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ABSTRACT: Taking account of the effect of the large side group, the expression of the unperturbed mean-square radius 
of gyration, (S 2 ), is improved from the Lagrange relation. Using the derived relation, the ratio curve, (S 2 )/x 1•s. the logarithm 
of degree of polymerization x for the atactic poly(methyl methacrylate) (A-PMMA) chain, gives a small bump, which agrees 
better with experiment data. The characteristic ratio (S2 )/2x1 2 and the temperature coefficient d ln(S2 )/d T dependence on 
the stereoirregularity are also investigated by the derived formula. 
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Configuration-dependent properties for many substitut­
ed polymer chains are treated widely by the rotational 
isomeric state (RIS) 1 theory. Among such properties, the 
unperturbed mean-square radius of gyration (S 2 ) is the 
important one, through which we can know the relation 
between the experimental results and the chain structure. 
But, the Lagrange relation of (S2 ) 2 is obtained only 
under neglecting the mass and dimension of side group. 
If the side group is samll, the effect of side group on 
(S 2 ) is insignificant. However, if the side group includes 
a large number of atoms, the effect is rather important. 
Recently, on account of the effect of side group, we have 
improved the calculation of (S 2 ) for the monosub­
stituted polymer and the symmetrically di-substituted 
polymer chains, 3 - 5 which is necessary particularly to 
treat (S 2 ) of the short chain with large side group. 
Following our previous approach, we will investigate 
(S 2 ) of the asymmetrically di-substituted polymer chain. 

The characteristic ratios for the atactic poly(methyl 
methacrylate) (A-PMMA) chain are widely investigated 
by experiment6 ·7 and theoretical method, including the 
2-state, 3-state, and 6-state RIS models. s- io In the 
experiment data of A-PMMA chain, the ratio of the 
mean-square radius of gyration, (S 2 )/x, passes through 
a maximum at a less degree of polymerization x before 
reaching its asymptotic value at larger x. 6 However, 
none of the theoretical values in three RIS models has 
been found the small bump. 6 In the treatment of ref 6, 
taking account of the effect of the chemical nature of 
terminal groups on (S 2 )/x, the terminal statistical weight 
matrices are revised, nevertheless, the chain end correc­
tion improved the values of (S 2 )/x only for x~6. In 
fact, as there are many terminal groups for a substituted 
polymer chain, the terminal groups must be treated as 
the same as the chain end. We think that the behavior 
of short A-PMMA chain may be related to either the 
rotational isomeric states and the energy parameters in 
the statistical weight matrices or the large side group 

1 To whom all correspondence should be addressed. 
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atoms. In treatment of the Lagrange relation, the steric 
interaction of side groups is considered in the statistical 
weight matrices, however, the mass and size of large 
substituents are neglected. Therefore, we will improve 
the formula of (S 2 ) for the di-substituted polymer chains 
in this paper, and our treatment will consider the effect 
of side group including the steric interaction, dimension 
and mass. In this approach, the evaluated characteristic 
ratio and temperature coefficient of (S 2 ) for A-PMMA 
chain are in agreement with the experiment results. 

FORMULAE OF (S 2 ) 

An A-PMMA chain, shown in Figure I, may be as­
sumed to be the model +(b )a(/3)-f-f. with x monomeric 
units. Each unit is divided into F-type and A-type atoms, 
including the side groups b and {3 (bi= {3) attached to 
the skeletal a-atom. Following the way of ref I and 3, 
the unperturbed mean-square radius of gyration is cal­
culated as 

(S2 )=M- 2 [ I, m;mi<rl> 
O~i<j~ 2x 

+ m;,m/rf.r> 
1 :::;i'<j'~x 

+ m;.,mr<rf.'i") 
1:::;i"<j"~x 

+ ;-t i't1 m;-mr<rf.r>] (I) 

where M is the molecular weight of chain, m;, m;-, and 
m;,, are the masses of skeletal atom i (a or f), side groups 
i' (b) and i" (/3), respectively. rl is the square of the 
distance from atom i to j. According to the RIS theory. 
'& can be calculated by 

