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ABSTRACT: Poly(dimethylsiloxane) (PDMS) networks have been prepared by tetrafunctionally endlinking vinyl-ter­
minated chains, in a hydrosilylation cure at low temperatures. The results obtained demonstrated the absence of important 
side reactions, and the resulting networks were studied with regard to their stress-strain isotherms in elongation. Values of the 
moduli in the large deformation (phantom) limit and small deformation (affine) limit fell within the bounds predicted by the 
constrained-junction theory. The results do not suggest the presence of significant contributions from trapped entanglements. 
In this analysis, factors affecting the determination of the network structural parameters have been emphasized, because of 
serious experimental difficulties in making perfect networks. It appears that, in the absence thus far of carefully controlled 
and well-defined stoichiometry in the reacting systems, the procedure best suited for testing the various theories of rubberlike 
elasticity consists of plotting the sum of the Mooney-Rivlin constants 2C1 + 2C2 (representing the low-deformation) modulus 
against 2C1 (representing the high-deformation phantom modulus). 
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In recent years, a considerable number of studies have 
been carried out on model networks of poly(dimethyl­
siloxane) (PDMS). A central goal of these studies was to 
test the applicability of the various theories of rubberlike 
elasticity. 1 - 24 By employing end-linking reactions, the 
number of strands between junctions and the functionali­
ties of the junctions can be calculated. These techniques 
usually involve the reaction between bifunctional poly­
mer chains and multifunctional junction sites having a 
functionality 4> 2': 3. Interpretation of a comprehensive 
array of data confined to the region of small strain, 
however, has given rise to some uncertainties. 1 - 24 

There have been disagreements, for example, on the 
origin of some unexpectedly large values measured for 
the low-deformation modulus, with part of the problem 
having to do with the definition of entanglements and 
their possible contributions. 25 •26 For example, the con­
strained-junction model includes an excess free energy 
due to restriction of the junction fluctuations from en­
tanglement constraints, but the chains themselves are 
handled as phantom chains in the configurational space 
of the network. 8 · 37 •38 Similarly, in an extension of this 
model, Erman and Monnerie located the constraints on 
the centers of mass of the chains rather than only on the 
junctions. 27 •28 

On the other hand, it is universally accepted that on 
intermediate time scales and at small strains, chain-chain 
interactions do play an important role. Accordingly, in 
the single-chain approach, a chain is subjected to a spatial 
domain of constraints along the entire contour, thus 
yielding an additional contribution to the elastic free 
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energy. 25 ·26· 29 · 30 In this regard, the recent molecular 
dynamics simulations of Duering et a/. 31 demonstrated 
that trapped entanglements contribute to the small-strain 
modulus of polymer networks. However, the contribu­
tions from conserved topologies (trapped entanglements) 
to the elastic modulus were found to be dependent on 
the interaction potential employed. 31 

Particularly relevant here are the work of Gottlieb 
and Gaylord32 and the more recent work of Erman 
and Vilgis33 showing that the stress-strain response of a 
real network is not sensitive to the exact way in which 
topological constraints are imposed (whether by con­
straints on the junction fluctuations or by chain-chain 
interactions). There are significant similarities in the def­
initions of the associated constrain parameters, in spite 
of the fact that the proportionality coefficients in these 
expressions are substantially different. In any case, it is 
very encouraging that current trends are to reconcile 
these different points of view, with attempts at increasing 
ngor. 

In this context, it should be noted that the networks 
that have been most extensively investigated with regard 
to relating the elastic modulus to network structure have 
been prepared from PDMS. This particular polymer, 
unfortunately, has a relatively small value of the plateau 
modulus, and thus may not be well suited for gauging 
the influence of topological entanglements latent in the 
polymer prior to its cross-linking. More relevant poly­
mers exhibiting significantly larger values of the plateau 
modulus, e.g., poly(butadiene), may be more important 
in this regard. 34 

