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ABSTRACT:

The chain dimensions of a polymer confined between two plates, and interacting

with them, are herein studied. The contribution of the excluded volume interaction is evaluated
using the mean field theory as originated by Flory. The expansion factor perpendicular to the
plate, o, increases monotonously with the distance between the plates, D, when the polymer plate
interaction, W, is repellent. However o, decreases abruptly with increasing D when W is attractive.
This_transition corresponds to the conformational change between the bridge type and the loop
type of conformation. The parallel component of the expansion factor, o, decreases with increasing
D when W is repellent. At the transition, o, increases abruptly.
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The behavior of a polymer chain interacting
with a surface is interesting not only theo-
retically but also for its role in such practical
problems as adhesion and reinforcement.
Many theoretical investigations have been
carried out.! A polymer confined between
two interacting plates has also been studied for
its role in stabilization of colloidal suspension.

Segment concentration profiles and free
energies of polymer chains confined between
two adsorbing plates were studied by Levine,
Thomlinson and Robinson? using a lattice
model and by de Gennes® using a continuum
model. Ishinabe* studied the free energies of
the self-avoiding lattice chain confined between
two adsorbing plates using the exact enumera-
tion method.

The chain dimension of a polymer confined
between two perfectly repellent plates has been
studied in depth. Both Daoud and de Gennes®
and Turban® discussed the dimensions of a
confined chain using scaling arguments. Wang,
Nemirovsky, and Freed’ investigated chain
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dimensions using the ¢ expansion method. The
present author derived the full dependence of
the chain dimensions of a confined chain on
the distance between the plates, using both the
homotopy parameter expansion method® and
the mean field theory.® However, few studies
on the effect of polymer plate interaction on
chain dimension have been carried out. Wang
et al. studied the case of reflecting plates,” while
we reported the mean end-to-end distance of
a chain confined between two interacting
plates.?

In this paper, we studied the full dependence
of the chain dimension of a confined polymer
on the distance between the plates, on the
polymer surface interaction, and on the
strength of the excluded volume. The polymer
surface interaction was included exactly within
the distribution functions of the unperturbed
polymer confined between two plates. The
contribution of the excluded volume interac-
tion was introduced under the assumption that
the segments were distributed uniformly in an
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equivalent ellipsoid whose principal axes were
proportional to the components of the mean
end-to-end distance. The closed expression was
obtained for expansion factors parallel and
perpendicular to the plates. It predicts the
transition when the polymer plate interaction
is attractive.

MODEL

A model chain consists of N free rotating
bonds of a unit length. The distance between
the plates, D, is much larger than unity. The
z axis is taken perpendicular to the plates and
the x and y axes are taken parallel to the
plates. The polymer chain is confined between
z=—D/2 and D/2.

The probability distribution function of an
unperturbed chain which starts at R’ and ends
at R, G, (R, R’; N) can be decomposed as

GO(R9 R’, N)
=Gox(Ry; N)Goy(Ry; N)Go(z,z'; N) (1)

where R, and R, are the components of the
end-to-end vector parallel to the plates. For an
unperturbed chain, G,, and G,, are Gaussian
functions.

As was shown in one of our previous
papers,'® we can obtain the component of
distribution function perpendicular to the
plates, G,, as follows:

Go(z, z'; N)=(2/D)
{3, Ai cos(a,z/D)cos(a,z’ | D) exp(— azd)
+ ZkBk sin(b,z/D)sin(b,z’ /D) exp(— bid)}
2
where d=N/6D?. The coefficients a, and b,
are determined by the following transcendental

equations, where 4, and B, are normalization
constants:

tan(a,/2)=DW/a,; A,=1/(1+sin(a)/a,)

(32)

By =1/(1 —sin(by)/by)
(3b)

cot(b,/2)= —DW/b, ;
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a, is imaginary when DW<0, and b, is
imaginary when DW < —2. The nature of the
roots, a, and b, was demonstrated in the same
paper.'®

The z component of the end-to-end vector
R is R,=z—z'. The utilizable range of z is
[—D/2+R,, D/2] for z>z" and [—D)/2,
D2+ R,] for z<z'. Equation 2 is averaged
with respect to z. Then we get

Go(R, N)=
(3/2nN) exp(—3(R2 + R2)/2N)E(d, R,/ D)/4D
4)

where E is given as

E(x, y) = {2 Al (1 —y)cos(a,y)
+sin(a(1—y))/a] exp(—a;x)
+2, Bl (1 -y)cos(byy)
—sin(b(1—y))/bJ exp(—bix)}
{2 AL (1 —cos(ay))/ai Jexp( — aix)}
&)
The distribution function for the end-to-end
distance of a perturbed chain is assumed to be®

G(R, N)=Go(R, N)exp(—vZ,(R))  (6)

where Z, is the number of two-body contacts
between segments and v is the excluded volume
of a segment. As in another of our previous
papers,’ Z, is evaluated assuming that the
segments are distributed uniformly in an
equivalent ellipsoid, whose principal axes are
proportional to R,, R,, and R, respectively.
We can then obtain the distribution function
of a perturbed chain as

G(R, N)=Go(R, N)exp(—vc’'N*/R.R,R,)
)

where ¢’ is a numerical constant.

