Microstructural Analysis of Methyl Methacrylate–Lauryl Methacrylate Copolymers Using ¹³C NMR Spectroscopy

Biswajit SANNIGRAHI and Baijayantimala GARNAIK[†]

Division of Polymer Chemistry, National Chemical Laboratory, Pune-411008, India

(Received September 29, 1997)

ABSTRACT: ¹³C NMR spectra (75.5 MHz) of methyl methacrylate (M)–lauryl methacrylate (L) copolymers prepared by group transfer polymerization (GTP) were analyzed for sequence distribution and relative stereochemical configuration of monomer units along the macromolecular chains. The concentrations of M- and L-centered triads, determined experimentally from α -CH₃ and C=O resonance signals, were in good agreement with those calculated statistically, taking into consideration the terminal copolymerization model and Bernoullian distribution of stereoregularity, with the statistical parameters P_{ij} determined from the reactivity ratios $r_{\rm M} = 1.38 \pm 0.11$ and $r_{\rm L} = 0.68 \pm 0.10$ and the coisotacticity parameters $\sigma_{\rm MM} = 0.24$, $\sigma_{\rm LL} = 0.27$, $\sigma_{\rm ML} = \sigma_{\rm LM} = \sigma^* = 0.30$.

KEY WORDS Group Transfer Polymerization / ¹³C Nuclear Magnetic Resonance / Polymer Microstructure / Methyl Methacrylate / Lauryl Methacrylate / (1-Methoxy-2-methyl-1-propenyl)oxytrimethylsilane / Tetrabutylammonium Bibenzoate / Tetrahydrofuran /

Group Transfer Polymerization (GTP) makes possible the synthesis of random and block copolymers with good control of molecular weight and distribution. Copolymers of methyl methacrylate (MMA) with higher alkyl methacrylates, such as lauryl methacrylate (LMA) exhibit interesting properties on account of their comblike structures. Controlled synthesis of such polymers is not possible by anionic techniques since living anionic polymerization of alkyl methacrylates is feasible only below -50° C in tetrahydrofuran (THF), under which condition LMA has no solubility in the solvent. Thus, GTP is the only available synthetic method for preparing narrow molecular weight distribution random and block copolymers of MMA and LMA. We recently reported the preparation of random copolymers of MMA and LMA spanning a wide composition range.¹

¹³C NMR spectroscopy is useful for the analysis of chemical structure, morphology, orientation and molecular dynamics of a polymer chain² all of which have an effect on material properties. The properties of a copolymer depend both on the chemical nature of the repeating units and on their arrangement within the polymer chain.

Detailed microstructural analysis of acrylic ester copolymers synthesized by GTP has not been reported in the literature. This paper examines the detailed microstructure of these copolymers using ¹³C NMR spectroscopy.

EXPERIMENTAL

Copolymerization

The copolymers of MMA and LMA with varying feed compositions were prepared by using (1-methoxy-2methyl-1-propenyl)oxytrimethylsilane (MTS) and tetrabutylammonium bibenzoate (TBABB) as a initiator and catalyst in THF at room temperature.¹ Precipitation in methanol and evaporation of solvent gave the random copolymers. The conversions of these copolymers were restricted to a low range as described in Table I.

¹³C NMR Spectra Measurements

¹³C NMR spectra were recorded at 75.5 MHz (Bruker MSL-300) spectrometer at 393 K. The sample concentration was 15% w/v in 1,2,4-trichlorobenzene. C_6D_6 (10%) was used as the external reference in a sealed capillary tube as locking agent. Spectra were obtained by using BROADBAND decoupling and a pulse delay of 2 s, accumulating 12000 scans with digital resolution of 0.4 Hz point⁻¹, corresponding to a spectral width 25000 Hz and a data length of 16 K. The flip angle and acquisition time were 60° and 1.3 s, respectively. These conditions ensure the complete relaxation of all the nuclei analyzed. Relative peak intensities were measured from peak areas calculated by means of electronic integration or by triangulation and planimetry.