Another advance on the experimental side is the better 
understanding which has been achieved of the hydro­
silylation cure often used in the preparation of model 
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PDMS networks. Most notably, Macosko and Saam14 

used vinyl-terminated polyisobutylene to explore this 
curing approach, even though these reactions were 
previously considered straight-forward and almost free 
of side effects. They observed, however, two major side 
reactions. The first consumes Si-H groups to give re­
distributed siloxane groups in the resulting polymer, as 
well as gaseous silanes and siloxanes as by-products. The 
other side reaction, on the other hand, resulted in loss 
of reactivity of the vinyl groups owing to their shift to 
an internal position along the chain. These side reac­
tions were reported to be substantial when the experi­
ments were carried out at high temperatures. 14· 35 The 
maximum value of the modulus occurred at a value of 
the composition ratio r 1.2-1.3, where r is the initial 
molar ratio of Si-H groups to vinyl groups. 12 - 14· 35 This 
maximum in the values of the modulus has been ob­
served for both trifunctional and tetrafunctional PDMS 
networks. It was properly accounted for when the side 
reactions were considered. 1 0 • 11 

In the absence of significant side reactions, balanced 
stoichiometry (r = 1) should lead to a network having the 
most nearly complete extent of endlinking, and thus have 
the highest possible value of the modulus. Computer 
simulation experiments provide further support to this 
assumption. 36 Consequently, reported values of the ex­
tent of reaction thus obtained are suspect. 

The present study focuses on the synthesis of PDMS 
networks having low degrees of cross-linking, using hy­
drosilylation reactions at low temperature. Under these 
conditions, significant side reactions should be absent, 
and the networks thus formed should be more suitable 
for comparing molecular theories. 10•35 The present in­
vestigation employs the theory of local constraints on 
junctions37 · 38 to interpret the elastomeric properties of 
the networks. Factors affecting the determination of the 
network parameters will be emphasized with regard to 
critical examination of the molecular theories of rubber­
like elasticity. 

ELASTICITY EQUATIONS 

The quantity most often used to analyze results of 
measurements in uniaxial deformation is the reduced 
stress or modulus [f*] defined by 1 

[f*]=Jv/1 3 /A*(a-a- 2 ) (I) 

where f is the equilibrium retractive force, v2 the volume 
fraction of polymer in the network, A* the undeformed 
cross-sectional area of the sample, and a= l/ /0 its elonga­
tion (ratio of length in the stretched state to the length 
in the unstretched state at the same volume). Experi­
mental values of [f*] for moderate values of elongation 
can be represented by the simple Mooney-Rivlin phe­
nomenological equation39 

(2) 

In the affine limit of deformation, the network elastic 
modulus is given by 1 

(3) 

where v is the number density of elastically-effective net­
work chains, R the gas constant, T the absolute tempe-
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rature, and v2c the volume fraction of polymer chains 
in the system being crosslinked which were successful­
ly incorporated in the network structure. 

The shear (small-strain) modulus G is then expressed 
by the relationship 1 •6 · 12 

G= lim [f*] +2C2 (4) 

It is well known that values of 2C 1 + 2C 2 tend to over­
estimate G by about 5%.1.6· 12 

According to the theory of phantom networks, the 
reduced modulus is37 •38 

[f*]rh = (5) 

where !; is the cycle rank of the network related to the 
network chemical degree of interlinking (i.e., number 
density of chains).4 1. 42 For any type of network, it is 
given by41 .4 2 

(6) 

where v. and lla are the number densities of the elas­
tically-active chains and the elastically-active junctions, 
respectively, and 11 is the number density of elastically­
effective junctions. 

For a perfect network with its chains joined together 
by junctions of functionality ¢, the cycle rank is given 
by1,6,41 

(7) 

In a perfect network, the number of active junctions lla 
isl,6,4t 

!la = (2/¢ )va = [2/( ¢- 2)]1; (8) 

Therefore, values of the phantom modulus are based 
only on contributions from active chemical crosslinks. 

