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ABSTRACT: Using the rotational isomeric state theory, the unperturbed mean-square radius 
of gyration (S 2 ) for the polymer chain considering the effect of a pair of side groups is derivated. 
If the spatial dimension (or the mass) of side groups and the mass difference of skeletal atoms are 
ignored, the expression is reduced to that of Flory and so forth. As an example, the numerical 
calculation of (S 2 ) is executed for unperturbed poly(dimethylsiloxane). The molecular weight 
dependence of the mean-square radius of gyration is (S2 )/M =7.82 x 10- 2 A2 (g·mol)- 1 which is 
in agreement with the experimental data. (S2 )/M =(7.7 ±0.3) x 10- 2 A2 (g·mol)- 1• 
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Several properties of polymers, such as the 
elasticity and flexiblity, are connected with the 
spatial dimension of the polymer chain, which 
is associated with the characteristic ratio of 
the mean-square end-to-end distance or the 
mean-square radius of gyration. -The latter is 
particularly important to the branch polymer 
chain and the polymer with the large side 
groups. 1·2 In addition, the mean-square radius 
of gyration can be readily evaluated from the 
light scattering or small-angle neutron scatter­
ing experiments. 3 - 6 Therefore, the theoritical 
investigation of the mean-square radius of 
gyration for several polymers is very significant. 
The rotational isomeric state approximation 
(RIS) is the successful theory for treating 
configuration-dependent properties of chain 
molecules. 7 - 9 The mean-square radius of 
gyration, however, is customarily calculated by 

the Lagrange relation, 7 •9 in which only the 
structure of skeletal chain is accounted and the 
masses of skeletal atoms are regarded as 
identical. It is natural that the problem how to 
consider the effects of side groups and the mass 
difference of skeletal atom on it is attracted 
attention. Recently, the improved calculation 
of the mean-square radius of gyration for vinyl 
polymers considering a single side group has 
been reported. The results obtained for 
polypropylene, 1 polystyrene, 2 and polyethy­
lene10·11 are in good agreement with the 
experiment data. In this paper, the improved 
expression of mean-square radius of gyration 
for the chain polymer carrying a pair of side 
groups is further established by using the RIS 
theory. 

The symmetrically substituted polysilox­
anes consist of the monomeric units including 
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the skeletal atoms (Si and 0) and a pair of 
side groups, such as poly(dimethylsiloxane) 
(PDMS) with -(CH3) 2 , poly(diethylsiloxane) 
with -(C2H 5)i and poly(di-n-propylsiloxane) 
(PDNS) with -(C3H 7)i. The characteristic 
ratios reported by the experiment have a 
large difference between the PDMS and the 
PDNs. 12 - 14 Therefore, the improved calcula­
tion may be necessary to investigating the effect 
of large side groups on the mean-square radius 
of gyration for several polymers. In this paper, 
the improved expression has been applied to 
evaluate the characteristic ratio of <S 2 ) for the 
PDMS as an example. 

EXPRESSION OF MEAN-SQUARE 
RADIUS OF GYRATION FOR THE 
POLYMER CHAIN WITH A PAIR 

OF SIDE GROUPS 

The mean-square radius of gyration for 
polymers is defined as 

4x 

<S 2 )=M- 1 I mj<s;) (l) 
j= 1 

where M is the molecular weight. In regard to 
the monosubstituted polymer chain with a pair 
of side groups as shown in Figure l(a). j is 

let 
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Figure 1. (a): A segmental model of the polymer chain 
with a pair of side groups in all-trans form. (b): Dia­
grammatic representation of the consecutive Cartesian 
reference frames affixed to the bonds. 

taken from O to 2x for the skeletal atoms and 
from 2x + 1 to 4x for side atoms, where x is 
the degree of polymerization. mi is the mass of 
atom(s) j. The masses of atoms a, b, d, and f 
in each repeat unit are ma, mb, mct, and mr, 
respectively. si is the distance of atom(s)j from 
the center of mass of chain. Equation l can be 
also expressed as 7 

<Sf)= I m;mj<rt) (3) 
0:5i<j:52x 

where rij is the distance from atom i to j. It can 
be given by the bond vecter matrix I; 

(5) 

where lj is the bond length between atoms j 
andj + l, and by the axis transformation matrix 
Tj of the consecutive Cartesian reference 
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(4) 

frames {xj, yj, zJ affixed to the bonds 

Tj= I sinc;::s -c:~::os 

L sin 0 sin - cos 0 sin 

= T(0j, ~) 

0 ] sm~ 

-cos~ j 

(6) 
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where 0i is the supplementary of bond angle 
for the atom j, <pi is the angle of internal 
rotation for bond ti. According to the RIS 
theory, the rotational angle <pi can be taken 
several angles, such as three angles for 
three-state model, one for the trans conforma­
tion (t) and two for the gauche conformations 
(g±). Then, two statistical weight matrices U3 

and ur with orders 3 x 3 in each repeat unit 
are applicable to describe the isomeric state 
of chain. 