MEAN DIMENSION

It is impossible to calculate analytically the
mean square values of R,, R,, and R, using
eq 7. The roots of the mean square of R, R,,
and R, can be evaluated approximately fol-
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lowing the procedure by Hermans and Over-
beek.!! The maximizing condition is

. (InR,+1InGy(R, N)—vc’N?/R.R,R;)

X

=1/R,—3R,/N+vc'N*/RZR,R,=0 (8)

The parallel component of linear expansion
factor, o, = R,/(N/3)"/? (hereafter R,, R,, and

R, denote the mean values) is given as
2 1 —
oy —l=cz/o o0,

(%)

where ¢ is a numerical constant and z is the
excluded volume parameter defined as z=
(3/2m)3/? N2, In the same manner, we get

(9b)
(10)

w2 —1=cz/a,o0,
Fd, R,/D)—1=cz/o,0 0,
where F(x, y) is defined as
F(x, y)= {2, Al 2c0s(a,/2)cos(a(y — 1/2))

+a(1—y) sin(ay)] exp(—a;x)
+ 3Bl —2 sin(b,/2)cos(b(y — 1/2))
+b(1 —y) sin(by)] exp(—bix)}
Y AL(1 =) cos(a)
+sin(a(1—y))/a,] exp(—a;x)
+ Y 4 BL(1—y)cos(byy)
—sin(by(1—))/bi] exp(—bix)}

(1)

As easily seen from eq 9 and 10, F(x,y)
corresponds with the square of the expansion
factor perpendicular to the plates. F(x,y) is
illustrated as a function of y in Figure 1. The
solid curves represent the case where DW is
infinite and the dotted curves represent the case
where DW=0. As y increases from 0 to 1,
F(x, y) increases rapidly from 0 to infinity for
all values of x. The values of F(x,y) are
independent of DW for small x, however they
depend on DW as the value of x increases. The
physical interpretation is as follows. The
contribution of polymer plate interaction can
be disregarded when the chain dimension is
much smaller than D. However the contribu-
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Figure 1. F(x, y) as a function of y for various values of
x: Solid curves, DW being infinite; dotted curves, DW =0,
dot-dash curves, DW= —10.

tion becomes dominant when the chain dimen-
sion approaches D. Dot-dash curves show the
case where DW= —10. In this case, the value
of F(x, y) increases monotonously with D, for
small values of x and y. However, it shows a
depression in the case where the values of x or
yincrease. Finally, it increases rapidly with y.

The values of F(1/2,y) are shown as a
function of y in Figure 2 for various values of
DW. They increase with y for DW> —2. In
the case where DW< —3, F(1/2,y) has a
depression, as in the case where DW= —10 in
Figure 1. The depth increases with decreasing
DW. This suggests that phase transition occurs
at an appropriate negative value of DW, as
explained later.

The left hand side of eq 10 corresponds to
2. Linear expansion factors become o, =o, =
o, =0a, as D— oo limit. Introducing them into
eq 9 gives us

o> —ad =cz

(12)

This is the well-known Flory equation for the
unconfined chain.
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F(r2,y)

30

Figure 2. F(1/2, y) as a function of y for various values
of DW. Numerical values in the figure indicate DW.

Substituting eq 12 into eq 9a, we get
oy — oz = (oG, — 0% )/aL (13)

Solving eq 13 for a, and substituting it into
eq 10 we get

2 4 _ 2
2D%2 " D(ot—a2)
using the relation R, =(N/3)'?«,,. Equation
14 can be solved numerically for «, at given

D/R,., &%, and DW, and then «, can be
obtained using eq 13.

DISCUSSION

The reduced expansion factors, a?/a? and
a2/a? calculated using eq 13 and 14 are plotted
against D/R, . in Figure 3. In this calculation,
the value of a2 is fixed at 2. For small values
of D/R,,, the values of aZ/a% increase in
proportion to D? with increasing D/R,,, and
these values increase with decreasing D W. This
is interpreted as the chain ends and segments
approaching and being adsorbed onto plates
as the polymer plate interaction becomes more
attractive. The value of a?/a% increases mono-
tonously towards 1 with increasing D/R

Z00d

Polym. J., Vol. 26, No. 6, 1994

0.03r

1 Il 1 ]

0.1 03 10

1
D/Rze

Figure 3. The reduced expansion factor as a function of
DW. Numerical values indicate W. The dotted curves
indicate unstable states.