The modulus in the phantom limit is related to the 
phenomenological parameter 2C 1 by37 

[f*]rh = 2C 1 (9) 

Experimental stress-strain measurements give a clear 
indication that real networks exhibit properties between 
the phantom and affine limits. 37 · 38 ·43 According to the 
recent and most comprehensive theory of network be­
havior by Flory and Erman, the elastic force is taken 
to be the sum of two contributions37 •38 

(10) 

is the force predicted from a phantom network 
is the contribution to the force arising from local 

intermolecular entanglements and steric constraints on 
junction fluctuations. Hence, the expression for [f*] in 
the constraint theory becomes37 •38 

( 11) 

The theory predicts decreases with increasing 
deformation; hence, the modulus would approach the 
phantom limit at a-+ oo. The relative contribution from 
the constraints in the limit a-+ I for a perfect network is 
predicted by the theory to be37 · 38 

(12) 
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In this connection, the phenomenological ratio 2C2/2C1 

has been identified with h· 37 

As pointed out by Flory,42 the identification ofva with 
v is proper only for perfect networks; otherwise, it is an 
approximation that is legitimate for high functionality 
networks. It is worth noting that v#va. 42 Flory has 
shown that the effective number of chains for imperfect 
networks is expressed rigorously by 

v=2( (13) 

Therefore, it follows that for an imperfect network 

[f*Jarr=vRT=2(RT=2(2C1 ) (14) 

In this process, both v and J1 are always larger than va 
and Jla, provided that the reaction is incomplete. 

EXPERIMENTAL 

Vinyl-terminated bifunctional polymers used in this 
study were obtained from Petrach Chemicals. Standard 
fractional precipitation techniques were carried out on 
several samples having different molecular masses at 
25oC. Methyl ethyl ketone was chosen as the solvent and 
methanol as the precipitant, and initial polymer concen­
trations were about 5%. The primary aim for this pro­
cedure was to decrease the polydispersity index M w! M" of 
these bifunctional oligomers and to remove unreactive 
materials (typically cyclics) usually present in commer­
cial PDMS samples. Commercial samples appear to 
have 2-5% impurities of 300-1500 molecular mass. 

The samples thus fractionated were exhaustively dried 
under vacuum at 70oC for three days. Their molecular 
masses and po1ydispersity indices were obtained by size 
exclusion chromatography (SEC) using PDMS stan-

dards. The polydispersity index was generally below 1.3 
in all cases. A series of polymers ranging in molecular 
masses from 23500 to 7380 g mol- 1 were utilized to pre­
pare the networks. Specific values and compositions are 
given in the first two columns of Table I. 

The networks were prepared in bulk by mixing the 
precursor chains with tetrakis(dimethylsiloxy)silane [Si­
(OSiMe2H)4], which was used as received without fur­
ther purification. Chloroplatinic acid was used as the 
catalyst and was present in amounts corresponding to 
20-30 ppm of elemental Pt relative to the total weight 
of the sample. The cross-linking reaction was allowed 
to proceed in a desiccator for about 5 days at room 
temperature. The networks thus prepared were removed 
and turned over and then allowed to cure further for 
two additional days. 

The crosslinked sheets were extracted in toluene for 
one week to remove any unreacted material; the solvent 
was changed once after the first two days. The networks, 
after such extraction, were slowly deswollen in a series 
of toluene-methanol mixtures of increasing methanol 
content, and then dried under vacuum. The amounts of 
extracted material w, were less than 2.5% for the ma­
jority of the networks. Values of the related quantity, 
v2 c, the volume fraction of the polymer successfully 
incorporated in the network structure, are given in the 
fourth column of Table I. 

Stress-strain isotherms in elongation were obtained on 
strips cut from the various network sheets. The central 
test portions of the strips had lengths of about 4.5 em, 
widths of about 0.4 em, and thicknesses of 0. 7-1.2 mm. 
The elongation rx was measured using four fiducial 
marks, nearly 0.75 em apart. Stress-strain data were 
obtained using a sequence of increasing values of rx. 

