PS in cyclohexane at 34.SOC (8),76 

a-PMMA in acetonitrile at 44.0oC (8), 77 and i-PMMA 
in acetonitrile at 28.0°C (e). 78 The heavy solid, dashed, 
and dotted curves represent the respective HW theoretical 
values. They cannot be obtained in the oligomer region 
because of the (block-diagonal) approximation used, and 
therefore we have calculated the theoretical values there 
using simply the rigid sphere model, as shown by the 
light curves. It is important to see that both theoretically 
and experimentally, 'r levels off in the limit of oo in 
contrast to the earlier theoretical79 and experimental80•81 

results. Further, it is interesting to see that the dynamic 
chain stiffness ( r is larger for the chain with larger 
static chain stiffness ), - 1 (see Table I); there is strong 
correlation between the two measures. 

Dynamic Structure Factor 
According to the HW theory, 82 the first cumulant Q(k) 

of the dynamic structure factor is given by a sum of two 
terms, 

Yf 0 Q(k)jkBTk3 = [p + F(k)]j6nk (24) 

where pis the factor defined in eq 8 and 'k is the reduced 
magnitude of the scattering vector defined by k= 
<S 2 ) 112k. The function F(k) represents the contribution 
from the internal modes. Thus the so-called "universal" 
plot of Yf 0 Q(k)jkBTk3 against k depends on the kind of 
polymer, and therefore is not universal. 

Figure 18 shows plots of Yf 0 Q(k)/kBTk3 against k for 
a-PS (with M =4.1 x 104-4.4 x 107) in cyclohexane at 
34.SOC ( 8)83 and at 35.0°C, 84 a-PMMA (with 
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Figure 18. Plots of YJ 0Q(k)/k8 Tk 3 against k for a-PS in cyclohexane 
at 34SC (EJ) (0)83 and at 35.0°C (0). 84 a-PMMA in acetonitrile at 
44.ooc (EJ) (e),83 and DNA with L=2.24Jlm in 0.15moll- 1 NaCl 
at 25.0°C ( () ). 85 The solid, dashed, and dot-dashed curves 
represent the respective HW or KP theoretical values. 

M = 4.86 x 106 and 1.31 x 107) in acetonitrile at 44.ooc 
(0), 83 and DNA with L=2.24{lm in 0.15moll- 1 NaCl 
at 25.0oC. 85 The solid, dashed, and dot-dashed curves 
represent the respective HW or KP theoretical values, 
where the experimental values of p have been used in the 
theoretical calculation. There is rather good agreement 
between theory and experiment. The complete agreement 
at small "'{( is due to the use of the experimental values 
of p, and the underestimate of the theoretical Q(k) for the 
flexible polymers may probably arise from the pre
averaging of the Oseen tensor. However, it is impor
tant to see that the split of the plots occur at larger "K 
(in the plateau region) for the flexible polymers. The 
indication is that the effects of chain stiffness and local 
chain conformation (difference in polymer species) on 
the internal motions are still appreciable even for such 
large M where the global behavior may be completely 
described by the Gaussian chain. 

CONCLUDING REMARKS 

We have given a brief description of the HW chain 
and its applications to dilute polymer solutions following 
most of the chapters of HWCPS. 1 These developments 
provide a new framework of polymer solution science, 
which takes the place of the Flory-Kirkwood framework. 
It would be possible in the near future to extend the new 
framework to semidilute solutions. 

The final remark is concerned with some applications 
of the type-! generalized KP chain to circular DNA, in 
particular to the statistical and transport behavior of its 
topoisomers. Specifically, we can evaluate the ring
closure probabilities, distributions of the linking number 
and the writhe, translational friction and sedimentation 
coefficients, and so forth. For the details, the reader is 
referred to Chapter 7 of HWCPS. 1 
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