Polymer Journal, Vol. 26, No. 4, pp 439—463 (1994)

In the previous papers,*

Thermodynamics of Formation of Porous Polymeric Membrane
by Phase Separation Method III. Pore Formation by
Contacting Secondary Particles: Theory and Its
Comparison with Experiments

Hideki Iuma, Shigenobu MATSUDA, and Kenji KAMIDE*

Fundamental Research Laboratory of Natural & Synthetic Polymers,
Asahi Chemical Industry Co., Ltd.,
11-7 Hacchonawate, Takatsuki, Osaka 569, Japan
*Laboratory of Clothing, Faculty of Education, Kumamoto University,
Kurokami 2-40—1, Kumamoto 860, Japan

(Received August 2, 1993)

ABSTRACT: An attempt was made (1) to establish a theory of pore characteristics, including
pore size distribution N(r) (r, radius of pore) for porous polymeric membranes, prepared by the
phase separation method, using two-phase volume ratio R (= V;)/V(2); Vi1) and V), are volumes
of polymer-lean and -rich phases, respectively) and radius of secondary particle S, and (2) to
compare the N(r) calculated from R and S, with that by an electron micrographic (EM) method.
For this purpose, we assume that secondary particles (i.e., polymer-rich phase) and hypothetical
vacant particles (i.e., polymer-lean phase) are placed randomly on a hexagonal closest packing
lattice and that x vacant particles contact with each other to form a pore (referred to as
vacant-particle pore). An expression of the probability P(x) that a given pore contains x vacant
particles was derived. With consideration of an increase in pore size after drying, N(r) for
vacant-particle pores, N,(r) was derived, using R, S, and pore density of vacant-particle pores Np
(number/m?), and by translating x to pore radius r. The condition of determining N, from R and
S, was established. N(r) for inter-polymer-particle pores, N,(r) (i.e., crevasses of closest-packed
secondary particles) was also calculated by using R and S,. The theory predicts that smaller pore
size can be attained with smaller R and S,. Phase volume ratio R was found to be determined
through use of a theoretical equation on porosity, using experimental porosity Pr(d,) determined
from electron micrographs and approximate of degree of collapse of a membrane k'(=Ly/Ly; L,
thickness of cast solution; Ly, that of dried membrane). Collapse of a hypothetical gel membrane
during coagulation process explains well the findings that theoretical N(r) coincides fairly well with
that by EM method only when apparent phase volume ratio R, is employed instead of R.
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2 we proposed a

casting method) in the case when initial

theory of nucleation (steps a and b in Figure
1), growth of nuclei to the primary particles
(steps b—d in Figure 1), and growth of the
primary particles to the secondary particles
(steps d—f in Figure 1) in the process of
formation of the porous polymeric membranes
by the phase separation method (i.e., solvent-

polymer volume fraction vJ is less than the
polymer volume fraction at a critical solution
point v;. In subsequent steps, the secondary
particles contact with each other to form gel
membranes, which become dried membrane
through desolvation and drying (steps g—j in
Figure 1).
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Elementary steps in porous polymeric membrane formation by the phase separation method:

vJ, polymer volume fraction of the solution when the phase separation occurs; vs, polymer volume
fraction of critical solution point; steps a and f—j correspond to those of a and f—j in Figure 10, respectively.

Figure 2. Schematic representation of a membrane structure and pores: a), A multi-layer model of a
membrane; filled sphere, polymer particle; unfilled sphere, vacant particle; diameter of these spheres are
28, b), A hypothetical plane; c¢) Vacant-particle pores on a hexagonal closest packing lattice; d)
Inter-polymer-particle pores brought about by contacted polymer particles.