Table I. Elastomeric properties of vinyl-terminated poly(dimethylsiloxane) networks prepared at 25"C 
- --- --- ---- -- ------ ----- -

M: v0 RTd vRT G [f*]ph 2C1 2C2 2C2 G 2C1 

Ws v2sb Psm pvi ¢, V/ T, 
gmol- 1 Nmm- 2 Nmm- 2 Nmm- 2 Nmm- 2 Nmm- 2 Nmm- 2 2C1 vRT [f*]ph 

---·-

23500 0.850 0.0441 0.163 1.000 0.773 3.45 0.640 0.100 0.063 0.037 0.026 0.019 0.018 0.98 0.59 0.71 0.338 
0.977 0.0374 0.174 0.923 0.820 3.42 0.689 0.068 0.129 O.o28 0.047 0.082 1.74 1.91 1.67 0.422 
1.097 0.0140 0.232 0.892 0.890 3.48 0.792 0.082 0.124 0.035 0.041 0.083 2.02 1.51 1.17 0.603 
1.190 0.0858 0.130 0.735 0.795 3.21 0.589 0.037 0.076 0.014 0.027 0.050 1.87 2.07 1.91 0.249 
1.26 0.1270 0.098 0.682 0.781 3.16 0.550 0.025 0.055 0.009 0.016 0.039 2.42 2.17 1.71 0.171 

15900 1.077 0.0704 0.142 0.805 0.788 3.27 0.614 0.149 0.067 0.069 0.068 0.044 0.024 0.545 1.02 1.70 0.290 
1.028 0.0597 0.150 0.847 0.792 3.31 0.633 0.077 0.144 0.069 0.078 0.066 0.849 1.88 2.57 0.324 
1.216 0.1390 0.085 0.692 0.766 3.16 0.538 0.035 0.035 0.034 0.014 0.021 1.479 1.00 1.10 0.154 

10800 0.836 0.0239 0.217 1.000 0.836 3.55 0.724 0.219 0.154 0.151 0.049 0.070 0.081 1.149 0.98 1.04 0.479 
0.923 0.0184 0.218 0.942 0.869 3.52 0.767 0.161 0.161 0.024 0.079 0.082 1.029 1.00 1.14 0.556 
1.036 0.0687 0.158 0.773 0.801 3.25 0.618 0.087 0.150 0.111 0.071 0.080 1.130 1.72 2.10 0.295 
1.060 0.0317 0.189 0.806 0.854 3.33 0.711 0.124 0.228 0.120 0.108 0.121 1.122 1.85 2.18 0.454 
1.200 0.0898 0.125 0.681 0.817 3.19 0.587 0.065 0.109 0.113 0.046 0.063 1.365 1.68 1.91 0.240 

7500 0.990 0.0140 0.254 0.898 0.889 3.49 0.794 0.315 0.234 0.246 0.054 O.II7 0.129 1.104 1.05 1.17 0.601 
1.004 0.0124 0.253 0.892 0.896 3.49 0.805 0.237 0.253 0.026 0.118 0.135 1.145 1.07 1.17 0.621 
1.090 0.0189 0.234 0.812 0.886 3.37 0.767 0.203 0.187 0.026 0.107 0.081 0.757 0.92 1.29 0.551 
1.226 0.0433 0.189 0.706 0.866 3.24 0.679 0.140 0.145 0.030 0.049 0.096 1.959 1.03 0.91 0.392 
1.420 0.1072 0.133 0.601 0.853 3.15 0.573 0.073 0.075 0.013 0.036 0.039 1.083 1.03 1.36 0.206 

7380 0.867 0.0106 0.256 1.000 0.867 3.62 0.771 0.320 0.247 0.220 0.112 0.117 0.103 0.876 0.89 1.06 0.560 
0.947 0.0084 0.270 0.960 0.909 3.63 0.835 0.266 0.217 0.093 0.112 0.105 0.938 0.82 0.94 0.678 
0.987 0.0090 0.274 0.920 0.909 3.55 0.831 0.257 0.223 0.100 0.118 0.106 0.901 0.87 1.04 0.668 
1.015 0.0078 0.273 0.902 0.916 3.54 0.841 0.258 0.218 0.101 0.126 0.092 0.734 0.85 1.12 0.688 
1.142 0.0106 0.256 0.803 0.917 3.39 0.819 0.226 0.187 0.083 0.111 0.076 0.687 0.83 1.19 0.646 

--·-

"Molecular mass of vinyl-terminated oligomer. b Volume fraction of polymer at equilibrium swelling in benzene at 25°C. 'Volume fraction of 
elastically effective chains determined by branching theory 15 d Number density of elastically effective chains multiplied by RT, on the assumption 
of perfect end-linking. 
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Some measurements were taken out of sequence to test 
for reversibility. 

