Second and Third Virial Coefficients for Polyisobutylene in the Vicinity of the Theta Point

Abstract

The second virial coefficient A2 and the third virial coefficient A3 have been determined for five polyisobutylene fractions ranging in weight-average molecular weight Mw from 8×104 to 1.6×106 in isoamyl isovalerate at different temperatures T between 21 and 37°C by light scattering. The theta temperature Θ where A2 Vanishes is found to be 27°C independent of Mw. The curve of A3 vs. T obtained for each fraction has a broad minimum around Θ, and the minimum becomes very shallow as Mw decreases. These features are very similar to those observed previously for polystyrene in cyclohexane. The values of A3 at Θ are in the range between 3×10−4 and 7×10−4 mol g−3 cm6, and thus demonstrate the breakdown of the binary cluster approximation to A3 for polyisobutylene near Θ. It is shown that existing theories of A2 and A3 are incapable of explaining consistently the positive A3 at Θ and the molecular weight independence of Θ in the range of Mw studied, as found to be the case for polystyrene.

References

  1. 1

    Y. Nakamura, T. Norisuye, and A. Teramoto, Macromolecules, 24, 4904 (1991).

  2. 2

    H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper & Raw, New York, 1971.

    Google Scholar 

  3. 3

    T. Matsumoto, N. Nishioka, and H. Fujita, J. Polym. Sci., A-2, 10, 23 (1974).

  4. 4

    F. Abe, Y. Einaga, and H. Yamakawa, Macromolecules, 24, 4423 (1991).

  5. 5

    Y. Nakamura, K. Akasaka, K. Katayama, T. Norisuye, and A. Teramoto, Macromolecules, 25, 1134 (1992).

  6. 6

    Gj. Deželić and J. Vavra, Croat. Chem. Acta, 38, 35 (1966).

  7. 7

    D. N. Rubingh and H. Yu, Macromolecules, 9, 681 (1976).

  8. 8

    G. C. Berry, J. Chem. Phys., 44, 4550 (1966).

  9. 9

    T. Sato, T. Norisuye, and H. Fujita, J. Polym. Sci., B: Polym. Phys., 25, 1 (1987).

  10. 10

    Y. Nakamura, T. Norisuye, and A. Teramoto, J. Polym. Sci.. B: Polym. Phys., 29, 153 (1991).

  11. 11

    C. E. H. Bawn, R. F. J. Freeman, and A. R. Kamaliddin, Trans. Faraday Soc., 46, 862 (1950).

  12. 12

    T. Norisuye and H. Fujita, ChemTracts-Macromol. Chem., 2, 293 (1991).

  13. 13

    H. Murakami, T. Norisuye, and H. Fujita, Polym. J., 7, 248 (1975).

  14. 14

    P. J. Flory and H. Daoust, J. Polym. Sci., 25, 429 (1957).

  15. 15

    T. Konishi, T. Yoshizaki, and H. Yamakawa, Macromolecules, 24, 5614 (1991).

  16. 16

    B. H. Zimm, J. Chem. Phys., 14, 164 (1946).

  17. 17

    B. J. Cherayil, J. F. Douglas, and K. F. Freed, J. Chem. Phys., 83, 5293 (1985).

  18. 18

    H. Yamakawa, J. Chem. Phys., 45, 2606 (1966).

  19. 19

    O. Kratky and G. Porod, Rec. Trav. Chim., 68, 1106 (1949).

  20. 20

    H. Yamakawa and W. H. Stockmayer, J. Chem. Phys., 57, 2843 (1972).

  21. 21

    H. Yamakawa, Macromolecules, 26, 5061 (1993).

  22. 22

    H. Yamakawa, Macromolecules, 25, 1912 (1992).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akasaka, K., Nakamura, Y., Norisuye, T. et al. Second and Third Virial Coefficients for Polyisobutylene in the Vicinity of the Theta Point. Polym J 26, 363–371 (1994). https://doi.org/10.1295/polymj.26.363

Download citation

Keywords

  • Second Virial Coefficient
  • Third Virial Coefficient
  • Polyisobutylene
  • Theta Point
  • Three-Segment Interaction
  • Two-Parameter Theory
  • Light Scattering

Further reading

Search