
Polymer Journal, Vol. 30, No. 12, pp 1001-1003 (1998) 

NOTES 

Elucidation of the Stereochemical Pathway to Isotactic Poly[(methylphenylsilylene)trimethylene] 
from Allylmethylphenylsilane 

Yusuke KAWAKAMI,t Toshiyuki TAKAHASHI, Yukio YADA, 
and Ichiro IMAE 

Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAISD. 
Asahidai 1-1, Tatsunokuchi, Ishikawa 923-1292, Japan 

(Received June 8, 1998) 

KEY WORDS Bromosilane I Allylsilane I Optical Purity I HPLC on Optically Active Stationary Phase I 
Optically Active Monomer I Polyaddition I Polycarbosilane I Isotacticity I 

Polyaddition to give poly(carbosilane)s, well-known 
precursors to silicon carbide, 1 via hydrosilylation was 
first reported by Curry, 2 and we reported the polymeri
zation of 1-allyl-3-hydro-1, 1 ,3,3-tetramethyldisiloxane. 3 

Recently, liquid crystalline behavior of these polymers 
was reported.4 It is very important to control the stereo
chemistry of Si atom in the repeating units of these 
polymers in order to correlate precisely the primary 
structure of the polymers with such property. 

Meanwhile, we reported the first example of the de
finite and quantitative evaluation of triad tacticity of 
poly[(methylphenylsilylene)trimethylene] rich in iso
tacticity. 5 In the report, among three basic methods to 
synthesize optically active silicon compounds, namely, 
optical resolution, 6 diastereoselective reduction of car
bonyl compounds, 7 and diastereoselective alkylation, 8 

we adopted the last method to synthesize the optically 
active allylmethylphenylsilane of moderate enantiomer 
excess (e.e.), and obtained the polymer by self-poly
addition of the optically active allylmethylphenylsilane 
(Scheme 1). However, some apparent decrease in 
isotacticity of the polymer (S: H :I= 1.0 : 2.0: 2.3) was 
noticed compared with the calculated value (S : H : I= 

route 1 (present study) 

1.0: 2.0: 3.3) from the diastereomer excess (d.e.) of the 
precursor, allylbornyloxymethylphenylsilane (d.e. = 
60.8%) assuming the complete stereoselectivity of each 
transformation to obtain the polymer from the precursor 
(run 4 in Table II). The decrease in isotacticity might 
suggest racemization in either the reduction or polym
erization step. 5 In order to clarify this point, we 
developed a new method to synthesize the allylsilane with 
higher e.e., and here, we report on the clarification of 
the stereochemical aspect of the reaction paths to give 
stereoregular poly[(methylphenylsilylene)trimethylene] 
by polyaddition. The new synthetic pathway is also 
included in Scheme 1. 

(R)-( + )-[( + )-Menthyloxy]methyl(l-naphthyl)phe
nylsilane can be obtained by optical resolution, 6 and 
whose d.e. was confirmed to be higher than 99.9% by 
HPLC on optically active stationary phase (Figure 1) 
and 1H NMR spectrum.9 The d.e. of the brominat
ed product, (R)-bromo[( + )-menthyloxy ]methylphenyl
silane, 10 was significantly influenced by the reaction 
conditions. The effects of the reaction temperature on 
the d.e. was shown in Figure 2. Racemization is not 
noticed at - 64°C. The higher the reaction temperature, 

Ph,.. )'Ae Br2 Me,. 
s· ·si 

Ph Me . 
CH2=CHCH2MgBr '•. L1AIH4 

CHCI3-Et20, -64 ·c /51, Et20- n-Bu20 / 1, CHCI3, -64 ·c / ' 
MenO Np MenO Br 

(R)-1 (R)-2 

route 25> 

Me'l. ,.Ph 
Si 

/ ' BorO OBor 
5 

Me •••. 
Si 

MenO CH2CH=CH2 
(S)-3 

/ ' BorO CH2CH=CH2 
(R)-6 

(R) or (S)-4 
polyaddition Ph,. •. •. 

• • 

Me •••. 
Si 

/ ' H CH2CH=CH2 
(S)-4 

Bor = bornyl, Men= menthyl, Np = 1-naphthyl 

Scheme 1. 

t To whom correspondence should be addressed. 