RESULTS AND DISCUSSION

GTP of MMA with LMA in THF solution, using TBABB as catalyst and MTS as initiator at room temperature, gives rise to the formation of homogeneous random copolymers with statistical distribution of monomer units along the polymer chain which corresponds to the chemical structure outlined in Scheme 1.

The average molar compositions of different copolymer samples prepared at conversions <15% were determined from analysis of the corresponding ¹H NMR

[†] To whom correspondence should be addressed.

Table I. Compositions and conditional probabilities P_{ij} for the copolymerization at low conversion of methylmethacrylate (M) with lauryl methacrylate (L)

Eard E 4	$f_{\rm M}^{\ a}$ (copolymer)		D	
reed $r_{\rm M}$	¹ H NMR	¹³ C NMR	$P_{\rm ML}$	$P_{\rm LM}$
0.190	0.267	0.243	0.755	0.256
0.390	0.501	0.491	0.531	0.484
0.608	0.641	0.654	0.318	0.695
0.795	0.838	0.848	0.157	0.850

Figure 1. Determination of the monomer reactivity for the GTP of MMA and LMA according to the Kelen and Tüdos method, $\alpha = 0.75$.

spectra (Table I). The compositions of the copolymers were also determined from the ${}^{13}C$ spectra.

Copolymer composition was determined from analysis of the signal assigned to the $-OCH_3$ group (δ 51.39) of M units and $-OCH_2$ group (δ 64.21) of L units. These signals appear as very sharp peaks in the spectra of the copolymers⁵ and their relative intensities are in agreement with those obtained from ¹H NMR spectra.

Figure 1 shows to the application of the composition data in Table I to linearization methods of the copolymer composition equation proposed by Kelen and Tudos.³ Monomer reactivity ratios were determined according to the method of Kelen and Tüdos:

$$\eta = (r_1 + r_2/\alpha)\xi - r_2/\alpha$$

with $\eta = G/\alpha + F$; $\xi = F/\alpha + F$
 $G = a - a/b$; $F = a^2/b$
 $a = M_1/M_2$ and $b = m_1/m_2$

 m_1, m_2 = mole fraction of monomers in the copolymer from ¹H NMR

 M_1, M_2 = mole fraction of monomer in the feed

 α is the geometric mean of the lowest and highest *F*. The plot of η vs. ξ is linear in Figure 1. From the slope and intersection with the ordinates r_1 and r_2 were determined as $r_1(\text{MMA}) = 1.38 \pm 0.11$ and $r_2(\text{LMA}) = 0.68 \pm 0.10$. In comparison, the reactivity of these two monomers when radically copolymerized in 1,1,2-trichloro-1,2,2-trifluoroethane at 60°C are $r_1(\text{MMA}) = 1.21 \pm 0.12$ and $r_2(\text{LMA}) = 0.84 \pm 0.10$.⁴ Agarwal *et al.*⁵ has reported Polym. J., Vol. 30, No. 4, 1998

Figure 2. ${}^{13}C$ NMR spectra (75.5 MHz) of the α -CH₃ side groups of M-L copolymers.

the reactivity ratio values of MMA and LMA as $r_1(MMA) = 0.45$ and $r_2(LMA) = 0.88$ in free radical bulk polymerization.

The microstructures and stereochemical configurations of copolymers prepared with different feed composition were determined from the exhaustive analysis of NMR resonance signals since the decoupled ¹³C NMR spectra provide excellent and accurate information of the chemical composition and stereochemical configuration of copolymer chain segments. Statistical distributions of M- and L-centered sequences were determined from the conditional probabilities $P_{\rm ML}$ and $P_{\rm LM}$ (and $P_{\rm MM}=1-P_{\rm ML}$, $P_{\rm LL}=1-P_{\rm LM}$) (Table I). These values were calculated based on the classical terminal model for copolymerization.⁶ The parameters $P_{i,j}$ (i,j=M,L) are conditional probabilities for the addition of monomer units *j* to reactive *i* ends.⁷

The α -CH₃ resonance of PLMA (Figure 2) shifted towards lower field compared to that of poly(methyl methacrylate) (PMMA) because of the long aliphatic character of the ester group in poly(lauryl methacrylate) (PLMA).