RESULTS AND DISCUSSION 

For networks having Mn = 7500 and 7380 g mol- 1 , 

the highest possible moduli of elasticity and the lowest 
values of sol fraction for most of the networks were 
obtained at a stoichiometric balance (ratio r= 1). Values 
of the shear (small-strain) modulus G and the sol fraction 
ws for such networks are presented in Figure 1. Oc­
curence of the maxima in the close viccinity of r= 1 
could serve as a clear indication of the absence of any 
significant side reactions in the hydrosilylation cure at 
the lower temperatures employed in this investigation. 
One should note that the two sets of networks having 
Mn=7500 and 7380gmol- 1 could be treated as a single 
set owing to the fact that the difference in molecular 
masses is far below the allowed experimental errors in 
the GPC measurements of about 5%. 

In the case of networks having M" = 23500 g mol- 1 , 

however, it is obvious from a closer examination of 
Figure 2 that values of the modulus go through a judi­
cious maximum at r;=:;; 1.06. This small discrepancy with 
the value r = 1 expected in the absence of significant side 
reactions could be due to inaccuracies in defining the 
initial stoichiometry. 

Occurrence of side reactions results in loss of Si-H 
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Figure 1. Dependence of the shear modulus and the sol fraction 
on the stoichiometric imbalance ratios r. The open and filled circles 
represent results obtained for networks having number average molec­
ular masses M. = 7380 and 7500 g mol- 1 , respectively. The solid lines 
were located by a second-order polynomial fit for the entire set of data. 
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Figure 2. Dependence of the shear modulus and the sol fraction on 
the stoichiometric imbalance ratios r for networks having number 
average molecular mass M.=23500gmol- 1 • The solid lines were 
located by a second-order polynomial fit. 
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groups without forming crosslinks, causing the value of 
r to change. 14 The observed effective conversions in 
hydrosilylation cures of vinyl-terminated PDMS oligo­
mers were derived in the same manner used by Macosko 
and Saam. 14 Effective conversions to form crosslinks 
yield the relationships 

P' - PsiH-PY 
SiH- l-Py 

, pvi 
r =r(l-Py}=- -

(15) 

(16) 

where is the effective conversion of the SiH groups 
to crosslinks, Py the extent ofloss of SiH groups through 
volatilization, and r' the effective value of the stoichio­
metric ratio. In any case, the corrected values of r' 
(r/r';:::;; 1.06) have been used to obtain the structure pa­
rameters for the networks having M" = 23500 g mol- 1 . 

Also, it is worth noting here the lower values of v. and 
f.la, computed from branching theory, 15 as compared 
with those of v0 that correspond to perfect end-linking. 

In the present analysis, the network structural param­
eters va, f.la, as well as the effective functionality (c/Je= 
2v./ f.l.), the volume fraction of the elastically effective 
chains v2 , and the fraction of trapped entanglements Te 
were calculated from the sol fraction W 5 using the branch­
ing theory. 15 In order to account for the side reactions 
in the hydrosilylation cures mentioned above, the cor­
rected values r' were used instead of r in the pertinent 
calculations, for networks having M" = 23500 g mol- 1 . 

Values of the extent of reaction PsiH• and subsequently 
different structural parameters of the network, were 
obtained by an iterative solution of eq AS through A 7 
in ref 15. Calculated values of the affine modulus [f*J.rr 
and the phantom modulus [f*]ph were obtained from 
eq 3 and 5, respectively. The results thus obtained are 
presented in Table I. 

In this connection, one should note that it is difficult 
to obtain accurate values of the sol fraction particularly 
when the quantities measured are small. Nontheless, the 
branching theory was used to calculate the structure 
parameters of the network to the extent that it is the best 
alternative at hand. For the tetrafunctional networks, 
thus prepared, values ofva and f.la, determined by branch­
ing theory, were used as an approximate substitute for 
v and f.l, even though they are known to be nonequiv­
alent. 

