Electrostatic Contributions to Chain Stiffness and Excluded-Volume Effects in Sodium Hyaluronate Solutions

Abstract

Intrinsic viscosities [η] for sodium hyaluronate in aqueous sodium chloride at 25°C were determined for 12 samples ranging in weight-average molecular weight Mw from 3.8×103 to 3.5×105 at NaCl concentrations Cs between 0.005 and 2.5 M. They were analyzed on the basis of the Yamakawa-Fujii-Yoshizaki theory for [η] of an unperturbed wormlike chain combined with the Yamakawa-Stockmayer-Shimada theory for excluded-volume effects to estimate the total persistence length q and the excluded-volume strength B as functions of Cs. At any Cs studied, excluded-volume effects on [η] became appreciable when Mw exceeded 1×104–2×104. The Cs dependence of q yielded 4.0 nm for q0 (the intrinsic persistence length) of the polysaccharide chain at infinite ionic strength. It was found that the values of qq0 (i.e., the electrostatic contribution to q) at Cs<0.02 M were roughly 70% larger than predlcted by the Le Bret theory and the Odijk-Skolnick-Fixman theory. On the other hand, the estimated B values agreed fairly well with Fixman and Skolnick’s theory for the excluded-volume interaction between a pair of charged rodlike segments unless Cs was lower than 0.05 M.

References

  1. 1

    T. Odijk, J. Polym. Sci., Polym. Phys. Ed., 15, 477 (1977).

  2. 2

    J. Skolnick and M. Fixman, Macromolecules, 10, 944 (1977).

  3. 3

    M. Le Bret, J. Chem. Phys., 76, 6243 (1982).

  4. 4

    M. Fixman, J. Chem. Phys., 76, 6346 (1982).

  5. 5

    O. Kratky and G. Porod, Rec. Trav. Chim., 68, 1106 (1949).

  6. 6

    For example, M. Le Bret, J. Chem. Phys., 76, 6243 (1982).

  7. 7

    M. Tricot, Macromolecules, 17, 1698 (1984).

  8. 8

    M. Ragnetti and R. C. Oberthür, Colloid Polym. Sci., 264, 32 (1986).

  9. 9

    S. Förster, M. Schmidt, and M. Antonietti, J. Phys. Chem., 96, 4008 (1992).

  10. 10

    L. Wang and H. Yu, Macromolecules, 21, 3498 (1988).

  11. 11

    S. Ghosh, X. Li, C. E. Reed, and W. F. Reed, Biopolymers, 30, 1101 (1990).

  12. 12

    E. Fouissac, M. Milas, M. Rinaudo, and R. Borsali, Macromolecules, 26, 5613 (1992).

  13. 13

    M. Fixman and J. Skolnick, Macromolecules, 11, 863 (1978).

  14. 14

    H. Yamakawa and G. Tanaka, J. Chem. Phys., 47, 3991 (1967).

  15. 15

    S. K. Gupta and W. C. Forsman, Macromolecules, 5, 779 (1972).

  16. 16

    T. Yoshizaki and H. Yamakawa, Macromolecules, 13, 1518 (1980).

  17. 17

    T. Norisuye, Prog. Polym. Sci., 18, 543 (1993).

  18. 18

    R. L. Cleland, Biopolymers, 23, 647 (1984).

  19. 19

    K. Hayashi, K. Tsutsumi, F. Nakajima, T. Norisuye, and A. Teramoto, Macromolecules, 28, 3824 (1995).

  20. 20

    H. Yamakawa and M. Fujii, Macromolecules, 7, 128 (1974).

  21. 21

    H. Yamakawa and T. Yoshizaki, Macromolecules, 13, 633 (1980).

  22. 22

    H. Yamakawa and W. H. Stockmayer, J. Chem. Phys., 57, 2843 (1972).

  23. 23

    H. Yamakawa and J. Shimada, J. Chem. Phys., 83, 2607 (1985).

  24. 24

    J. Shimada and H. Yamakawa, J. Chem. Phys., 85, 591 (1986).

  25. 25

    F. Abe, Y. Einaga, T. Yoshizaki, and H. Yamakawa, Macromolecules, 26, 1884 (1993).

  26. 26

    K. Horita, F. Abe, Y. Einaga, and H. Yamakawa, Macromolecules, 26, 5067 (1993).

  27. 27

    F. Abe, K. Horita, Y. Einaga, and H. Yamakawa, Macromolecules, 27, 725 (1994).

  28. 28

    M. Kamijo, F. Abe, Y. Einaga, and H. Yamakawa, Macromolecules, 28, 1095 (1995).

  29. 29

    See, for stiff chains. T. Norisuye, A. Tsuboi, and A. Teramoto, Polym. J., 28, 357 (1996).

  30. 30

    H. Yamakawa, “Molecular Conformation and Dynamics of Macromolecules in Condensed Systems,” M. Nagasawa, Ed., Elsevier: Amsterdam, 1988, p 21.

    Google Scholar 

  31. 31

    C. Domb and A. J. Barrett, Polymer, 17, 179 (1976).

  32. 32

    A. J. Barrett, Macromolecules, 17, 1566 (1984).

  33. 33

    T. Sho, T. Sato, and T. Norisuye, Biophys. Chem., 25, 307 (1986).

  34. 34

    F. Abe, Y. Einaga, and H. Yamakawa, Macromolecules, 26, 1891 (1993).

  35. 35

    T. Yoshizaki, I. Nitta, and H. Yamakawa, Macromolecules, 21, 165 (1988).

  36. 36

    S. V. Bushin, V. N. Tsvetkov, E. B. Lysenko, and V. N. Emel’yanov, Vysokomol. Soedin., Ser. A, 23, 2494 (1981).

  37. 37

    M. Bohdanecký, Macromolecules, 16, 1483 (1983).

  38. 38

    G. S. Manning, J. Chem. Phys., 51, 924 (1969).

  39. 39

    M. Schimidt, Macromolecules, 24, 5361 (1991).

  40. 40

    R. Koyama, J. Phys. Soc. Jpn., 34, 1029 (1973).

  41. 41

    I. Noda, T. Tsuge, and M. Nagasawa, J. Phys. Chem., 74, 710, (1970).

  42. 42

    M. Nagasawa and A. Takahashi, “Light Scattering from Polymer Solutions,” M. B. Huglin, Ed., Academic Press, New York, N. Y., 1972, Chapter 16.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hayashi, K., Tsutsumi, K., Norisuye, T. et al. Electrostatic Contributions to Chain Stiffness and Excluded-Volume Effects in Sodium Hyaluronate Solutions. Polym J 28, 922–928 (1996). https://doi.org/10.1295/polymj.28.922

Download citation

Keywords

  • Polyelectrolyte
  • Hyaluronic Acid
  • Wormlike Chain
  • Chain Stiffness
  • Electrostatic Persistence Length
  • Excluded-Volume Effect

Further reading

Search