2 · (j-1)· rii=Jrg;+ 1 lo (2) 
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where 

jp=(l O O O 0), jQ=(O 00 0 If (3) 

g,-U ~] 
1 k 

(k=i+l, · · ·,j-z) (4) 

and 

(5) 

Obviously, the matrix gk is a function of the transfor­
mation matrix Tk and the bond length lk. To account for 
the chiral order of groups attached to the skeletal a­
atoms in an asymmetric chain, the transformation matrix 
is divided into Tk for the meso diad and Tt for the 
recemic diad, then, gk is divided into the meso diad gk 

d h · d' d * If 2 2 2 2 2 an t e recem1c 1a gk. 'ii'• 'ii"• ri'r• r;"i"• and r;'i" 
in eq I are expressed in form of the g matrix, they may 
be unified as 

(6) 

where gL and gR denote the left and right terminal 
matrices respectively in the portion of chain, and are 
expressed as 

gR =g.gb (for f-a-b), 

gL = g .gr ( for b-a-f) , 

Correspondingly, the transformation matrices Tk and Tk* 
are modified by 

[ 
cosO sinO 0 

Tk = sin (I cos( <p + <p') - cos (I cos( <p + <p') - sin( <p + <p') 

sin O sin( <p + <p') -cos O sin( <p + <p') cos( <p + <p') 1 
= T(ek, <pk+ <r>i) } 

Tk* = Tk diag( I, I, - I) 
(8) 

where ek (k = a, f, c, e, a, b, y) is a supplement of the bond 
angle for the atom k. q>k is the angle of internal rotation 
of skeletal bond lk, and <p;, is introduced in the terminal 
matrix for the reason that the transformation matrix 
between the skeletal bond and the side group is different 
from the transformation matrix between the skeletal 
bonds, which has been described in detail by our previous 
papers. 3.4 Then, the transformation matrix of F-type is 
divided into Tr, TA, and TF, the A-type into T., Ta, and 
TA, they are given by 

TA= T(e., <r>.), 

Tr= T(e;, <r>r+ <r>c), 
T. = T(e~, q>. + <p~), 

T. = T(e., <r>:), 

TF = T( er, <r>r) 

T0 =T(er,,<r>r+<r>~) 

Ta= T(ea, <r>a + q>:) 

Tr= T(er q>;) 

(9) 

where e~, ea, 0., eY' and ec are n- Lfab, n- LfaP, 
n - L baf, n - L paf, and n - L bap, respectively. e; and 
e0 are denoted in Figure 1. <p~. <r>c, <r>:, <r>:, q>~. and <r>; may 
be obtained from the equations mentioned in our previ­
ous calculation4 

cos q>~ = -(cos ec +cos e~ cos ea)/sin e~ sin ea 

= cP(0c, 0~, 0a) 

cos <r>r = <P(0c, e., 0r) 

cos <r>: = -cP(ey, ec, 0.) 
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cos <r>: = <P(0c, ea, e~) 

cos q>~ = <P(er,, eY' 0r) 

cos<p;= -cP(0., 0c, 0r) 

where <r>r and <p~ must be introduced, this approach is 
different from that reported in ref 11 and 12. Therefore, 
the terminal matrix gk (k = a, f, a, b) are different from 
the internal matrices gA and gF, nevertheless, they are all 
given by eq 4. g00 and g1J0 are only depended on the 
lengthes of side groups /b and Ip. 

