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The kinetic crystallization model of A vrami is the 
generally accepted starting point for the analysis of iso­
thermal nucleation and crystallization of polymers. 1 - 3 

The three-parameter A vrami equation function is given 
by 

0(t; n,k, r)= X(t) = 1-exp[ -k(t-rt] (1) 
xoo 

where 0(t) is the relative crystallinity at time t, X(t) is 
the absolute crystallinity at time t, X 00 is the ulti­
mate absolute crystallinity, k is the crystallization rate 
constant containing the nucleation and growth rates, 
r is the incubation time, and n is the A vrami index. 
For repeated series of isothermal crystallization experi­
ments run at different temperatures, only the A vrami 
index n is found to be temperature-independent, 4 whereas 
the same is not valid for the two other parameters k 
and r. In a previous communication, 5 the author has 
already shown that data of isothermal crystallization per­
formed at different temperatures can be evaluated to­
gether with the help of A vrami master curves. More­
over, it has been shown that the three-parameter Avrami 
equation function shows an inflexion point for n > 1. 5 

The time value of the inflexion point tin can be calculated 
by solving the equation 

a20(~)-=o 
a12 

Thus, it follows for n > 1 

t- =[(n-1)]1/n +r 
10 nk 

Introducing a dimensionless time a, 

(t-r) 
a=---

(tin-r) 

(2) 

(3) 

(4) 

a scaled, modified Avrami function /(a; n) can be ob­
tained: 

{[ (1-n)] } 0(t;n,k,r)=l(a;n)=1-exp --n- a" (5) 

Avrami master curves I(a;n) are displayed in Figure 1 
for n > 1. A vrami master curves even for O < n :s; 1 (n;::::: 1 
is expected for rod-like growth geometries), can be ob­
tained by scaling 0(t) with the mean-time l. The mean­
time l is given by 
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1 r(1+:) l=f td0=r+ ----
o kl~ 

(6) 

Formally, eq 6 has already been found by Trustrum and 
Jayatilaka. 6 The complete Gamma-function I'(I +(1/n)) 
is defined by 

r(1+ :)= I" x 1i"exp(-x)dx (7) 

The values of r(l +(1/n)) are real and positive for every 
n > 0. Introducing a new dimensionless time y, 

t-r 
y=-­

.l-r 
(8) 

a second type of Avrami master curves K(y; n) can be 
obtained: 

0(t;n,k,r)=K(y;n)=l-exp{-[r(1+ :)Jy"} (9) 

Avrami master curves K(y;n) can be constructed for 
every real, positive Avrami index n. Avrami master curves 
K(y;n) for n>O are displayed in Figure 2. 

Since the only parameter of the A vrami master curves 
l(a;n) and K(y;n) is the Avrami index n, a resp. y being 
variables, there exists a one-to-one correspondence 
between the two types of A vrami master curves for every 

5 

Figure 1. Avrami master curves !(a; n). 
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Figure 2. Avrami master curves K(y;n). 

Figure 3. Avrami master curves I(a; n) as a function of the Avrami 
index n and the Avrami master curves K(y;n). 

fixed A vrami index n > 1. The variables a and y can be 
expressed as follows: 

{ -ln[l -K(y; n)J} 11n 

(r(1+!)) 

y 

a={nln[l-I(a; n)] }l/n 
l-n 
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(10) 

(11) 

Two corresponding master curves /(a; n) and K(y; n) can 
thus be compared to one another at every possible, fixed 
value of the variables a resp. y. This is done, formally, 
by setting a= y = constant. Thus it follows 

I(,; n)-1-exp{ (n-cr-~r)]} 
n r l+­

n 

(12) 

{ 
n(r(1+ !)Yln[l-/(c;n)]} 

K(c;n)=l-exp --------- (13) 
(n-1) 

Equation 12 is displayed in Figure 3. Equations 12 and 
13 express the possibility of computing A vrami master 
curves I(a; n), if a master curve K(y; n) is evaluated from 
experimental data and vice versa. This is possible as long 
as the experimentally evaluated A vrami index n > 1. 
Furthermore, the Avrami master curves K(y; n) are 
physically more significant than the /(a; n) master curves, 

since the scaling parameter !(mean-time) represents the 
first moment of the three-parameter Avrami equation 
function 0(t). Therefore, the master curves K(y; n) are 
as well physically more relevant as more general than 
the master curves /(a; n). 

In a previous communication, 5 the author has already 
displayed a difference quotient method, which enables 
the evaluation of the parameters n, k, and -r, if at least 
three experimental data points (ti, 0(tJ) are available. 
Therefore, tin and t can be experimentally obtained by 
evaluating the parameters n, k, and -r and by using eq 3 
resp. eq 6 afterwards. 

Experimental evidence of the isothermal polymer 
crystallization theory, based on A vrami master curves, 
has already been given by the author, 5 having evaluated 
experimental data of isothermal crystallization experi­
ments of polydimethylsiloxane. 
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