Based on electron microscopic observation
of membranes prepared by the solvent-casting
method, Kamide et al. proposed “particle
growth concept” on membrane formation
mechanism in the phase separation method
(Figure 1)>* and “two-dimensional thin layer
model” of membrane surface (Figure 2b)*
which consists of the secondary particles of
polymer-rich phase (referred to as “polymer
particles”) with radii of S, and hypothetical
particles of polymer-lean phase (referred to as
‘““vacant particles’), whose radii are also S,. In
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the thin layer model, regarding a portion
consisting of contacting vacant particles as
pores, whose boundary should be fully sur-
rounded by polymer particles (Figure 2c; we
define these pores as ‘““vacant-particle pores”),
Kamide and Manabe (KM)* attempted to
derive an tentative equation of pore radius
distribution N(r) (r, radius of pore) of
membranes as a function of S, and two phase
volume ratio at the instant when phase
separation occurs R (=V(y)/V (5, Viyyand V(y,
are volumes of polymer-lean and -rich phases,
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respectively), which is indirectly calculated
from porosity Pr of a membrane evaluated by
an electron micrographic (EM) method.’

Unfortunately, N(r) of KM theory contains
the following unnegligible drawbacks: a) In
calculation of probability of appearance of the
vacant-particle pore with x vacant particles
P(x), a portion which does not contain any
vacant particle (i.e., x=0) is mistakenly
considered as a vacant-particle pore. Further-
more, P(x) was normalized over the range of
x=0 to x=N;L. Here, Ny is a total number
of both particles (polymer- and vacant-
particles) in the unit area of the plane (see, eq
1) and L is volume fraction of polymer-lean
phase (see, eq 2). Accordingly, the final
equation of N(r) can not ascertain the existence
of N, vacant-particle pores in unit area by KM
theory. b) They thought that R could be
indirectly determined from Pr by EM method,
however, R thus calculated often deviates
significantly from R directly determined in
actual phase separation experiments. c) Even
if x=0, small crevasses are formed between
closely-packed polymer particles and these
crevasses should be regarded as pores, which
we define as inter-polymer-particle pores, but
these crevasses were not considered in KM
theory. These inter-polymer-particle pores
must be taken into consideration indepen-
dently. d) Pore density Np can not be deter-
mined explicitly for a given condition of R and
S,.

Recently, Kamide et al.® disclosed for
membranes by the phase separation method
that the over-all supermolecular structure
changed significantly depending on the distance
from the top surface of a membrane and within
a given thin layer with the constant distance
from the surface, the particular supermolecular
structure of the layer remained almost uniform,
and that N(r) for each portion of the ultra-thin
layer was constant for a given distance. These
experimental facts leaded them to the conclu-
sion that porous polymeric membrane pre-
pared by the phase separation method should
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be considered as a composite, in which many
hypothetical ultra-thin layers are piled up, and
they presented a “‘three-dimensional structure
model” of a membrane, assuming that the
over-all supermolecular structure is uniform
(Figure 2a).”

In this article, we attempted (1) to derive a
reliable equation of N(r) for vacant-particle
pores of a thin layer using R and S, (eq 24)
by improving the drawback a) of the previous
KM theory, (2) to interpret the experimental
disagreement between two kinds of R; the one
is calculated indirectly from Pr evaluated by
EM method and the other is directly deter-
mined in actual phase separation experiments
[drawback b) in KM theory], by considering
collapse (steps g—h in Figure 1) of gel
membranes, with the three-dimensional model
of a membrane (Figure 2a), proposing a new
concept of apparent phase volume ratio R, (eq
39), (3) to derive equations for pore density of
inter-polymer-particle pores and pore size
distribution of them using R and S, (eq 31 and
34, respectively) [drawback c)], and (4) to give
concrete physical meanings of determining Np
value from the boundary condition [drawback
d)], demonstrating effects of Rand S, on N(r).

THEORETICAL BACKGROUND

Lattice Theory for Vacant-Particle Pore

Pore Radius Distribution. After the growing
particles approached their asymptotic size (i.e.,
the secondary particle; step f in Figure 1), the
particles contact with each other forming pores
by settling the coagulated solution without any
further agitation (step g in Figure 1).