According to Frisch 's approach, 1 1. 13 the microstruc­
ture of an asymmetric chain with the x-ads constitutions 
is simulated by the repeating (p+ !)-ads, where pis the 
number of diad in a repeating motif. Moreover, the 
simulated results are in fair agreement with those of the 
Monte Carlo model when p~6.11 This approach indi­
cates that there are 2P distinguishable configurations in 
the subensemble of representative chains. The occurrence 
probability of the i-th sequence of the (p+ !)-ads, P;, is 
assumed to obey the statistical law. Following Allegra's 
method of the pseudostereochemical equilibrium, 14 the 
statistical models, such as Bernoullian and first-order 
Markovian distribution, are applied to an average on 2P 
configurations of the representative chains. Following 
this way and the RIS. theory, the unperturbed mean­
square radius of gyration for a di-substituted polymer 
chain can be derived as 

where I: P; is the configurational statistics of various 
representative chains. The second I: refers to the fac­
tors of side groups, including their shape, position and 
mass. The mass values m(q) of atom pairs are given by 
m(l)= 1.0, m(2)=m(3)=mrmb, m(4)=m(5)=m.mb, m(6)= 
m(7)=mrmp, m(8)=m(9)=m8 mp, m(lO)=m~, m(ll)=mi, 
m(12) = m( 13) = mbm/J. Obviously, if the mass of side group 
will be ignored, the summation will become insignificant, 
the result of eq 11 is reduced to that of Flory. 1•2 Ac­
cording to Chapter IV of ref 1, the divider in eq 11 is 
the partition function for the i-th representative chain, 
in which U; represents the p-multiplication of the meso 
diad statistical matrix uruam and the recemic diad matrix 
UrUa,, where Ur is the interdiad statistical matrice, uam 
and u., are the intradiad matrices. X is the number of 
repeating (p+ 1)-ads. Similarly, the Sf(q) is the X-multi­
plication of S;(q), which represents an average of product 
of the transformation matrices depended on the rota­
tional states. The mesa diad matrix Sm(q) in S;(q) of 
Table I is formulated by 

Sm(q)= [(ur ® E1 IIF(q)IIJ [(uam ® E1)1\A(q)IIJ (12) 

and on the chain ends 

S1(q)=J* ®Jp IIA1(q)II, S1 = IIFx(q)II J ® JQ (13) 

where 

J* = ( 1 0 · · ·) , 

lp=(I 000000), 

]=(1 · · · )T (}4) 

10 =(0 0 0 0 0 0 l)T (15) 

where J* and J are the matrices of I x v and v x I orders 
for the v states scheme. The £ 7 denotes the unit matrix 

1013 



H. MA and L. ZHANG 

of 7 x 7 orders. The pseudodiagonal matrix IIF(q)II or 
II A(q) II is obtained by placing F(q) or A(q) matrix for the 
various rotational states of the skeletal bond in diagonal 
array. The matrices F(q) and A(q) for the F-type and 
A-type are expressed respectively as 

[ 
I maiPYF i113 i11rl/ ] 

F( I ) = 0 YF 111rYFIQ 
0 0 I 

= G(maiPfh, mamf I/, YF• lnrYF.io, · · ·) 

F( 2 )=G(O, 0, YF, 0, · · ·)=F(4)=F(6)=F(8) 

F( 3 ) = G(Mlc?Jr, r~1• YF, YFio, · · ·) for b-a-f · · · f 

F( 5 ) = G(Mlc?/r, 0, ?IF, j 0 , · · ·) for b-a-f · · · a 

F( 7 ) = G(.iPY;-YJ, r~r- YF· YFio, · · ·) for /J- a f · · · f 
F( 9 ) = G(jpy//a, 0, YF, fo. · · ·) for /J-a-f · · · a 

F( I 0) = G(jPYeYr, 0, ?IF, 0, · · ·) = F( 12) for b-a-f · · · 

F(ll)=G(jpif;-Ya,0,yF,0,···)=F(l3) for /J-a-f··· 
(16) 

A( I )=G(mrJrYA,mamrl/,{IA,111aYAiQ, · ··) 

A( 2) = G(jpifA, 1A, {IA, ?fa?lhio, · · ·) for a · · · f-a-b 

A( 3) = G(O, 0, YA, 0, · · ·) = A(5) = A(7) = A(9) 