It is important to note here that network imperfections 
generated by the incompleteness of end-linking would 
act as diluent, even in the dry unswollen state. 44 As 
shown in eq I, the real values of both G and [f*]ph should 
be reduced by v2 113 (where v2 is the volume fraction of 
elastically-effective chains in the network). Hence, values 
of [f*J.rr and [f*]ph predicted by eq 3 and 5 would be 

[f*Jarr = 

[f*]ph = 

(17) 

(18) 

where the factor D2 113 has not been accounted for in 
obtaining the reported experimental values of both G 
and 2C1 . (In all pertinent calculations values v.RT thus 
calculated are corrected by the same factor.) The cor­
rected values are reported in Table I. 
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Figure 3. Stress-strain isotherms for the networks having number 
average molecular mass M. = 7500 at 25"C. Each isotherm is labelled 
with the stoichiometric ratio r. The isotherms are shown as suggested 
by the Mooney-Rivlin analysis, and the straight lines have been located 
by least-squares analysis. 
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Figure 4. Stress-strain isotherms for the networks having number 
average molecular mass M.=23500gmol- 1 . See legend to Figure 3. 
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Figure 5. The small-strain modulus G shown as a function of a 
measure of the degree of the cross-linking of the networks, as ob­
tained from the active chain density v •. The solid line is for the affine 
modulus itself, eq 17. The experimental data are denoted by open 
circles, while the filled circles represent results calculated on the 
assumption of perfect network formation. 

The stress-strain data were interpreted in terms of 
the reduced stress or modulus, as defined in eq 1. The 
equilibrium values of [f*] were plotted against the re­
ciprocal elongation ex - 1 as suggested by the Mooney­
Rivlin procedure, embodied in eq 2, and the straight 
lines through the isotherms were located by least-squares 
analysis. Representative stress-strain isotherms are illu­
strated in Figures 3 and 4. Values of the constants 2C 1 

and 2C2 thus obtained are reported in Table I. 
Figure 5 shows values of G plotted against v3 RT. The 
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Figure 6. The Mooney-Rivlin estimate of the high-deformation mod­
ulus 2C 1 shown as a function of a measure of the degree of the cross­
linking. The solid line represents the phantom limit, according to eq 18. 

solid line represents the upper bound of theory (the affine 
modulus), eq 18. The dashed line shows values of the 
phantom modulus [f*]ph calculated according to eq 17 . 
Although the data scatter somewhat, more or less satis­
factory agreement with theory could be observed, with­
in the limits set by experimental error. At the lower 
degrees of cross-linking, some values of G exceed those 
predicted by the theory. The data, however do not sug­
gest an appreciable intercept with the origin that could 
be attributed to contributions from trapped entangle­
ments. Hence, the small-strain modulus G must at least 
approximately vanish in the limit V3 RT --+0. 

In this connection, the enhancement of [f*] at ex-+ 1 
has been observed to vanish upon swelling, suggesting 
that in some cases it may be due to difficulties in reaching 
elastic equilibrium when the network chains are very 
long. 6 •8 Also, the results manifest a trend for departure 
of the values of G from the upper bound of the con­
strained theory as V3 RT increases. Such decreases in 
values of G with increase in cross-link density are ex­
pected because of the decrease in interpenetration as the 
network chain length decreases. 6 •11 

In Figure 6, values of 2C 1 are shown as a function of 
V3 RT. They were interpreted using eq 4, and the solid 
line represents theory according to eq 17. In other words, 
it would represent the network connectivity as deter­
mined from the phantom network topology, according 
to eq 5 and 6. Although the experimental results scatter 
somewhat, satisfactory agreement between theory and 
experiment is apparent. 