Assume that a membrane consists of
multi-layers (see, Figure 2a) and that the pore
characteristics of a hypothetical plane within
the membrane, parallel to the membrane sur-
face is kept the same.® Consider a hypothetical
plane with thickness 2.5,, parallel to the surface
of the coagulated solution and assume that the
solution consists of the polymer particles with
radius of S, and ‘“hypothetical particles” of
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polymer-lean phase, whose radius is also S,
(see, Figure 2b). Let the number of the polymer
particles per unit area of the plane be re-
presented by N;/(R+1) and that of the hy-
pothetical polymer-lean particles (referred to
as “vacant particles””) by NtR/(R+1). Here,
N; is a total number of both particles in the
unit area of the plane and is roughly estimated
as

1

T s (M

Obviously, a group of vacant particles contact
directly with each other, building a pore.
Hereafter, we call this pore a vacant-particle
pore (Figure 2c). A total number of vacant-
particle pores per unit surface area (i.e., pore
density) is represented by Np.

Assume that polymer particles and hypo-
thetical vacant particles are placed randomly
on a two-dimensional hexagonally close-pack-
ed lattice of the hypothetical plane to evaluate
number of distinguishable arrangements of the
mixtures of the polymer particles and the
vacant particles on the. lattice (Figures 2b and
2¢). In this sense, the lattice coordination
number is six. In the hypothetical planes of a
gel membrane, a portion whose boundary is
fully surrounded by polymer particles and
which is concurrently occupied by the consec-
utively connected vacant particles yields a
vacant-particle pore (Figure 2c). Here, we
neglect the crevasse of the contacted polymer
particles (Figure 2d), which will be discussed
as inter-polymer-particle pore later.

The pore size can be approximately re-
presented by the number x of vacant particles
constituting a single vacant-particle pore. And
a pore radius r distribution N(r) for vacant-
particle pores can be evaluated by translating

P(x)=

WNP_I(NTL—NP—X+ 1)

Wy p(NyL—Np)

a distribution of the number x of vacant
particles constituting single pores on the
hexagonal lattice sites. Consider the case when
NzL vacant particles are divided into N, cells.
Here, L is volume fraction of polymer-lean
phase given by the following equation,

R

L= Q)

To ascertain the existence of Np pores
beforehand, one vacant particle is, in advance
of counting, distributed to each cell. The
number of ways, Wy (NyL— Np) of partition-
ing the remaining (NyL— Np) vacant particles
into Nj cells is given by

{(Np—1)+(NyL—Np)}!
(Np— DI(N;L—Np)!

WNp(NTL - NP) =

3)

After ascertaining the existence of Np vacant-
particle pores by distributing one vacant
particle to all N, cells, a single pore, arbi-
trarily chosen, is fulfilled with (x—1) vacant
particles further to realize the pore with x
vacant particles. Next, the number of ways,
Wyp - 1(NyL—Np—x+1), of partitioning the
remaining (N;L— Np—Xx+1) vacant particles
into (Np—1) pores (i.e., all the pores except
for the pore filled with x vacant particles and
note that the single pore has already x vacant
particles) is given by

Wy, - 1(NeL—Np—x+1)

_{(Np=2) + (NyL—Np—x+1)}!
(Np—2)(NgL—Np—x+1)!

4)

Accordingly, when N, pores are formed by
partitioning N;L vacant particles, the desired
probability P(x) that x vacant particles are
partitioned in a given pore is

(NzL—x—1)I(Np— DI(NyL — Np)!

(Np—2)/(NgL— Np—x+ D!(NyL—1)!
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_(NTL— Np)(NtL—Np—1)- - -(N;L— Np—x+2)(Np—1)
- (NyL—1)(NyL—2)- - -(NyL—X) '

Assuming that Np>>1 and N;L—Np>»Xx, eq 5
can be simplified into

()
(NTL 1)
Np
1<x<N{L and Np<N;L. (6)

On the other hand, for Ny=N;L, x becomes
unity and

for

Px)=1. @)

It should be noted that P(x) is normalized for
the range of x=1 to oo,

=1. 8)

Here, N;L vacant particles are consumed to
build N, pores and then the following equation
of the boundary condition of vacant particles
holds,

N<L

Y. NpxP(x)=N;L. ©)

x=1
By rewriting eq 9 average x can be defined as
follows:

N.L
Np

x= for

NiL>»1. (10)

The radius of pore containing x vacant
particles in wet gel membrane ry,, is defined
by the relation that area of a circular pore with
radius ry,, (= Trye,>) is equal to the summation
of area of the maximum cross section of x

vacant particles (=xnS,?), that is
rwet=x1/282 .