The expression of (Sf) is only correlative to 
the sketetal chain. Following the RIS theory, 
it can be formulated as 

(Sf) 

'\c' m m J*uU">pgU- nQu(2x- 111 
L, j' j 1 j' + 1 j + 1 

0«:;j'<j«:;2x 
(7) 

where 

J*=[l 00], 1=[111y (8) 

P=[E30·--0], Q=[O···OE3Y (9) 

with £ 3 being the identity matrix of orders 3. 
The partition function Z and the generator 
matrix gi are 

Z = J*ui2x>J =l*(uruay- i J (10) 

(l//2~j l 
u/~li 

ui 

(11) 

where 

II Tllj=I T~t) T(:g+) l . (12) 

L O O T(<pr) 1 

P, Q, gj, and II T Iii are the matrices of orders 
3 x 15, 15 x 3, 15 x 15, and 9 x 9, respectively. 
j is taken 1, 3 · · · 2x -1 for the skeletal atom a 
and 2, 4 · · · 2x for f. Then, eq 7 can be simplified 
as 
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2x 
(Sf)=2z- 1F* TI GjF 

j=! 

where 

F* = [1 0 · · · OJ , F = [O · · · 0 1 1 1] r (14) 

l"· 
mrP9a m,m,(l, '/2)u. l 

G.= 9a m.g.Q 

0 Ua 

(15) 

l u, 
m.Pgr m,m~l,' /2)u, l 

Gr= 9r mrgrQ 

0 Ur 

(16) 

F*, F, and G. or Gr are the matrices with orders 
1 x 21, 21 x 1, and 21 x 21, respectively. u. in 
G. of the chain terminal 1 or Ur in Gr of the 
terminal xis replaced with the identity matrix 
£3. 

The expression of (S~) is related to the 
structure of side groups b and d in every repeat 
units. Therefore, the marks from O to 4x in 
Figure l(a) are renumbered serially from O to 
6x, moreover, the Cartesian reference frames 
{xi, Yi, zi} affixed to the skeletal bonds and side 
bonds are founded as shown in Figure l(b), 
wherejis taken 6i- 5, 6i-4, 6i-3, 6i-2, 6i-1, 
and 6i in the i-th repeat unit, or expressed as 
a, b, c, d, e, and f in every repeat units, and i 
is taken from 1 to x. Let the axis x 6 i-s, x6;- 4 , 

x 6 ; _ 2 , and x 6 ; affixed to the bonds z., lb, Id, and 
lr be in the direction of the bond vectors la, lb, 

Id, and Ir, respectively. The axis x 6 i_ 3 and x 6 ;_ 1 

affixed to the bonds lb and /d in the oppesite 
direction of bond vectors lb and Id, respectively. 
The axis Yi and zi of consecutive coordinate 
systems are defined in similar way to the RIS 
theory. Then, 0_', 0c, 0., or Br are the angles 
between axis x 6 ;_ 5 and X 6 ;_ 4 , x6 ;_ 3 , and x6 ;- 2 , 

x6;- 1 , and x 6 ; or x6 i and x6 ;+ 1 , respectively. 
<pi in eq 6 may be separated into two parts <pi 

and <p/. The former describes the states of 
internal rotation of bond ti. The latter 
depended on the geometric structure of 
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polymer chain denotes the dihedral angle 
between plan xiyi and plan xi+ 1Yi+ 1 when the 
angles of internal rotation are in trans form. 
Therefore, after considering the geometric 
structure of side groups, the consecutive axis 
transformation matrix Ti in each repeat unit 
is also given by eq 6 

T6i-5= Ta= T(0a', ({Ja+<pa') 

T6;_ 4= Tb= T(l80°, 0°) 

T6i-3= Tc= T(0c, <pc') 

T6;_ 2 = Td = T(l80°, 0°) 

T6i-1 =Te= T(0e, <p/) 
T6; =Tc= T(0c, ({Jc+ <p/) 

(17) 

where <pa', <p/, <p/, and <p/ can be calculated by 

cos <p/ =(cos 0a" +cos 0a' cos 0c) 