It is of great importance to underline the fact that 
values of va are used as an approximate substitute for 
those of v, even though they are known to be non­
equivalent. Nonetheless, the results should be suitable 
for the present purposes. At this point in the discussion, 
it is noteworthy that the formation of cyclics during 
network formation could give a higher value of the sol 
fraction even if a perfect network is formed. 6 •36 This 
seems to be true by observing that values of G and so 
2C 1 that exceeded those predicted by theory correspond 
nearly to values of v0 RT calculated on the assumption 
of the formation of perfect networks, cf Table I and 
Figure 5. Also, for the networks showing the most 
divergence, calculated values of [f*]ph are two to three­
fold lower than the corresponding values of 2C 1 owing 
to inherent inaccuracies (discussed previously) in the 
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5 . . I . . 
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Figure 7. Values of the ratio G fv.RT of the experimental small-strain 
modulus to the calculated affine modulus for the trifunctional PDMS 
networks shown as a function of a measure of the degree of the 
cross-linking. The solid line is for the affine modulus. 
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Figure 8. Values of the ratio 2C1 /[f*]ph of the experimental large­
strain modulus to the calculated phantom modulus for the trifunction­
al PDMS networks shown as a function of a measure of the degree 
of the cross-linking. The solid line is for the phantom modulus. 

determination of the sol fraction. This is contrary to 
experimental and theoretical assumptions where [f*]ph• 
expressed by eq 9, holds for any network regardless of 
its functionality or the presence of defects (such as chains 
connected to the network at only one end). As also men­
tioned above, a wealth of experimental data identify the 
phantom modulus [f*]ph with the phenomenological 
constant 2C1 . 1 - 11 •37 The departure observed at low 
values of v.RT has been the major problem in the study 
of rubberlike elasticity and may simply be due to ex­
perimental difficulties. As such, the behavior observed 
is within the limits of the constrained-junction theory of 
Flory and Erman. 37 ' 38 

For further elaboration, it is also useful to show 
the ratios G/[f*J.rr and 2C 1 /[f*]ph of the small-strain 
and large-strain moduli to the theoretical values of the 
modulus, respectively. According to eq 3-5, the max­
imum expected values are unity. The dependence of 
such values on v.RT is represented in Figures 7 and 
8, respectively. Again one notes the same divergences 
discussed above, more specifically, for networks having 
low degrees of cross-linking. Such values are certainly 
overestimated and this could be mainly due to difficulties 
in reaching elastic equilibrium when the network chains 
are very long or to higher slopes in Mooney-Rivlin 
plots. 39 Inaccuracies in determination of the stoichio­
metric ratios r as well as other difficulties already men-
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density v •. The solid line represents the values predicted on the as­
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Figure 10. The dependence of the effective functionality of the net­
works on a measure of the degree of the cross-linking. The solid 
line represents the values predicted on the assumption of perfect 
tetrafunctional networks and the dotted line is that for perfect 
trifunctional networks. 

tioned might also lead to such a divergence. Once again, 
the mere fact that almost all values of G/[f*J.rr and 
2C 1 /[f*]ph are equal or less than values of the asymp­
totes predicted by the theory lends support to suggestions 
that trapped entanglements play only a minor role in 
these networks. 

The ratio 2C2 /2C 1 is predicted to reach a maximum 
value of unity for tetrafunctional networks, as shown in 
eq 12. The experimental values are shown in Figure 9. 
Some data points exhibit lager values than the asymptotic 
value of unity at low degrees of cross-linking. Such a 
divergence could be attributed mainly to changes in the 
effective functionality of the network. The functionality 
is found to approach a value of 3 for the networks having 
smaller values of v.RT. The calculated values of </Jeff are 
shown in Figure 10. This would mean that the majority 
of the junctions for such networks are essentially tri­
functional. For trifunctional networks, the ratio 2C2 /2C1 

is predicted to reach an asymptotic value of2, particularly 
for networks having high values of Mn and so with the 
high degree of chain interpenetration required for affine 
behavior. This is consistent with the interpretation based 
on the constrained-junction theory. 