(11

When the radius of wet polymer particles S,
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)

decreases tosz’ during drying (Figure 3), the
following equation holds.

4 4
3nSZ'3dP’=(? nSZ3>vP(2)dPL , (12)

that is

Sz’ = S2<DP(2)dPL>1/3 5

dy (13)

where v, is polymer volume fraction of the
polymer rich-phase in equilibrium, and dp; and
dp' are densities of the polymer itself and of
the dried polymer particles, respectively. In
other words, the volume of a polymer par-
ticle decreases to (4mS,>/3)vp)(dpr/dp’) after
drying.

Accordingly, the pore radius of dry mem-
brane r is related to the pore radius ry,,
corresponding to S, of the wet gel membrane
through the relation (Figure 3):

1/3
r:rwﬂ+{1 —< ”*"Z’d“> }52 . (19
dP/

Combination of eq 11 with eq 14 gives

1/3
r:{x1/2+ I —<A”P‘;’?PL ) }sz R
P

Figure 3. Change in a pore size during drying treatment
under constant membrane width: a), A circular pore
containing seven vacant particles (i.e., x=7) in a wet gel
membrane; filled circles, polymer particles; broken line
circles, vacant particles; both kinds of particles have the
same radius of S,; b), An enlarged pore in a dry membrane;
S,’, a radius of a dry polymer particle; S,’ < S, (see, eq 13).
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At x=1, r given by eq 15 attains the
minimum of radius of vacant-particle pore
consisting of a single vacant particle, r

min-*

1/3
rmi,,:{z—(fm) }52 . (16)
dpl

As the existing probability of the pore with
the radius in the range from r to (r+dr) is the
same as that of the pore consisting of x to
(x+dx) vacant particles, the following relation
holds:

Probability density of
: . x dr
the pore with radius r

__( Probability density of the pore wdx
consisting of x vacant particles

Ny(r)

—NTdr = P(x)dx an

where N, (r) is the not-normalized pore radius
distribution for vacant-particle pores which
satisfies

j N, (r)dr=Np. (18)
0
Equation 17 can be rewritten to yield
d
N =NpP(x) . (19)
dr

On the other hand, eq 15 can be rewritten as

I LA P e ”3}]2
-

and differentiation of eq 20 by r gives

d_xzi[_’__{l _(_Blﬂﬁ)lls}] @
dar S, 8, dy’

In deriving eq 21, we assume that P(x) can be
approximated by the continuous function and
there exists one-to-one correspondence be-
tween x and r, in other words, all the pores in
a plane have the same shape (that is, circular).

It should be noted that x is a function of r,
S, and vy, at the constant dp; and dy’ values
and accordingly, N(r) is a function of r, S,,

444

Upc2)» Vp, and R in the forms:

x=x(r, Sz, vp2)) (22)
and
N (r)=NpP(x(r, S3, Vpz)); Np, L(R))
y dx(r, S, vp2y)
dr
- =N,(r, S3, vpz), Np, R) . (23)

Combination of eq 6, 10, 19, 20, and 21 leads

to
2N, 1
Nv(r)= 3 <f>
S, \x—1
Vp(2)dPL\1/3) 72
x(1—1_> - {1- (g )]
X
L)
Sz dy’
for r>r i, (24)
where
R
Y= 25)
nS,*(R+1)Np

Equation 25 is derived from eq 1, 2, and 10.
From eq 24 it is clear that N(r) for vacant-
particle pores can be evaluated from R, S,, and
Np data if v,,), dp, and dp' are given in
advance.

