Local Main Chain Dynamics of Phenolphthalein Polyethersulfone

Abstract

Local main chain dynamics of dissolved phenolphthalein polyethersulfone (PES-C) in solution with chloroform-d1 were examined through 13C NMR relaxation measurements. Spin-lattice relaxation times and NOE (nuclear Overhauser effects) factors were measured as a function of temperature. The relaxation data were interpreted in terms of main chain segmental motion by using the damped orientational diffusion model (DAMP) and the conformation jump model (VJGM) derived by Valeur, Jarry, Geny, and Monnerie. The simulation method used is N-SIMPLEX, which gives, in this study, a result of the object function less than 104. Correlation times were obtained for the main chain motion of PES-C with these models and the results indicate that the main chain of PES-C are flexible. The comparison between PES-C and 1,2-polybutadiene is proposed. The distribution of the correlation time for the main chain motion by using VJGM model is discussed. The temperature dependence of correlation times for PES-C indicating the dynamical rigidity of its chains is obtained.

References

  1. 1

    I. M. Ward, “Mechanical Properties of Solid Polymers,” Wiley, New York, N. Y., 1971.

  2. 2

    R. T. Bailey, A. M. North, and R. A. Pethrick, “Molecular Motions in High Polymers,” Clarendon, Oxford, 1981.

  3. 3

    F. A. Boyer, Nuclear Magnetic Resonance Spectroscopy,” 2nd edition, Academic, New York, N. Y., 1987.

  4. 4

    Z. Sun, H. Li, Y. Zhuang, M. Ding, and Z. Feng, Polym. Bull., 26, 557 (1991).

  5. 5

    J. J. Connolly, E. Gordon, and A. A. Jones, Macromolecules, 17, 722 (1984).

  6. 6

    G. C. Levy and D. H. Wang, Macromolecules, 19, 1013 (1986).

  7. 7

    D. J. Gisser, S. Glowinkowski, and M. D. Ediger, Macromolecules, 24, 4270 (1991).

  8. 8

    M. E. Nedea, R. H. Marchessault, and P. Dais, Polymer, 33 183 (1992).

  9. 9

    O. H. Schonherr, A. Schneller, A. M. Seifert, M. Soliman, and J. H. Wendorff, Makromol. Chem., 193, 1955 (1992).

  10. 10

    S. A. Pavlova, G. I. Timofeeva, I. A. Ronova, and L. A. Pancratova, J. Polym. Sci., Polym. Phys. Ed., 18, 1 (1980).

  11. 11

    V. A. Zubkov, T. M. Birshtein, and H. C. Mulefskaya, Vysokomol. Soedin., Ser. A, 16, 2438 (1974).

  12. 12

    V. A. Zubkov et al., Vysokomol. Soedin., Ser. A, 17, 1955 (1975).

  13. 13

    T. M. Birshtein, Vysokomol. Soedin., Ser. A, 19, 54 (1977).

  14. 14

    T. M. Birshtein, Vysokomol. Soedin., Ser. A, 21, 1990 (1979).

  15. 15

    K. J. Liu, H. C. Zhang, and T. L. Chen, Chinese patent, No. 85101721.5 (1987).

  16. 16

    A. E. Tonelli, Macromolecules, 5, 558 (1972).

  17. 17

    W. H. Stockmayer, A. A. Jones, and T. L. Treadwell, Macromolecules, 10, 762 (1977).

  18. 18

    A. E. Tonelli, Macromolecules, 6, 503 (1973).

  19. 19

    D. H. Wang, G. X. Wang, and S. Z. Mao, Chinese J. Magn. Reson., 7, 245 (1990).

  20. 20

    D. Doddrell, V. Glushko, and A. Allerhand, J. Chem. Phys., 56, 3683 (1972).

  21. 21

    Z. W. Qiu and F. Q. Pei, “Nuclear Magnetic Resonance,” Science, Beijing, 1989.

  22. 22

    B. Valeur, J. Jarry, P. Geny, and L. Monnerie, J. Polym. Sci., Polym. Phys. Ed., 13, 667 (1975).

  23. 23

    B. Valeur, J. Jarry, P. Geny, and L. Monnerie, J. Polym. Sci., Polym. Phys. Ed., 13, 675 (1975).

  24. 24

    B. Valeur, J. Jarry, P. Geny, and L. Monnerie, J. Polym. Sci., Polym. Phys. Ed., 13, 2251 (1975).

  25. 25

    J. Skolnick and R. Yaris, Macromolecules, 15, 1041 1046 (1982).

  26. 26

    J. T. Bendler and R. Yaris, Macromolecules, 11, 650 (1978).

  27. 27

    F. Heatley, and J. T. Bendler, Polymer, 20, 1578 (1979).

  28. 28

    H. Yamakawa, J. Skolnick, and R. Yaris, Macromolecules, 16, 491 (1983).

  29. 29

    H. Yamakawa, J. Skolnick, and R. Yaris, Macromolecules, 16, 492 (1983).

  30. 30

    J. Skolnick and R. Yaris, Macromolecules, 16, 266 (1983).

  31. 31

    B. B. Pant, J. Skolnick, and R. Yaris, Macromolecules, 18, 253 (1985).

  32. 32

    J. Skolnick and R. Yaris, Macromolecules, 18, 1635 (1985).

  33. 33

    S. R. Ni, H. F. Zhang, and J. J. Liu, Acta. Polym. Sinica, 5, 580 (1990).

  34. 34

    J. L. Wang, J. G. Zhang, B. Y. Li, and Z. L. Feng, submitted to Polymer.

  35. 35

    J. F. O’Gara, S. G. Desjardins, and A. A. Jones, Macromolecules, 14, 64 (1981).

  36. 36

    Y. Inoue, Y. Kawamura, and T. Konno, Polymer, 23, 817 (1982).

  37. 37

    J. Schaefer, Macromolecules, 6, 882 (1973).

  38. 38

    J. Schaefer, Topics in Carbon-13 NMR Spectroscopy, Vol. 1, G. C. Levy, Ed., Wiley-Interscience, New York, N. Y., 1975, Chapter 4.

  39. 39

    F. Heatley and A. Begum, Polymer, 17, 399 (1976).

  40. 40

    F. Heatley, Prog. NMR Spectrosc., 13, 47 (1979).

  41. 41

    T. Akihiro and C. Clande, Macromolecules, 12, 3 (1979).

  42. 42

    T. Akihiro and C. Clande, Macromolecules, 12, 429 (1979).

  43. 43

    P. J. Akers, G. Allers, and M. J. Bethell, Polymer, 9, 575 (1968).

  44. 44

    X. M. Jin and K. J. Liu, Acta Polymerica Sinica, 3, 237 (1988).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • 13C NMR
  • phenolphthalein Polyethersulfone
  • Spin-lattice Relaxation Time
  • Nuclear Overhauser Effect
  • Molecular Motion
  • Correlation Time

Further reading