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Since optically active compounds are closely 
related to biological and pharmacological ac­
tivity, the development of an effective method 
for producing the compounds is very signifi­
cant. Although there are several conventional 
methods for optical resolution such as di­
astereoisomer method and high-performance 
liquid chromatographic method, only a very 
small amount of the optically active compound 
can be treated in one operation of these meth­
ods. On the other hand, an optical resolution 
membrane is expected to realize the treatment 
of a large amount of racemic compounds. 
Some liquid membranes for optical resolution 
were reported1 but there are only a few reports 
on solid membranes2 which is more stable and 
practical. We reported that a ( + )-poly[l-{di­
methyl(l0-pinanyl)silyl}-1-propyne]{ ( + )­
PDPSP} membrane3 and a membrane from 
poly(y-methyl L-glutamate) derivative with di­
siloxane side chains4 were able to separate DL­
tryptophan enantioselectively in high optical 
purity (¾e.e. = 86.1) and high permeation rate 

t To whom all correspondence should be addressed. 

(P= 3.12 x 10- 6 g ·m ·m -i · h- 1), respectively. 
However, the former and the latter showed low 
P and low ¾e.e., respectively. 

In this communication, we now report a new 
type of an optical resolution solid membrane 
containing a surface layer which can separate 
racemic body enantioselectively. Such a mem­
brane is expected to be prepared by casting the 
solution of the binary blend of a small amount 
of optically active siloxane compounds and a 
more polar polymer. In this membrane, the 
siloxane compounds are likely to be accumu­
lated at the surface owing to its lower surface 
energy. We reported the preparation of such 
surface modified membranes and their oxygen 
and ethanol permselectivity. 5 - 7 

In order to realize such a new type of an 
optical resolution solid membrane, we pre­
pared a new membrane consisting of a small 
amount of (- )-oligo{methyl(lO-pinanyl)silox­
ane }{ ( - )-OMPS, Scheme 1} and poly(methyl 
methacrylate) (PMMA) and measured its enan­
tioselective permeability for DL-mandelic acid 
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(-)-OMPS 

Scheme I. Chemical structure of ( - )-OMPS. 

(Man). In addition, to investigate its separation 
mechanism, the adsorption of racemic bodies 
on (- )-OMPS and the permeation ofDL-Man 
through a surface-unmodified membrane were 
examined. 

( - )-OMPS was synthesized by hydrolysis­
polycondensation of methyl(l 0-pinanyl)di­
chlorosilane which had been prepared from 
dichlorosilane and ( - )-/J-pinene by hydrosila­
tion. The Mn of ( - )-OMPS determined by 
using vapor pressure osmometer was 1.20 x 
103 corresponding to about 6-mer, and its [ix]0 

in tetrahydrofuran (THF) was - 1.83. ( - )­
OMPS was soluble in various organic solvents 
such as chloroform and THF, but it could not 
form a self-supporting membrane because it 
was viscous solid. 

A PMMA membrane whose surface was 
modified by ( - )-OMPS was prepared by cast­
ing a 5w/v% THF solution of PMMA con­
taining a small amount (10-12 wt%) of ( - )­
OMPS on a polytetrafluoroethylene sheet. The 
casting solvent was evaporated for 12 hat room 
temperature. The formed membrane was de­
tached from the sheet and then was dried in 
vacuo for 24 h at room temperature. This mem­
brane was designated ( - )-OMPS/PMMA. 
Table I shows the characterization of the sur­
face of the blend membrane. The increase in 
the contact angle value from 81.4° to 93.5° sug­
gests that ( - )-OMPS was accumulated at the 
surface. In addition, since the absorbance ratio 
ofl072cm-l to 1712cm-l (Avs,-o/Avc=O)was 
ca. 600 times larger in attenuated total reflec­
tion infrared spectrum (ATR-IR) than that in 
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Table L Characterization of the surface of 
( - )-OMPS/PMMA 

Con tact angle Avsi-o/Avc=o3 

Membrane of water/ 
degree ATRb TRANS' 

JO wt% (- )- 93.5 3.62 0.00581 
OMPS/PMMAd 

PMMA 81.4 

a A,s, _ 0 and A,c 0 are the absorbance at I 072 cm - 1 

in (-)-OMPS, and the absorbance at 1712cm- 1 in 
PMMA, respectively. b ATR is attenuated total reflection 
FT-IR using KRS-5 prism at an incident angle of 55°. 
c TRANS is transmittance IR. d ( - )-OMPS, ( - )-oligo­
{methyl(I0-piranyl)siloxane}; PMMA, poly(methyl meth­
acrylate). 

transmittance IR, the accumulation of ( - )­
OMPS at the surface was confirmed. 

A concentration-driven permeation of 1.0 
wt% aqueous DL-Man solution was measured 
using a two chamber glass cell and a pressure­
driven (5kg·cm- 2 ) permeation of 0.1 wt% 
aqueous racemic body solution of Man, valine 
(Val), or phenylalanine (Phe) was measured at 
25°C using a batch type reverse osmosis ap­
paratus manufactured by AKI CO. Permeation 
rates (P) were determined by weighing the per­
meated Man after the solvent was evaporated. 

P(g·m ·m- 2 · h- 1)=(Q x L)/(A x t) 

where Q is the quantity of the solute permeated 
and t is the permeation time, and L and A are 
the thickness and area of the membrane, re­
spectively. Enantiomeric excess (¾e.e.) of the 
permeated solution was determined by high 
performance liquid chromatography (HPLC) 
with a CHIRALPAK WH column for Man 
and CROWNPAK CR for Val and Phe pur­
chased from Daicel chemical industries, Ltd. 
As a controlled experiment, a solution of a 
given concentration similar to that of the per­
meate was allowed to stand for the same time 
under the same conditions as the permeation 
experiment. As a result, no change in ¾e.e. 
was observed. 