Pore Density. N;L vacant particles are thus
partitioned on Ny sites of the hexagonal lattice
in the manner so as to build up N, vacant-
particle pores. However, a single vacant-
particle pore should be an assembly of vacant
particles, which can take various forms under
the condition that at least any vacant particle
contacts directly with another vacant particle
or with other vacant particles directly. Con-
sequently, this assembly can give pores with
various pore shapes, which make further
calculation extremely difficult. Then, for the
sake of simplicity, we assume that the assembly
of vacant particles (forming a single vacant-
particle pore) has a strong tendency to form a

Polym. J., Vol. 26, No. 4, 1994
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Figure 4. Approximation of a pore shape and number
of polymer particles needed to surround an assembly of x
vacant particles: a), Schematic representation of regular
hexagonal pores consisting of x;; vacant particles which
are fully surrounded by fy(xy) polymer particles; xy=1,
Sl =65 xy =7, fuly) = 12 xy =19, fu(xn) =18; x,,=37,
Sful(xy) =24; b) Relationship between x and f(x); points
indicate xy and fy(x;) of regular hexagonal pores; full
line, f(x)=(12x—3)"2+3.

circle and that on hexagonal lattice sites any
assembly of vacant particles is regarded as
hexagonal (Figure 4a).

When regular hexagonal vacant-particle
pores consisting of xy vacant particles are
considered (i.e., xy can be 1, 7, 19, 37, - - -, as
is clear from Figure 4a), the minimum number
of polymer particles needed to surround fully
these regular hexagonal pores fy(xy) is given
by {(12x;;—3)"/?+3}. If an assembly of vacant
particles tends to form a circle, the length of
its surrounding should be as short as possible,
and in this case we can approximate the
minimum number of polymer particles needed
to surround fully an assembly of x vacant
particles f(x) by eq 26,

f)=/ 12x=3+3 (x=1). (26)
In Figure 4b, full line is f(x) and closed circles
are fi(xy)-

Polym. J., Vol. 26, No. 4, 1994

Figure S. Some typical arrangements of polymer parti-
cles (filled circles) and vacant particles (unfilled circles) in
the nearest neighbor of a given polymer particles (marked
with +): m, number of vacant particles existing around
the given polymer particle in the center of the nearest
neighbor sites; n, number of different pores which the given
polymer particle can participate to form when the six
nearest neighbor sites around the given polymer particle
are considered; vacant particles constituting a pore are
drawn with bearing the pore number (no. 1—3); dotted
circle, vacant particles existing possibly outside of the six
nearest neighbor sites under consideration; a), m=3, n=3;
b), m=4, n=2; c) Two not-directly connected vacant
particles (unfilled circle with %) connect indirectly by
contacting with other vacant particles outside of the six
nearest neighbor sites in order to form a common pore
(dotted circle with =).

Figure 5a shows that a given polymer particle
marked with (4) mark on the lattice can
contribute to the formation of at most three
different pores when the six nearest neighbor
sites of the given polymer particle are just
considered. Here, these pores are numbered; 1,
2, and 3. In Figure 5b, a given polymer particle
with (4 ) mark should be thought to participate
in the formation of two different pores (no. 1
and 2).

When a single polymer particle is directly
participated to the formation of n pores
(1<n<3), (1) the reciprocal n (i.e., 1/n) is de-
fined as contribution fraction of the polymer
particle to the formation of one vacant-particle
pore, and (2) the number m of vacant particles
existing around the particle (i.e., the number
of the nearest neighbor vacant particles) lies
between 1 and 5 (i.e., 1 <m<5) and (3) the
probability P,(m) that a given polymer particle
is surrounded in part by m vacant particles,
which belong to » different pores is shown in
Table I. Here, we assume that probability of
appearance of a vacant particle and a polymer
particle in every seat on the lattice is the same
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Table I. P,(m) values of hexagonal lattice
P (m)*
m
n=0 n=1 n=2 n=3

0 (1-L)¢ — — —

1 — 6L(1—-L)° — —

2 6L%(1—L)* 9L*(1—L)* —

3 — 6L3%(1—L)* 12L3%1—L)® 2L3%1-L)®
4 — 6L*(1—L)> 9L*(1—L)* —

5 — 6L(1—L) — —

s

—, no theoretical possibility of a given combination
of m and n.

as L and (1-L), respectively. In other words,
particles are distributed on the hexagonal
lattice randomly. When vacant particles are
assumed to gather circularly, we can neglect
the possibility that two not-directly connected
vacant particles, which are the nearest neighbor
of a given polymer particle, belong to a
common pore (Figure 5c), and P;(4)~0 and
P,(5)~0 are expected.