A( 4 )=G(jp, I;, ?IA, ?la?fhio, · · ·) 

A( 6) = G(MlA· rffJ, YA· Y,Y11.io, · · ·) 

A( 8) = G(jp, !rf, YA, Y,Yrdo, · · ·) 

for f · · · f-a-b 

for a · · · f-a-/J 

for f · · · f-a-/j 

Table I. Probability function of Bernoullian for the 
representative chain with the repeating period 

of magnitude p=4 

S; [S;= U;. S;(q)] P; 
~Sms~m~Sm~Sm H'~1 

2 smsmsms, \\'~(l-1rm) 

.3 s,smsmsm \\"~( I - \I'm) 

4 sms,smsm 11'~,(] -\\'m) 

5 smsmsrsm \\"~( I - \\'ml 
6 smsms,s,. ir~( I - ll'ml2 

7 S'rSrSmSm l\'~(] -\\'m) 2 

8 srsmsmsr 11'~( I - ll'ml 2 

9 sms,s,sm n·~1(1-lt'm)2 

10 sms,s,ns, l\'~1 ( l -1rm)2 

11 s,sms,s,n ll'~,( I - ll'ml 2 

12 s,s,s,s'" \\"m( 1-1\',n)J 

13 sms,s,s, \\'m(l-ll'm)·' 

14 s,sms,s, \\'m(l-\\'m) 3 

15 srsrsmsr \\'m(l-ll'm)·' 

16 s,s,.s,s, (l-ll',n)4 

A( 10) = G(O, 0, YA• YaYhiQ, · · ·) = A(l 3) for · · · f-a-b 

A(l l)=G(O, 0, YA, YaY/J.io, · · ·)=A(l2) for··· f-a-/3 
( 17) 

In all matrices above, · · · denote the elements of O or 
I, their position in each metrix is the same. The recemic 
diad matrix S,(q) in S;(q) is obtained by replacing YF• Yr, 
and uam with Yt, Yt, and Ua, in Sm(q). When the lengthes 
/b and Iµ of side groups are ignored, eq 11 is reduced to 
the Lagrange relation.1. 2 

RES UL TS FOR AT ACTIC POL Y(METHYL 
METHACRYLATE) CHAIN 

A-PMMA chain has the substitutents -COOCH 3 

and -CH 3 , and the mass of substitutents is 74/26 of 
that of the skeletal group. The b in Figure 1 is located 
at the mass centre of ester methyl -COOCH3, lb is the 
length of virtual bond. Using the geometrical parame­
ters in Table II of ref 8, lb is 2.422 A. Let 0: be n -
L CCaC*, the supplements of virtual bond angles 0~ 
and 0; are estimated by 

cos 0~ = cos(b + a) sin(0a/2) 

cos b = cos e: /sin(Oa/2) 

cos 0~ = cos Or sin(Hr-Oa/2)sin(Oa/2) 

(18) 

where b is the dihedral angle between the bond C'-C* 
and the plane of its adjacent skeletal bonds. a is that of 
between the bond ca-C* and C'-b. The angles <.p~, <.p~. 

<.p~. and <.p~ are estimated by eq 10. In this calculation, 
the torsion angle x of bond C'-C* is fixed at 0. 

According to the RIS theory, 8 ·9 each skeletal bond 
of the A-PMMA chain may be assigned the rotational 
states, the trans state <.p 1 and the gauche state <.pg. They 
are adopted by O and 11 ff' for the 2-sta te model, and 0 
and ± 120° for the 3-state model, respectively. The cor­
responding interdiad statistical weight matrice u1, and 
the intradiad matrices uam or ua, are given by eq 2--4 
of ref. 8 and eq 3-8 of ref 9, in which the statistical 
weights are depended on the temperature T by 

IJ = IJo exp(£,,/ RT) (I]= 0(, /J, p) ( 19) 

The energy parameters E,1 and IJo are listed in Table II. 
In eq 11, the P; adopts the Bernoullian function of p = 4 
shown in Table I, 11 and the number X is taken as 
(x-1)/p. Following the established equations and the 
parameters for the A-PMMA chain above, we calculate 

8 • 

'~ 

CH. 