/sin 0a' sin 0c 

cos <p/ = (cos 0/ +cos 0c cos 0e) 

/sin 0c sin 0e 

cos <p/ = -(cos 0/ + cos 0ecos 0c) 

/sin 0e sin 0c 

(19) 

(20) 

(21) 

where 0/ or 0/ are the angles between axis 
x6;-s and x6;- 2 or x6;_ 3 and x 6 ;, respectively. 
0/ is the angle between axis x 6 ;- 2 and x 6 ; + 1. 
The statistical weight matrix ui is expressed as 

(i=2,3,···,x) (22) 

(i=6i-4, 6i-3, 6i-2; 6i-1; 

i=1,2,···,xandj=l,6x) (23) 

U6;=Uc (i=l,2,···,x-1) (24) 
cos <pa'= -(cos 0c +cos 0a' cos 0a") 

/sin 0a' sin 0a" (lS) <S~) can be derivated by comparing (a) with 
(b) in Figure 1 as 

where 

i'=j/2 

i" =(j + 1)/2 
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X X X X 

=mcmb L L <r~h,6k-4)+mcmd L L <r~h,6k-2) 
h=Ok=l h=Ok=l 

X X X X 

+mamb L L <r~h-5,6k-4)+mamd L L <r~h-5,6k-2) 
h=l k=l h=l k=l 

X X 

+mbmd L L <r~h-4,6k-2)+mt L <r~h-4,6k-4) 
h=lk=l l~h<k~x 

(25) 

(j=0,2,4···2x) } (26) 

Let the generator matrix gi from eq 11 in the 
i-th unit 

(j=l,3,5···2x-l) 
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g6i- 5 = ga = g(ua, T;., Ta) 

g6;-4=gb=g(E3, 7;,, Tb) 

g6;-3=gc=g(E3, I;,, Tc) 

g6;-2=gd=g(E3,f.i, Td) 
(27) 

g6i-1 =g.=g(E3, f.i, T.) 

g6;=gc=g(uc, I;, Tc) 

then, eq 25 is given by using the matrix algebra 
method 

<S~) =2Z- 1[mrmbF*S(l)1S(lY- 2S(l)J 

+ 2mcmdF* S(2)1 S(2y- 2 S(2)xF 

+ 2mambF* S(3)1 S(3y- 2 S(3)J 

+ 2mamdF*S(4)1 S(4Y- 2S(4)J 

+ 2mbmdF* S( 5) 1 S( 5y- 2 S( 5)xF 

+ m;,F* S( 6)1 S( 6y- 2 S( 6)xF 

+mlF*S(7)1S(7Y- 2S(7)xF] (28) 

where 

Pgagbgcgdgegf PgagbQUc] 

gagbgcgdgegf gagbQUc (29) 

0 UaUc 

S(2) = 0 gagbgcgdgegf gagbgcgdQur (30) l UaUr Pgagbgcgdgegf PgagbgcgdQUr] 

0 0 UaUf 

uaPgbgcgdgegc (li /4)uaur] 

gagbgcgdgegf gagbQuf (31) 

0 UaUc 

uaPgbgcgdgegf (/J /4)uaUr ] 

gagbgcgdgegf gagbgcgdQur (32) 

0 U8 Uc 

UaPgcgdgegf 

gagbgcgdgegf 

0 
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(r;,d/4)uaur ] 

gagbgcgdQUc (33) 

UaUc 

l "·¼ 
uaPgcgdgegr 

g,n~Qu,] S(6)= gagbgcgdgegf (34) 

0 UaUf 

uaPg.gr 

g,n,n:,Qu, ](35) l "·¼ 
S(7)= gagbgcgdgegf 

0 UaUc 

Then, the unperturbed mean-square radius 
of gyration of the polymer chain considering 
the pair side groups can be formulated by 
substitution of eq 13 and 28 into eq 2 as 