Reciprocal n, 1/n can be averaged over all
possible arrangements of the vacant particles
and polymer particles around a distinguishable
polymer particle:

1
3

T Z {Z ~Pn(m)}
L) 213 ronl

m=1 N

Then, it is clear that (1/n) is determined by the
volume fraction of polymer-lean phase L,
accordingly by the two-phase volume ratio R.

In this manner, in order to form N,
vacant-particle pores, N1L vacant particles are
partitioned into Np hexagonal assemblies. The
number of the assemblies, each consisting of x
vacant particles, is NpP(x) and the number of
polymer particles consumed in order to
surround fully an assembly with x vacant
particles, f(x), is given by eq 26.

The total number of the polymer particles
directly surrounding N, independent pores
should be the total number of the polymer

27
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particles which contribute to form vacant-
particle pores;

particle pores
consisting of x

(Number of vacant-
T
vacant particles

surrounding the vacant-
particle pore consisting

(Numbcr of polymer particles
of x vacant particles

polymer particle to the formation
of one vacant-particle pore

<Average contribution fraction of one>
- <polymer particles

Total number of )

polymer particle contributes

< Probability that a given >
to form vacant-particle pores
that is

NtL

Z NpP(x)f1 (X)< >

_wap[i . PO
p me%
=0 (m=0

%

5 rom}

=N(1-L)| " . (28)
313 nol

which is the boundary condition of polymer
particles.
Equation 28 can be rewritten as follows:

‘i {Z Pn(m)}

No(l—Ly 2"
z{zmm§
sz ! n=0 (m=0
] NtL
(7> ;.f(X)P(X)
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Ni(1—-L)

{”go Pn(m)}

(L)

(for NyL>1)

P {mz P.&m)}

particles which contribute to

< Total number of polymer >
form vacant-particle pores

Average number of polymer
particles which contribute to
form one vacont-particle pore

When we employ P,(m) given by Table I, in
other words, polymer particles and vacant
particles are placed randomly on the lattice,
eq 28 always holds its validity. Here, we define
Np value, which satisfies eq 28, as Ny, Np
decreases when vacant particle has a tendency
to be partitioned in the nearest neighbor of
another vacant particle. Np,, should be taken
as N, theoretically expected for a given com-
bination of R and S, under the random dis-
tribution of particles.

Accordingly, if R and S, are given and values
of Ny, L and (1/n) are calculable, we can obtain

Equ L eq 27 (%)

Eq in Table I

P (m)

)

g

Eq 6

T

(Assumed) Np

xﬂ_z_ﬁ,f(x)/

Ny numerically. Route of calculation of Np,,
for vacant-particle pores is illustrated in Figure
6. Note that Np, <NyL (i.e., x>1) should
always hold. For Np, =N;L, eq 7 is used
instead of eq 6.

Inter- Polymer-Particle Pore

Even if the polymer particles occupy all the
sites of the hexagonal close-packed lattice (i.e.,
R=0), there are numerous small crevasses
between the polymer particles and such cre-
vasses act as pores, as in the case of reverse
osmosis membranes, and are hereafter referred
to as inter-polymer-particle pores (Figure 2d)
in order to distinguish them from the
vacant-particle pores and the crevasse in wet
gel membrane becomes large during drying
when the dimension of the membrane is kept
constant.

Consider a polymer particle with m nearest
neighbor vacant particles, belonging to n
different pores and having n;, inter-polymer-
particle pores. When m=0 (and accordingly,
n=0), ng=6 is obtained. In this manner, we
can calculate n;, value for a given combination
of m and n, as shown in Figure 7. Cases such
as m=0and n=1 are not theoretically realized
and shown as blanks with a slash mark in
Figure 7. In a case of m=3 and n=3, there is

Figure 6. Route of calculation of N, for vacant-particle pores from R and S,.