;/ 
Ip ,'a~C-

/ lb 
I 

p CHa 
0 

b C-OOCH., 

CHa 

Figure 1. A segmental model of the atactic poly(methyl methacrylate) chain with a pair of side groups band fJ (b;ce/J). 
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Table II. Parameters for the A-PMMA chain 

Scheme 

2-State model 

3-State model 

10· 

6 

0 

. . 

Parameter 

IX 

/3 
IX 

/3 
p 

l 2 

lop. 

Energy E~ 
l'/o 

kcalmo1- 1 

1.60 1.30 
1.40 -0.20 
0.85 1.00 
0.77 -1.00 
0.87 1.00 

• • . . ------

3 4 

Figure 2. Dependence of ratio (S 2)/x on the logarithm of x for the 
A-PM MA chain at T= 317 K. The solid curve. the value of 2-state 
model with 1rm =0.21; the dashed curve. the value of 3-state model for 
the syndiotactic chain; the dots. the experiment data with 11·m = 0.21 by 
Tamai£'/ al. 

the ratio (S 2 )/x dependence on the logarithm of degree 
of polymerization x at temperature T= 317 K. In Figure 
2, the solid curve is calculated by the 2-state model with 
the occurrence· probability of meso diad wm = 0.21, and 
the dashed curve is the 3-state model for the syndiotactic 
chain. They are compared with the dots of the experi­
ment data, determined by small-angle X-ray scattering 
and light scattering for the A-PMMA samples with 
wm = 0.21. 6 The maxima are near x = 33, and right shift 
slightly as wm increasing. The ratio (S 2)/x of 2-state 
model for x > 6 are fairly close to the experiment data, 
which has an asymptotic value about 6.27 for larger x. 
However, there is the difference between our results and 
the experiment data for x 6. If the chain end correction 
is considered following ref 6, i.e., the 3-state terminal 
statistical matrices and the large energy parameters, the 
increasing of the partition function is more than LP; in 
eq 11, then, the (S 2 ) value will be less than the present 
one. Therefore, the chain end correction may be im­
proved our results to agree with the experiment data 
for x~6. 

The characteristic ratio (S 2 )/2x/ 2 as a function ofwm 
is also calculated by the two states scheme in Figure 3. 
The curve is convex rather than the concave of the mono­
substituted vinyl chains. 5 •11 This means that (S2 )/2x/ 2 

increases with the stereoirregularity, and the enhance­
ment of the dimensions by the stereoirregularity is com-
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0.2 0.4 0.6 0.8 

4 2 

1 

q o.a o., o.e .o.e 0.6 0.8 
Figure 3. Curve a. the characteristic ratio (S2 >/2x/ 2 of A-PMMA 
chain. Curve b and c. the temperature coefficient d ln(S 2 >/d T with 
x=841 and x=37. respectively for A-PMMA chain against the percent­
ages of meso dyad wm at T = 317 K. 

paratively small. The value of temperature coefficient 
d ln(S 2 )/d Tagainst wm, calculated by 1 P; d ln(S2 )/ 

d T, is plotted in Figure 3. The curve b for the larger x 
is markedly different from the curve c for the less x. The 
temperature coefficient of the syndiotactic chain is larger 
than that of the isotactic chain. This indicates that the 
predominantly syndiotactic poly(methyl methacrylate) 
chain is more extended with temperature increasing. 8 

The plots b and c shift down as temperature T increasing 
in our calculation. Therefore, the extent of extension 
decreases as temperature increasing. Our approach is 
applicable to investigate the dimension of other polymer 
chains. 
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