<S2) =2Z- 1 M- 2F*(GaGrMGaGrY- 2(GaGr)xF 
7 

+2z- 1M- 2 L m(q)F*S(q)1S(qy- 2S(q)xF (36) 
q=l 

where m(l)---m(7) have replaced 2mcmb, 2mcmd, 
2mamb, 2mamd, 2mbmd, ml',, and ml, respectively. 
ua in the terminal matrix S(q)1 and Ur in matrix 
S(q)x are replaced with £ 3 • Obviously, the 
seconed term in eq. 36 is related to the 
dimension and masses of side groups. If the 
size of the pair side groups is ignored, i.e., the 
length of bonds lb and ld are assumed to be 
zero, gi (j is taken b, c, d, and e) of eq 11 
becomes the diagonal matrix. The second term 
in eq 36 becomes zero because PTiigiQ gives 
the zero matrix of orders 3. In another way, 
the masses of side groups b and d are assumed 
to be zero, the seconed term also becomes zero. 
Further, if the skeletal atoms are regarded as 
identical, the first term retained in eq 36 is 
reduced to that by Flory. 8 •10 Similarly, if the 
length of bonds lb ( or ld) or the mass of atom 
b ( or d) is assumed to be zero. Equation 36 is 
reduced that considering a single side groups 
reported by ref 1. 

NUMERICAL RESULTS FOR POLY­
(DIMETHYLSILOXANE) 

The two statistical weight matrices only 
considering the first-order and the second­
order interaction in the model of Flory et al. 
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for the PDMS CH3 [Si(CH 3) 2-OJxSi(CH3h The numerical result in eq 40 is dominantly 
are 15 contributed by the first term in eq 36. The 

second term can be regarded as the revision 
considering the effect of side groups. The ratio 

(37) of (S2 ) for the PDMS considering the pair 
--(CH 3)i is about greater 5% than that without 
considering them for x = 100, and the propor­
tion decrease when x increase. The reason of 

(38) the side group effect on chain dimension can 

where the statistical weight a and w are 

a =exp(-E.,/RT) 

w=exp(-Ew/RT) 
(39) 

where taken are 0.244 and 0.175 at 303 K 
corresponding to the conformational energy 
E., = 850 cal mol - 1 and Ero= 1050 cal mol- 1 , 

respectively. 16 The three conformations for the 
rotational angles <p. and <{Jr are O for the trans 
form and ± 120° for the gauche forms. 
Simultaneously, substitution the geometric 
parameters listed in Table 117 and the masses 
of Si, 0, and CH3 into eq 36 gives the 
unperturbed characteristic ratio of mean­
square radius of gyration (S2 )/2xl 2 vs. the 
degree of polymerization x for the PDMS 
shown in Figure 2, where l is the length of bond 
Si-O. The ratio of (S2 ) is nearly constant for 
large x. The dependence of mean-square radius 
of gyration on the molecular weight 

(S2 )/M =7.82 x 10- 2 A2 (g·mol)- 1 (40) 

is in agreement with the experimental data. 13 

(S2 )/M =(7.7 ±0.3) x 10- 2 A2 (g·mol)- 1 

(41) 

Table I. The geometric parameter for 
poly( dimethylsiloxane) 

Bond and distance Length/A Bond angle Angle/ 0 

Si-O 1.63 Si--0-Si 145.0 

Si-C 1.90 
O-Si--0 110.0 
0--Si-C 109.5 

CH 3 · · ·CH3 (rb<l) 3.10 C-Si--C 109.5 

784 

<s2>/ 2xl 2 ---------
1.0 

n.8 

0.6 

0.4 

o.~ 

OL-------~---~--~-
50 100 150 2,,)() X 

Figure 2. The characteristic ratio of (S 2)/2x/ 2 vs. the 
degree of polymerization x at 303 K for poly(di­
methylsiloxane) considering the effect of side groups. 
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be traced to the conformational energy and the 
distribution of the center of mass of monomers 
for that of chain. As an example of short 
polymer chain shown in Figure 3, the PDMS 
chain in the preferred conformation of all-trans 
closes upon itself after several skeletal bonds. 18 

Sand S1 represent the distance from the center 
of mass of chain to the center of masses of each 
monomer. It seems that the radius S con­
sidering-(CH3)z is different from the radius S 1 

without considering that. The center of mass 
of each monomer, besides, is related to the 
skeletal atoms Si and O in other configurations 
of the PDMS chain. Even though the mass of 
-(CH3)2 is 30/44.l of that of the skeletal atoms 
Si and 0, and the length of bond Si-C is 
19.0/16.3 of that of Si-O, the effect of -(CH 3) 2 

on (S2 ) is small because the bond angle C-Si-C 
is large. If the spatial dimension (considering 
the shape) and the mass of side groups are 
larger such as the PDNS, the effect of them 
on the mean-square radius of gyration may 
be important. Then, this work gives another 
method treating the mean-square radius of 
gyration by the RIS theory for the chain 
molecules with the pair side groups, especially 
for the short polymer chain and the polymer 
chains carrying large side groups. 
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