Effectively, the α -CH₃ resonance of M and L units present a complex pattern with seven distinguishable peaks, whose intensities change with the average composition of copolymer samples (Figure 2). A detailed analysis of these signals leads to the assignment of peaks I and IV as due to the *rr* and *rm*+*mr* triads in PPMA; in addition, the intensity of these signals increases with molar fraction of M in the copolymer. The expanded ¹³C NMR decoupled spectra of the α -CH₃ carbon resonance signals of homopolymers M and L as well as those of several M–L copolymer samples of various compositions are shown in Figure 2. The α -CH₃ group is present in the chemical structure of both mesomeric units, but, for PMMA⁸ (M in Figure 2), this group gives three resonances at 17.58, 18.75, and 21.73 ppm from tetramethylsilane (TMS), assigned to iso (*mm*), hetero (*mr*+*rm*), and syndiotactic (*rr*) triads in order of increasing field.⁹

The α -CH₃ group of PLMA also shows three resonance signals at 17.81, 19.45, and 21.61 ppm from TMS, assigned to *mm*, *mr*+*rm*, and *rr* tactic triads in order of increasing field, since these values are close to those reported for the resonance of the α -CH₃ in PMMA.⁸⁻¹⁰

The (rr) and (rm + mr) resonances of PLMA (δ 17.81 and δ 19.45), appear in a somewhat lower field than those of the PMMA, (rr) at δ 17.58 and (rm + mr) at δ 18.50. However, the resonance signal assigned to isotactic (mm) sequences has an almost similar chemical shift for both the polymers (δ 21.60). This means that the α -CH₃ side group in isotactic sequences shows very little sensitivity to the short chain and long chain aliphatic character of the ester groups. This is reasonable since the diamagnetic carbonyl centers are as far as possible from the α -CH₃ group of the central unit in the triad (Figure 3). It is easily seen Figure 2 that the separation between tactic signals of PMMA is higher, $(\delta_{mm} - \delta_{mr}) \cong \delta_{mr} - \delta_{rr} \cong 1.71$ ppm, than that of PLMA $(\delta_{mm} - \delta_{mr}) \cong \delta_{mr} - \delta_{rr} \cong 1.54$ ppm. This means that except for (mm) sequences, the chemical shifts of M and L units are sensitive to the composition and the stereochemical configurations of the neighboring units in sequences of triads.

For a complete description of the monomer sequence distribution and relative stereochemical configuration in terms of M- and L-centered triads, it is necessary to take into consideration 10 different triads with a central M unit which may be magnetically distinguishable as is shown in the scheme of Figure 3. Similarly, 10 triads with a central L unit must also be considered. It is well known that the sensitivity of the α -CH₃ resonance to tactivity arises from the diamagnetic effects of the carbonyl ester group of the neighboring units on the α -CH₃ residue of the methacrylic central unit.²

Figure 3 as well as molecular models clearly show that the diamagnetic effects of neighboring units on the α -CH₃ central unit for MML or LMM (*rr*) triads are different from those of MMA (*rr*) triads or LML (*rr*) triads and due to the difference in the chemical shifts (*rr*) sequences of both M and L homopolymers, it may be expected that the cosyndiotactic heterotriads or LMM (*rr*) give a resonance signal between those of the homopolymers. Therefore, we tentatively assign peak II to this kind of triad as indicated in Table II. Also, α -CH₃ of central M unit of MML or LMM triads with the stereochemical configuration (*rr*) have the same magnetic and spatial arrangement as the MLL (*rr*) triads, so we have included these in signal II.