Polym. J., Vol. 26, No. 4, 1994
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Figure 7. Theoretically possible arrangements of inter-
polymer-particle pores existing around a given polymer
particle: Six nearest neighbor sites around a given polymer
particle are just considered; n;, number of the inter-
polymer-particle pores; m, number of vacant particles
existing around the given polymer particle in the center;
n, number of different pores which the given polymer
particle can participate to form; filled circle, polymer
particle; dotted unfilled circle, vacant particle; small
unfilled circle, inter-polymer-particle pore.

no probability of finding inter-polymer particle
pores (i.e., ng=0).

Then, the average number of inter-polymer-
particle pores directly contacted with a given
single polymer particle, 7, is given by

448

Figure 8. Change in pore size of an inter-polymer particle
pore after drying: Broken line circle, wet polymer particle;
full line circle in hatched area, wet inter-polymer-particle
pore; S,, radius of a wet polymer particle; S,’, radius of
a dry polymier particle; hatched area, inter-polymer particle
pore after drying; blacked area, dry polymer particle.

3

2 { io n(i,P,,(m)}

n=0 (m=

(5 o

n=0 (m=0

(30)

As one inter-polymer-particle pore contacts
three polymer particles, a number of inter-
polymer-particle pores in unit area of a
membrane Np, is ,

(€2))

An inter-polymer-particle pore is formed by
mutual contact of three polymer particles and
the radius of the inter-polymer-particle pore,
roywe Of @ wet gel membrane, which is noticed
by the radius of an inscribed circle, is related
to S, through the relation,

)
Fowe=|———=-—1)S,.
(Wet (\/—3— 2

After drying S, changes to S, (eq 13),
keeping its center at the same position, as
shown in Figure 8 and the radius of the
inter-polymer-particle pore of dry membrane
r; is readily obtained by adding the difference
between S, and S,’ in eq 13 to rgw, in eq 32:

(32)

Foy=Tiwe T (S2—355)
= <‘2 — 1>S2 + { 1— (”pmdPL)”s}S
J3 dy’ ’
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={——2 —<L"2’fjn)m}sz. (33)
N

The pore size distribution N(r) for inter-
polymer-particle pores, denoted by N,(r) can

be given as:

Ni(r)= NP(i)é(r - "(i)) (34)

where d(r) is the J-function which satisfies
Schema of calculating Np;, and Ny(r) is shown
in Figure 9. Note again that eq 24 and 34

are derived assuming that the super-particle
structure (morphology) of coagulated polymer

o(rydr=1. (35)

@e_qi,l Eq in Table I P,(m)

Fig.7 l

ng)

\

particles does not change through collapse
during the phase separation (step f of Figure
1), the coagulation (step g) and drying (step j).
At a latter step, radius of the polymer particle
changes only by a factor of (v,,dp/dp).

Porosity of Membranes

Gel Membranes. Suppose that a polymer
solution is cast on a plate to give a thin solu-
tion film with a thickness of L, (Figure 10a):
In wet method, the cast solution is dipped in
a coagulating solution consisting of non-
solvent(s). In dry method, the cast solution
is settled in an atmosphere of nonsolvent(s).
Phase separation occurs at the surface of the
cast solution and it proceeds from the surface
to the inner part of solution (Figures 10g and

S, Eq 30— 76—

Eq 31

— N(r)

. Np(i,l 4 34_[(n.(r) }—|Eq 57

eq 1

Ny

(eq 56)

N,(r)

Figure 9. Route of calculation of Ny and Ny(r) for inter-polymer-particle pores from R and S,.

g) Proceeding of
phase separation
& contraction of
layers

f) Phase separation
in the 1st layer

a) cast solution

j) ory membrane

h) Gel membrane

i) Regeneration

Figure 10. Schematic representation of changes of membrane thickness during membrane formation
process: a), Casting of polymer solution; f), Starting of the phase separation; g), Proceeding of phase
separation and contraction of thin layers; h), Gel membrane (end of the over-all phase separation); 1),
Regeneration; j), Dry membrane; unfilled circle, vacant particle; filled circle, polymer particle; hatched
area, homogeneous polymer solution not yet phase-separated; unfilled circle in the hatched area, position
of particles to be created by phase separation; L, thickness of cast solution; L,, thickness of gel membrane;
L,, thickness of dry membrane; arrows indicate a layer where the phase separation has just occurred and
the layer-contraction has not occurred yet; steps a and f—j correspond to those of a and f—j in Figure 1,

respectively.
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10h). We define the volume fraction of a
polymer-lean phase in a hypothetical layer at
the moment of phase separation as Pr(PS),
which is given by the relation

R

Pr(PS)=——.