when the polymer plate interaction is non-
attractive. However, when the interaction is
attractive, the values of a2/a? decrease ab-
ruptly as the chain dimension in free space
approaches almost the same as the distance
between the plates. This transition is inter-
preted as the conformation change between the
bridge type and the loop type of conformation,
whose ends and segments are adsorbed onto
the same plate. The loop type of conformation
is more stable than the bridge type because the
chain is less elongated. In the case where the
value of R, W is constant (= — 10), the value
of a?/a% remains constant with increasing
D|R, . Some parts of the chain are adsorbed
onto one of the plates and remain there, while
D ismuch larger than R, , with the chain shape
then being independent of D. However, in the
case where the value of DW is “constant
(= —10), the value of «2/a2, increases gradually
with increasing D/R, . This is because in this
case the polymer plate interaction becomes less
attractive with increasing D.

The values of a2/a2 decrease in proportion
to D~ '/? with increasing D/R, , for small values
of D/R, . They are less dependent on DW than
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Figure 4. A(—InG) and «?/a? as functions of R,/D.
Dotted lines represent the cases where D/R,,, is constant.

Numerical values in the figure represent the values of
DIR, .

are the z components. The transition between
the bridge type and the loop type of confor-
mation occurs when the polymer plate interac-
tion is attractive, as shown in the case of a2 /o2 .
The dotted curves in Figure 3 indicate the
quasi stable states calculated using eq 14. As
easily seen in Figure 2, three solutions can be
obtained for a suitable range of a2 at given
DW and D/R,,. The stable branch is estimated
as follows. The values of A(—InG) and «2/a2
are plotted against R,/D in Figure 4, where
the value of G is approximated by the
corresponding value of the mean value of R
using eq 7. The reference value of A(—InG) is
the value at about R,,/D~0.9. The value of
—InG corresponds to the free energy of the
chain. Then, transition occurs between two
points at which the values of —InG are
identical. The stable form is the one whose
value of A(—InG) is negative. The dotted
curves in Figure 4 indicate the lines for which
D/R,, are constant. For example, the solutions
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Figure 5. Reduced expansion factor as a function of DW.
Numerical values on the right hand side of the figure
indicate «%. The dot-dash curve represents the exact
solution for an unperturbed chain.

are R,/D=0.92, 0.65, and 0.34 for the case
where D/R, ., =0.7. The point at R,/D=0.65 is
an unstable one, while the others are stable.
The point at R,/D=0.34 is slightly more stable
than that at R,/D=0.92. Then the value of
aZ/a? for stable conformation can be found as
(0.34x0.7)>=0.057. The value of D/R,, at
which transition between the bridge type and
the loop type of conformation occurs, is slightly
less than 0.7.

The values of «2/a2 and «2/a2 are plotted
against DW in Figure 5, where the value of
D/R,, is fixed as 1. The numbers on the right
hand side in the figure indicate the values of
a?. The values of a?/a? increase with de-
creasing DW. This indicates that the chain
segments are compressed into the central part
of two plates when the polymer plate interac-
tion is repellant, while they spread out and
approach the plates as the polymer plate
interaction becomes more attractive. When the
polymer plate interaction is attractive, the
bridge type of conformation is stable, and then
the value of a2/a2 approaches 1. However, the
transition between the bridge type and the loop
type of conformation occurs and the value of
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aZ/a? becomes very small when the polymer
plate interaction becomes more attractive.
Finally if the chain is adsorbed onto one of the
plates, a, may tend towards zero. In the present
calculation, we assume that the segments are
distributed uniformly in an equivalent ellip-
soid. This assumption may be invalid when a
large part of the segments are adsorbed on the
plates. The contribution of the segment—
segment repulsion on the plates does not take
into consideration, except eq 7. Then the results
for the chain confined between very strong
adsorbing plates are doubtful.

As shown in Figure 5, the chain where a2 =1
shows the transition. It corresponds to the
unperturbed chain. The dot-dash curve in
Figure 5 indicates the exact solution of the
unperturbed chain. The exact solution indicates
that the value of a?/a? has a maximum, that
it decreases rapidly with DW. This behavior
seems crossover rather than transition. More
detailed analysis is desired concerning this
transition.

The values of a?/a? decrease slightly with
decreasing DW. Transition occurs when DW
is negative and the value of a2 is small, as in
the case of aZ.

CONCLUSION

In this paper we studied the chain dimension
of a perturbed chain confined between two
interacting plates using the mean field theory
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originated by Flory. Segments are assumed to
be distributed uniformly in an equivalent
ellipsoid whose principal axes are proportional
to. the component of the mean end-to-end
distance. The components of expansion factors
perpendicular and parallel to the plates are
derived as functions of D/R, ., o2, and DW.
When the polymer plate interaction is attrac-
tive, transition between the bridge type and the
loop type of conformation occurs, and the
value of a?/a? decreases abruptly with in-
creasing D.
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