It thus may be expected that the LML (rr) sequence has the same chemical shift as the syndiotactic triad of homopolymer L and that the MLM (rr) is similar to the syndiotactic triad of homopolymer M (see Figure 3 and Table II).

Figure 3. Schematic representation of M centered triads of methyl methacrylate-lauryl methacrylate copolymers.

Table II. Assignments of α -CH₃ resonance to sequences of M- and L-centered traids^a

Spectral signal No.	Chemical shift/ ppm	Copolymer compositions	Sequence configuration
I	17.46	MMM	rr
		MLM	
		MML	
II	18.10	LMM	rr
		LLM	
		MLL	
III	18.63	LML	rr
		LLL	
		MMM	mr + rm
IV	19.27	MML	rm
		LMM	mr
		LML	mr + rm
V	19.83	MML	mr
		LMM	rm
		LLM	mr
VI	20.13	MLL	rm
		LMM	mr + rm
		LLM	rm
VII	21.50-21.90	a	тт

^a The signals considered in this interval correspond to all possible isotactic triads independent of composition.

Based on similar arguments we have assigned peak V to the contribution of sequences reported in Table II. The experimental data obtained from NMR spectra are in good agreement with the contribution of the corresponding sequences calculated statistically.

The molar concentrations of M- and L-centered sequences with statistical sequence distribution and stereochemical configuration of copolymer chains have been analyzed and correlated statistically according to the reactivity reported, the conditional probabilities P_{ij} quoted in Table I and average compositions of the copolymer samples. This analysis was carried out by making the following assumptions.

a) With respect to the chemical compositions of copolymer sequences, it is assumed that copolymerization reaction is described by the terminal unit model.^{11,12}

b) From a stereochemical point of view, it is assumed that the configurational sequence distribution may be described according to Bernoullian statistics with the isotactic parameters σ_{MM} , σ_{ML} , σ_{LM} and σ_{LL} as defined by Bovey¹³ and Coleman,¹⁴ where σ_{ij} is the probability of

Figure 4. Variation in tactic sequences with M molar fraction in the copolymer. The points are experimental results from the α -CH₃ resonance signals: $mm = \oplus$; rm, $mr = \blacktriangle$; $rr = \blacksquare$.

generating a *meso* diad between an *i* ending growing species and incoming *j* monomer.

 $\sigma_{\rm MM} = 0.24$ and $\sigma_{\rm LL} = 0.27$ were considered for the statistical distribution of units in pure MMM and LLL triads. These value correspond to the isotacticity parameters of M and L homopolymers and were determined from the analysis of the α -CH₃ resonances of PMMA and PLMA, considering the Bernoullian distribution of tactic sequences. The coisotacticity parameters $\sigma_{\rm ML}$ and $\sigma_{\rm LM}$ are not accessible directly, but it is reasonable to assume that $\sigma_{\rm ML} = \sigma_{\rm LM} = \sigma^{*.15,16}$ In this way we determined this parameter by comparison of the integrated intensities of peak I & II of the α -CH₃ resonances (assigned as indicated in Table II) for several copolymer samples. Application of well known statistical relations¹⁷ gives a value of $\sigma_{\rm ML} = \sigma_{\rm LM} = 0.30$.

Figure 4 shows variation in the concentrations of tactic sequences (independently, their chemical composition), with average molar fraction M in the copolymer chain. It clearly shows that there is a slight increase of the coheterotactic sequences with molar fraction of M in the copolymer samples, but, in any case, from a stereochemical point of view one can conclude that there is a random distribution to tacticity following the classical Bernoullian triad.

