Dilute-Solution Behavior of Cellulose Tris(3,5-dimethylphenylcarbamate)

Abstract

Eleven samples of cellulose tris(3,5-dimethylphenylcarbamate) ranging in weight-average molecular weight Mw from 2×104 to 4×106 have been prepared by extensive fractionation and studied by static light scattering, sedimentation equilibrium, and viscometry with 1-methyl-2-pyrrolidone at 25°C as the solvent. This polymer is found to exhibit pronounced optical anisotropy differing from other cellulose derivatives, and light scattering data are corrected for the anisotropy effect on the basis of the Nagai theory for the Kratky–Porod wormlike chain with cylindrically symmetric polarizabilities. It is shown that the molecular weight dependences of 〈S2z (the z-average mean-square radius of gyration), δ (the optical anisotropy factor), and [η] (the intrinsic viscosity) for Mw below 106 are explained consistently by the known theories for the unperturbed wormlike chain. From the comparison between theory and experiment the persistence length and the monomeric length along the chain contour are estimated to be 7.8 and 0.52 nm, respectively. It is also shown that excluded-volume effects on 〈S2z and [η] are experimentally visible for Mw above 106 but remain small even at the highest Mw studied.

References

  1. 1

    Y. Okamoto, M. Kawashima, and K. Hatada, J. Am. Chem. Soc., 106, 5357 (1984).

  2. 2

    Y. Okamoto, M. Kawashima, and K. Hatada, J. Chromatogr., 363, 173 (1986).

  3. 3

    Y. Okamoto, R. Aburatani, Y. Kaida, and K. Hatada, Chem. Lett., 1125 (1988).

  4. 4

    Y. Okamoto and R. Aburatani, Polym. News, 14, 295 (1989).

  5. 5

    W. Burchard and E. Husemann, Makromol. Chem., 44–46, 358 (1961).

  6. 6

    V. P. Shanbhag, Ark. Kemi, 29, 1 (1968).

  7. 7

    W. Burchard, Polymer, 11, 467 (1969).

  8. 8

    J. T. Guthrie, M. B. Huglin, R. W. Richards, V. I. Shah, and A. H. Simpson, Eur. Polym. J., 11, 527 (1975).

  9. 9

    O. Kratky and G. Porod, Rec. Trav. Chim., 68, 1106 (1949).

  10. 10

    D. Henley, Ark. Kemi, 18, 327 (1961).

  11. 11

    Dj. Deželić and J. Vavra, Croat. Chem. Acta, 38, 35 (1966).

  12. 12

    D. N. Rubingh and H. Yu, Macromolecules, 9, 681 (1976).

  13. 13

    G. C. Berry, J. Chem. Phys., 44, 4550 (1966).

  14. 14

    H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper & Row, New York, N.Y., 1971.

    Google Scholar 

  15. 15

    K. Nagai, Polym. J., 3, 67 (1972).

  16. 16

    H. Fujita, “Foundations of Ultracentrifugal Analysis,” Wiley, New York, N.Y., 1975.

    Google Scholar 

  17. 17

    T. Norisuye, T. Yanaki, and H. Fujita, J. Polym. Sci., Polym. Phys. Ed., 18, 547 (1980).

  18. 18

    H. Benoit and P. Doty, J. Phys. Chem., 57, 958 (1953).

  19. 19

    H. Murakami, T. Norisuye, and H. Fujita, Macromolecules, 13, 345 (1980).

  20. 20

    K. Sakurai, K. Ochi, T. Norisuye, and H. Fujita, Polym. J., 16, 559 (1984).

  21. 21

    C. W. Carlson and P. J. Flory, J. Chem. Soc., Farady Trans. 2, 73, 1505 (1977).

  22. 22

    U. W. Suter and P. J. Flory, J. Chem. Soc., Farady Trans. 2, 73, 1521 (1977).

  23. 23

    T. Konishi, T. Yoshizaki, J. Shimada, and H. Yamakawa, Macromolecules, 22, 1921 (1989).

  24. 24

    P. J. Flory, “Statistical Mechanics of Chain Molecules,” Wiley, New York, N.Y., 1969.

    Google Scholar 

  25. 25

    H. Yamakawa, M. Fujii, and J. Shimada, J. Chem. Phys., 71, 1611 (1979).

  26. 26

    J. W. M. Noordermeer, R. Daryanani, and H. Janeschitz-Kriegl, Polymer, 16, 359 (1975).

  27. 27

    V. N. Tsvetkov and L. N. Andreeva, Adv. Polym. Sci., 39, 95 (1981).

  28. 28

    T. Yoshizaki, I. Nitta, and H. Yamakawa, Macromolecules, 21, 165 (1988).

  29. 29

    T. Norisuye and H. Fujita, Polym. J., 14, 143 (1982).

  30. 30

    K. Hayashi, K. Tsutsumi, F. Nakajima, T. Norisuye, and A. Teramoto, Macromolecules, 28, 3824 (1995).

  31. 31

    H. Yamakawa and W. H. Stockmayer, J. Chem. Phys., 57, 2843 (1972).

  32. 32

    H. Yamakawa and J. Shimada, J. Chem. Phys., 83, 2607 (1985).

  33. 33

    J. Shimada and H. Yamakawa, J. Chem. Phys., 85, 591 (1986).

  34. 34

    P. Zugenmaier and U. Vogt, Makromol. Chem., 184, 1749 (1983).

  35. 35

    Y. Takahashi, Macromolecules, 24, 3968 (1991).

  36. 36

    H. Steinmeier and P. Zugenmaier, Carbohydr. Res., 164, 97 (1987).

  37. 37

    J. Daňhelka, M. Netopilík, and M. Bohdanecký, J. Polym. Sci., B: Polym. Phys., 25, 1801 (1987).

  38. 38

    T. Norisuye, Prog. Polym. Sci., 18, 543 (1993).

  39. 39

    H. Yamakawa and M. Fujii, Macromolecules, 7, 128 (1974).

  40. 40

    A. Takada, T. Fukuda, J. Watanabe, and T. Miyamoto, Macromolecules, 28, 3394 (1995).

  41. 41

    G. Conio, E. Bianchi, A. Ciferri, A. Tealdi, and M. A. Aden, Macromolecules, 16, 1264 (1983).

  42. 42

    G. V. Laivins and G. D. Gray, Macromolecules, 18, 1746 (1985).

  43. 43

    P. Sixou and A. Ten Bosh, “Cellulose: Structure, Modification and Hydrolysis,” R. A. Young and R. M. Rowell, Ed., Wiley, New York, N.Y., 1986.

    Google Scholar 

  44. 44

    A. K. Gupta, E. Marchal, and W. Burchard, Macromolecules, 8, 843 (1975).

  45. 45

    W. Sutter and W. Burchard, Makromol. Chem., 179, 1961 (1978).

  46. 46

    F. Fried, G. M. Searby, M. J. Seurin-Vellutini, S. Dayan, and P. Sixou, Polymer, 23, 1755 (1982).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsuboi, A., Yamasaki, M., Norisuye, T. et al. Dilute-Solution Behavior of Cellulose Tris(3,5-dimethylphenylcarbamate). Polym J 27, 1219–1229 (1995). https://doi.org/10.1295/polymj.27.1219

Download citation

Keywords

  • Cellulose Tris(3,5-dimethylphenylcarbamate)
  • Cellulose Derivative
  • Wormlike Chain
  • Persistence Length
  • Optical Anisotropy
  • Radius of Gyration
  • Intrinsic Viscosity

Further reading

Search