1001 



Y. KAWAKAMI eta/. 

(R) (S) 

(a) 

(b) 

10 15 

min 

Figure 1. HPLC on optically active stationary phase of (a) racemic 
and (b) (R)-[( + )-menthyloxy]methyl(l-naphthyl)phenylsilane. (Eluent, 
hexane; column, Chiralcel OD® [Daiccl Chern. Ind. Ltd.] ) 
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Figure 2. Dependence of d.e. of bromo[(+ )-menthyloxy]methyl
phenylsilane on temperature after 3 h of bromination. 

the easier the loss of optical activity of the product was. 
Chloroform was the most suitable solvent checked so far 
for the reaction. Remarkable racemization occurred in 
other solvents like chloromethane, dichloromethane, 
carbon tetrachloride, or benzene even at near freezing 
temperature of the solvent. Lower concentration (0.1 
mol dm- 3) gave better result than higher concentra
tion (0.25 mol dm- 3). By selecting suitable reaction 
conditions, 84.5% d.e. could be attained in analytical 
scale. Small decrease in d.e. might have occurred during 
NMR measurement due to the temperature elevation of 
the sample. The d.e. of 76.5% was attained for (S)
allyl[( + )-menthyloxy ]methylphenylsilane from the bro
mo derivative of 78.9% d.e in synthetic scale.U Slight 
decrease in d.e. might be due to some temperature 
elevation in transferring the reagent. Reduction by 
lithium aluminum hydride gave allylmethylphenylsilane 
having = + 24.0 (c 1.00, pentane). 12 This com
pound should have (R) configuration, since reduction of 
alkoxysilyl group was reported to proceed with retention 
of Si stereochemistry. 13 The absolute configuration of 
the compound already reported5 should be (S), since it 
has the opposite sign of optical rotation. The e.e. of the 
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Figure 3. 1 H NMR spectrum of poly[(methylphenylsilylene)tri
methylene] obtained from the monomer having [a]i',6 = +24.0. 

Run 

I ct 

2 
3 
4' 

Table I. Elucidation of tacticity of 
poly(methylphenylsily lenetrimethy lene) 

-------·--·-· ---

d.e. of 3 [a]i',6 of 4• (e.e.h) l:H:S e.e. of 4' 
--------- ----- ·- -· ----

% degree (%) Calcd Obsd % 

- ( 0) 1.0: 2.0: 1.0 1.0:2.0:1.0 
61 19.6 (62) 3.3: 2.0: 1.0 3.5: 2.0: 1.0 61 
76 24.0 (76) 6.6: 2.0: 1.0 7.0:2.0: 1.0 77 
61' -16.0"(51) 3.3: 2.0: 1.0 2.3: 2.0: 1.0 50 

a c 1.00, pentane. b Calculated value assuming optically pure 4 has 
the optical rotation of [aJi',6 = 31.4. 'Estimated from triad tacticity. 
d Racemic monomer. 'Ref 5. 'Compound 6. • c 0.50, pentane. 

product could not be estimated at this point. 
Polyaddition of 4 by the use of platinum 1,3-diviny1-

l, 1 ,3,3-tetramethyldisiloxane complex gave reasonably 
high molecular weight of the polymer (Mn"' 10000-
14000, Mw/Mn=2.6-3.0). 

The 500 MHz 1 H NMR spectra of the polymer are 
shown in Figure 3. The methyl signals at 0.120, 0.125, 
and 0.131 ppm were assigned to syndiotactic, heterotac
tic, and isotactic triad, respectively. 5 The calculated 
concentration of each triad starting from the optically 
active monomer with 76.5% e.e. assuming complete 
retention of Si stereochemistry in the reduction and in 
the polymerization is S: H: I= 1.0: 2.0: 6.6. The actual 
concentration of each triad evaluated from Figure 3 was 
1.0: 2.0: 7.0. The ratio was 1.0: 2.0: 3.5 starting from the 
compound of 60.8% e.e. (run 3 and 2 in Table 1). These 
facts proved that there was no racemization in reduction 
step to synthesize allylmethylphenylsilane and poly
merization. This also proved that the e.e. of (R)
allylmethylphenylsilane having [ct]66 = + 24.0 is 76.5%. 
Optically pure compound might show = + 31.4. 
This value is a little larger than the recently reported 
value (- 28.89)_15 The e. e. of 4 estimated from the 
triad tacticity is reasonably well in accordance with the 
calculated value assuming that optically pure 4 has the 
optical rotation of [aJ66 = +31.4. Thus, by elucidating 
the stereochemistry of polymers, the absolute configura
tion and e.e. could be also definitely determined for the 
optically active allylmethylphenylsilane, assuming the 
retention of stereochemistry of silicon atom in the 
hydrosilylation. Although we reported the possibility of 
racemization, 5 it was clearly demonstrated that such 
racemization actually did not occur in the polymerization 
to give isotactic poly[(methylphenylsilylene)trimethy-
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Isotactic Polycarbosilane 

lene] from allylmethylphenylsilane. 
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