Carbonyl Carbon Resonance Signals

We examined the validity of the statistical model, from analysis of the complex pattern of the carbonyl carbon resonance signals. Figure 5 shows the spectra of the C = Oresonances for four copolymer samples of different composition, together with those of corresponding M and L homopolymers. The calculated and observed peak intensities are compared in Tables III and IV for PMMA and PLMA respectively. They agree well with each other indicating that pentad distributions in the samples obey Bernoullian statistics. The C=O resonance of PLMA reveals that this group presents a resonance pattern very similar to that of PMMA. The assignment of PLMA was carried out in terms of tactic pentads in the same manner as for PMMA.^{9,10}

The spectra of copolymers (Figure 5) when compared with those of homopolymers M and L reveal that some peaks overlap with each other, but with intensities ac-

Figure 5. ¹³C NMR spectra (75.5 MHz) of the C = O side groups of M-L copolymers.

 Table III. Experimental and calculated pentad probabilities for poly(methyl methacrylate) samples using GTP

¹³ C	C=0	Pentads	ppm	Observed	Calculated
		mrrm	177.12	0.044	0.039
		mrrr	176.86	0.204	0.209
		rrrr	176.59	0.277	0.276
		rmrm	176.46	0.084	0.080
		mmrr	176.09	0.089	0.080
		rmrr	175.94	0.216	0.210
		mmrm	175.85	0.015	0.030
		mmmr	175.71	0.014	0.030
		rmmr	175.46	0.020	0.006
		mmmm	175.32	0.035	0.039

Calculation based on intensity of C=O group. P_m calculated from intensity of *mm* triad of α -CH₃ group of PMMA.

cording to the average molar composition of copolymer chains. This means that the C=O resonances of M and L-centered sequences are not sensitive to the chemical composition and distribution of monomeric units but are sensitive to the relative stereochemical configuration of copolymer segments in terms of sequences of tactic pentads. This assignment is similar to that of the >C=O

 Table IV.
 Experimental and calculated pentad probabilities for poly(lauryl methacrylate) samples using GTP

C = O	Pentads	ppm	Observed	Calculated
	mrrm	177.0	0.036	0.040
	mrrr	176.77	0.205	0.209
	rrrr	176.49	0.283	0.273
	rmrm	176.32	0.089	0.080
	mmrr	176.01	0.068	0.031
	rmrr	175.78	0.188	0.209
	mmrm	175.55	0.058	0.080
	mmmr	175.29	0.014	0.028
	rmmr	175.23	0.020	0.010
	mmmm	175.10	0.037	0.040
	C=0	C=O Pentads mrrm mrrr rrrr rmrm mmrr rmrr mmrm mmmr rmmr mmmm	C=O Pentads ppm mrrm 177.0 mrrr 176.77 rrrr 176.49 rmrm 176.32 mmrr 176.01 rmrr 175.78 mmrm 175.55 mmmr 175.29 rmmr 175.23 mmmm 175.10	C=O Pentads ppm Observed mrrm 177.0 0.036 mrrr 176.77 0.205 rrrr 176.49 0.283 rmrm 176.01 0.068 mmrr 175.78 0.188 mmrm 175.55 0.058 mmmr 175.29 0.014 rmmr 175.10 0.037

Calculation based on intensity of C=O group. P_m calculated from intensity of *mm* triad of α -CH₃ group of PLMA.

Table V. Stereochemical configurations of M-centered pentads determined from analysis of C=O resonance signals

Tactic pentad	Chemical _ shift/ppm _	f_{M} (Copolymer)				
		0.243	0.491	0.654	0.848	
mrrm	177.33	0.030		0.011	0.021	
mrrr	177.21	0.037	0.099	0.038	0.038	
rrrr	176.88	0.138	0.268	0.176	0.211	
rmrm	176.59	0.148		0.276	0.344	
mmrr	176.00	0.159		0.094	0.090	
rmrr	175.96	0.139	0.244	0.119	0.085	
mmrm	175.90	0.133	0.243	0.139	0.119	
mmmr	175.71	0.174		0.054	0.021	
rmmr	175.59	_	0.145	0.074	0.047	
mmmm	175.33	0.041		0.019	0.014	

Table VI. Stereochemical configurations of L-centered pentads determined from analysis of C=O resonance signals