R+1 (36)

During the progress of phase separation, the
thickness of the cast solution decreases and a
coagulated gel membrane with thickness L, is
formed (Figure 10h). The volume fraction of
vacant particles in the gel membrane Pr(GEL)
is governed by the degree of collapse of thin
layers.

In a case where two hypothetical layers
having the same Pr(PS) collapse into a “‘single
layer”, it is required that a vacant particle in
the upper layer is just superposed with another
vacant particle in the lower layer in order to
find a vacant particle in the ‘“single layer”.
The probability of occurrence of the above
phenomenon (i.e., the porosity) is {Pr(PS)}>.
Accordingly, Pr(GEL) is equal to the porosity
of a “single layer” formed by the collapse of
k hypothetical layers is given by

Pr(GEL)={Pr(PS)}¥ = (RL;J" Y

Here, the following relation holds approx-
imately:

(38)

The porosity of gel membranes consisting of
collapsed hypothetical layers, Pr(GEL)
equivalent with apparent volume fraction of
polymer-lean phase L,.

Next, we define apparent phase volume ratio
R, by the relation

Ry=—" "1 (39)

For the gel membranes formed after collapse

450

of hypothetical layers, R in eq 25 should be
substituted with R, in calculation of N(r).

L, (=Pr(GEL)) is defined by
RA
R,+1

Ly= (40)
and it should be substituted with L in cal-
culation of eq 3—6, eq 8—10, eq 27—31, and
equations in Table 1.

Dry Membranes. After gel membranes with
thickness L, are formed, the membrane is
treated with acid for generation of cellulose (if
necessary) and washed and dried.

Considering an increase in volume of both
vacant-particle pores and inter-polymers-par-
ticle pores due to de-solvation of polymer
particles in drying step, the porosity of dry
membrane Pr(d) (as denoted by Pr(d,))is given
by eq 41,

S5\
Pr(d1)={l—<—> }(I—LA)+LA
Sz
=<1 (2)

dy’

S,’ is the radius of dry polymer particle (see,
eq 13). In deriving eq 41, it is assumed that
pore density N, does not change during drying
step, and Pr(d,) represents the summation of
porosity of vacant-particle pores and that of
inter-polymer-particle pores.

)(1 Ly+L,. (41)

EXPERIMENTAL

Preparation of Cellulose Membranes

Cellulose cuprammonium solution with the
cellulose concentration (weight fraction) we,, =
0.04 to 0.09 was prepared by diluting with
ammonium-water solution (the weight fraction
of ammonia wyy,=0.28) an original cellulose
cuprammonium solution, whose compositions
were we,; = 0.10, the weight fraction of copper
Wey=0.0395, wyy,=0.0703, and the weight
fraction of water wy,,=0.7902.

Cellulose cuprammonium solutions with wc,,
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of 0.04 to 0.10 were cast on flat glass plates,
respectively. The cast solutions, having 500 um
thickness (= L), cast on the glass plates, were
immersed in a coagulating solution containing
acetone, ammonia and water (the weight
fraction of acetone Wy cione : WNH; : WHy0 =
0.30:0.0056:0.6944) at 298.15K. After coagu-
lation, the gel membranes were peeled off
from the glass plates and treated with sulfuric
acid-water solution (the weight fraction of
sulfuric acid=0.02) at 293.15K, and then
washed with water. The wet membranes were
immersed in acetone and then dried at 298.15K
under fixed length without dimensional change.
Thickness of dry membrane L, was measured
by using an upright dial gauge (manufactured
by Ozaki Seisakusho Co., Japan).
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