In interpretations based on postulating contribution 
to the modulus from trapped entanglements, the more 
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Figure 11. Langley plot of values of the shear (small-strain) modulus 
reduced by the trapped entanglement factor T, shown as a function 
of a measure of the degree of cross-linking reduced by T,, according 
to eq 20. 

general relationship for the modulus in the small-strain 
limit has been proposed by Dossin and Graessley to 
be19,2o 

G = (va- hJ.la)RT + Ge Te (19) 

Here h is an empirical parameter between 0 and that 
allows for real network behavior between the affine and 
phantom limits, and can be expressed in terms of the 
parameters K and (in the Flory-Erman theory. 37 The 
quantity G e is the entanglement modulus (frequently 
approximated by the plateau modulus which is about 
0.24 N mm- 2 for PDMS), and Te is the fraction of en­
tanglements permanently trapped by the network. 19·20 

Equation 19 can be rewritten as 

_!!'_ = Ge + 
Te va Te 

(20) 

In Figure 11, the shear modulus data are shown as 
suggested by eq 20. The interesting point here is that the 
data points are seen to be well represented by two 
straight lines intersecting the origin, within limits set by 
the scattering of data points. As already discussed, this 
behavior can be attributed to difficulties encoutered in 
obtaining accurate values of the sol fraction and thus 
the various structural parameters of the network derived 
from it. It is necessary to comment on the upper set of 
data points. The observed slope would give rise to a 
negative value of h (cf -1.2) which, if real, would be 
at variance with theory and the physical meaning of the 
different terms of eq 20. It is to be noted here that Queslel 
and Mark observed different sets of data lines in similar 
plots having different values of h, in accord with the 
present observations. 6·36 The dotted line represents all 
data points as treated by least-squares analysis. An 
intercept of and 1.0 (i.e., no suppression of 
fiuctuations 12) is obtained. However, a poor correlation 
coefficient of 0.4 is gotten. 

Excluded in Figure 12 are the data points correspond­
ing to networks with high sol fraction (greater than 0.06) 
as well as those that are presumed to be perfectly end­
linked, as noted before, even though overestimated values 
of the sol fraction were obtained.6·36 This procedure 
could be valid in view of the negative value of h observed 
for these data points. The least-squares line is seen to 
intersect the origin, within limits set by the scattering of 
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Figure 13. The modulus shown as a function of the Mooney-Rivlin 
estimate of the high-deformation modulus 2C1 . The solid line is for 
the affine limit for an imperfect network as approximated by 2 x (2C1), 

calculated according to eq 14. The dotted line is for the phantom 
modulus approximated by 2C 1 • 

data points. The slope is 0.97, as would be expected for 
total suppression of fluctuations. An excellent correlation 
coefficient of 0.9 is obtained. As such, it is apparent that 
Ge and consequently the small-strain modulus should 
vanish likewise in the limit J.le/Te-+0. Assigning a con­
stant value of h to networks having different degrees of 
cross-linking is contrary to rigorous theory where the 
suppression of fluctuations is dependent on the degree 
of cross-linking. 6·45 In any case, the results obtained do 
not provide evidence for significant contributions to the 
small-strain modulus from trapped entanglements. 

In view of the serious difficulties discussed above, the 
networks prepared as described are admittedly imperfect. 
Also, a last argument could be the difficulties arising 
from inhomogeneities in the cross-linking process, as 
has been pointed out elsewhere.46 A straight-forward 
method to test the validity of the predictions of the 
theory of Flory and Erman consists of plotting G 
2C1 + 2C2 against 2C1 [f*]ph in order to overcome the 
cited difficulties in obtaining accurate values of the 
network structural parameters. As previously pointed 
out, 2C 1 is proportional to the effective interconnectivity 
of the network, and therefore can be used to define an 
effective number of chains v and junctions J.l, regardless 
of the incompleteness of the network formation pro­
cess.9·37 The data thus obtained are plotted in Figure 
13. In this figure, the dotted line represents the lower 
bound of the theory, the phantom limit, and the solid 
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line approximates the upper bound, the affinely-deform­
ing network, calculated according to eq 17. The results 
are well represented within the upper bound of the 
theory. This procedure circumvents complications in 
accurately determining the network parameters. As is 
readily seen, the results are in accord with the main 
premises of the constrained-junction theory and the 
universal treatment of imperfect networks set forward 
by Flory.42 
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