Tactic pentad	Chemical	$f_{\rm L}$ (Copolymer)				
		0.152	0.346	0.509	0.757	
mrrm	177.00	0.116	0.118	0.151	0.111	
mrrr	176.63	0.208	0.218	0.295	0.250	
rrrr	176.49	0.044	0.232		0.203	
rmrm	176.25	0.097	0.095	0.143	0.103	
mmrr	176.00	0.113	0.074	0.148	0.131	
rmrr	175.83	0.302	0.159	0.146	0.110	
mmrm	175.55	0.059	0.062	0.088	_	
mmmr	175.38	0.018	0.010	0.028	0.034	
rmmr	175.13	0.042	0.019		0.033	
mmmm	174.95	_	0.008		0.025	

resonance signals for PMMA and PLMA homopolymers and reported by Yamakawa *et al.*¹⁸ The chemical shifts of signals assigned to tactic pentads centered in M units, together with the molar fraction of sequences for copolymers with different average molar fraction of M, are listed in Tables V and VI lists the corresponding values for L-centered sequences. In this case, overlapping between 177.50 and 175.00 ppm with more intense syndiotactic L-centered sequences (see Figure 5) and also permit us to determine the contribution of isotactic M centered sequences. Therefore, the values in Table VI for these sequences were calculated statistically according to the model described before; nevertheless, their contribution to the whole system can be disregarded in practice.

Acknowledgements. We thank Dr. S. Sivaram for his advice and useful discussions and also Dr. Rajmohanan for NMR measurements. Biswajit Sannigrahi acknowledges CSIR for the award of a Senior Research Fellowship.

REFERENCES

- B. Sannigrahi, P. P. Wadgaonkar, J. C. Schra, and S. Sivaram, J. Polym. Sci., Polym. Chem. Ed., 35, 1999 (1997).
- 2. F. A. Bovey, "Nuclear Magnetic Resonance Spectroscopy," 2nd ed, Academic Press, New York, N.Y., 1987.
- 3. T. Kelen, and F. Tüdos, J. Macromol. Sci., Chem., A9, 1 (1975).
- 4. G. A. Stahl, J. Polym. Sci., Polym. Chem. Ed., 17, 1883 (1979).
- S. Agarwal, V. Choudhury, and I. K. Varma, J. Appl. Polyn. Sci., 53, 1525 (1994).
- A. D. Jenkins, in "Reactivity, Mechanism and Structure in Polymer Chemistry," A. D. Jenkins and A. Ledwith, Ed., Wiley, London, 1974.
- J. L. Koenig, "Chemical Microstructure of Polymer Chains," Wiley-Interscience, New York, N.Y., 1980.
- R. Chujo, K. Hatada, R. Kitamura, T. Kitayama, H. Sato, and I. Tanaka, *Polym. J.*, **19**, 413 (1987).
- 9. I. R. Peat and W. F. Reynolds, Tetrahedron Lett., 14, 1359 (1972).
- T. Konishi, Y. Tamai, M. Fujii, Y. Einaga, and H. Yamakawa, *Polym. J.*, **21**, 329 (1989).
- 11. F. R. Mayo and F. M. Lewis, J. Am. Chem. Soc., 66, 1594 (1944).
- 12. T. (Jr.) Alfrey and G. Goldfinger, J. Chem. Phys., 12, 205 (1944).
- 13. F. A. Bovey, J. Polym. Sci., 62, 197 (1962).
- 14. B. Coleman, J. Polym. Sci., 31, 155 (1958).
- 15. R. Russel and J. C. Galin, J. Macromol. Sci., Chem., A11, 347 (1977).
- K. Ito, S. Iwase, K. Umehara, and Y. Yamashita, J. Macromol. Sci., Chem., A1, 891 (1967).
- 17. F. A. Bovey, "Chain Structure and Conformation of Macromolecules," Academic Press, New York, N.Y., 1982.
- 18. T. Konishi, Y. Tamai, M. Fujii, Y. Einaga, and H. Yamakawa, *Polym. J.*, **21**, 429 (1989).