The adsorption experiments of several race-
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Figure 1. Enantioselective permeation of l.Owt¾ aq DL-(±)-mandelic acid solution through 10.7wt% 
( - )-OMPS/PMMA membrane. (a) Plots of the quantity of permeated mandelic acid (QMan) versus 
permeation time. (b) HPLC chromatogram (column: Chiralpak WH) of the feed and the permeate. 

mic bodies were conducted as follows: 0.5 g 
( - )-OMP8 was added to 0.50 wt% aqueous 
solution of a racemic body and the mixture 
was stirred for 12 h. The ( - )-OMPS contain­
ing the adsorbed compound was filtered and 
then washed with water for 4h twice to ex­
tract the compound adsorbed on the ( - )­
OMPS. Adsorption quantity and enantioselec­
tivity were determined by a method similar to 
the permeation described above. 

Figure I shows the results of the con­
centration-driven permeation of 1.0 wt% aque­
ous DL-Man solution through 10.7wt% (- )­
OMPS/PMMA. L-Man predominantly per­
meated through this membrane and the enan­
tiomeric excess in the permeate was a high level 
of 85.4%e.e. The enantioselective permeation 
continued for more than 1797 h. The permea­
tion rate (P) was 7.31 x 10- 7 gmm- 2 h- 1 . 

The P was enhanced by applying pressure 
(5kg·cm- 2 ) to l.54x 10- 6 g·m·m- 2 -h- 1 al­
though the ¾e.e. dropped to 32.9%e.e. (Figure 
2). The enantioselective permeation was stable 
for 200 h, also. 

The mechanism for the enantioselective per­
meation was discussed by examining the enan­
tioselective adsorption of DL-Man and other 
racemic bodies to ( - )-OMPS. Table II shows 
the enantioselectivities in the adsorption to 
( - )-OMPS and in the permeation through 
( - )-OMPS/PMMA. In all the three recemic 
bodies, (+)-isomers were selectively adsorbed 
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Figure 2. Enantioselective permeation of O.!Owt¾ aq 
DL-( ± )-mandelic acid solution through 11.4 wt% ( - )­
OMPS/PMMA membrane by applying 5kg·cm- 2 • Plots 
of the quantity of permeated mandelic acid (QManl versus 
permeation time. 

and predominantly permeated, that is, the iso­
mers selected were identical in the adsorption 
and the permeation. Moreover, Man adsorbed 
in a high enantioselectivity permeated in a high 
enantioselectivity. These findings indicate that 
the enantioselectivity in the permeation was 
caused by the facilitated solution process at the 
membrane surface of (+)-isomer which inter­
acted more strongly with ( - )-OMPS. 

In order to investigate the effectiveness of 
the surface modified membrane, i.e., ( - )­
OMPS/PMMA, the permeation of DL-Man 
through another blend membrane which was 
not surface-modified, i.e., ( - )-OMPS/poly­
dimethylsiloxane (PDMS) was measured. As 
shown in Table III, ( - )-OMPS/PDMS showed 
almost no enantioselectivity. Therefore, it was 
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Table II. Enantioselective adsorption of racemic bodies to ( - )-OMPS 

Racemic' 
body 

Man 
Val 
Phe 

Adsorbed compound/ 
(-)-OMPS 

mol¾ 

0.676 
0.215 
0.253 

Adsorption 

Selectivity 

+ 
+ 
+ 

Permeationb 

%e.e. Selectivity %e.e. 

32.1 + 32.9 
2.6 + 0.5 
5.9 + 4.0 

"Man=mandelic acid, Val=valine, and Phe=phenylalanine. bPressure-driven permeation through 10~12wt% 
OMPS/PMMA membrane. 

Table III. ·Permeation' of DL-mandelic acid through 
( - )-OMPS/PMMA, ( - )-OMPS/PDMS, and 

( + )-PDPSP/PMMA membranes 

Binary blend 
p 

¾e.e. 
membrane x 10- 6 g·m·m- 2 -h- 1 

10.7wt% 0.731 85.4 
( - )-OMPS/PMMA 

11.lwt¾ 7.36 0.68 
( - )-OMPS/PDMSb 

I0.8wt% 1.17 1.72 
( + )-PDPSP/PMMN 

• Concentration-driven permeation using 1.0 wt¾ aque­
ous feed solution. b PDMS, polydimethylsiloxane. c ( + )­
PDPSP, (+)-poly[!-{ dimethyl(! 0-pinanyl)silyl}-1-pro­
pyne]. 

found that ( - )-OMPS is necessary to be 
present at the surface to realize the enantiose­
lective permeation. In addition, ( + )-PDPSP/ 
PMMA of which ( + )-PDPSP may be accumu­
lated at the surface showed almost no en­
antioselectivity, either. Since ( + )-PDPSP was 
hardly enantioselective in adsorption, the 
enantioselective adsorption of ( - )-OMPS was 
found to play an important role for the en­
antioselective permeation through ( - )-OMPS/ 
PMMA. 

In conclusion, ( - )-OMPS/PMMA show­
ed very high L-isomer selective permeability for 
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DL-Man owing to the preferential adsorption 
of ( - )-OMPS accumulated at the surface to­
ward L-Man. Since only a few amount of the 
optically active compound was necessary in the 
membrane, it was very economical and practi­
cal. Further research into enantioselective per­
meation of other racemic bodies and that 
through other surface-modified membranes is 
now in progress. 
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