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ABSTRACT: Taking account of the geometric structure of side groups, the unperturbed 
mean-square radius of gyration <S2 ) of the typical polymer chains are derivated by using the 
rotational isomeric state theory. If the masses of the side groups are ignored, the expression of 
<S2 ) is in agreement with that reported by Flory. The root-mean-square radius of gyration of 
isotactic 1,2-polybutadiene is numerical calculated as <S 2 ) 112 =0.298M 112 and the characteristic 
ratio of mean-square radius of gyration is greater 11 % than that without considering the geometric 
structure of side groups. 
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The rotational isomeric state approximation 
(RIS) has been used successfully to treat several 
properties of the polymer chains. 1.2 The theory 
is widely used to calculate the characteristic 
ratio Cn=<R 2 )/Nt2 and the temperature 
coefficient d(ln<R 2 ))/dT of the mean-square 
end-to-end distance <R 2 ) of polymer chains. 
In general, <R 2 ) is obtained from the mean­
square radius of gyration <S2 ), measured by 
light-scattering or small-angle-neutron-scatter­
ing. 3 - 7 Therefore, it is particularly important 
to estimate the value of <S2 ). The mean­
square radius of gyration of polymer chains 
without considering side groups, such as 
polyethylene (the effect of bond C-H is 
ignored), have been investigated by using the 
RIS theory. Recently, <S2 ) for the polymer 
with single side group has been studied. s- io 

The calculated values of <S2 ) for polyethylene 
(PE) and polypropylene (PP) with considering 
side groups (C-H) and (C-CH 3) are more 

approched to the experimental data. In this 
paper, the mean-square radius of gyration of 
polymer chains with two side groups, which 
have the different geometric structures and the 
heavier group masses, are investigated by using 
the RIS theory, and the expression for <S 2 ) 

may be apply to 1,2-polybutadiene (1,2-PBD), 
PP, polydimethylsiloxane (PDMS), and other 
monsubstituted polymers. 

INVESTIGATION OF <S2 ) FOR 
POLYMERS WITH DIFFERENT 

SIDE GROUPS 

A monosubstituted polymer chain with two 
side groups, shown in Figure l(a), consists of 
x monomeric units. Each contains the atoms 
a, b, c, and f. The masses are ma, mb, me, and 
mr, and the bond lengths la, lb, le, and lr, 
respectively. The skeletal atoms are numbered 
from O to 2x, and the side groups b and c are 
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from (x+ 1) to 3x, and (3x+ 1) to 4x, 
respectively. The square radius of gyration of 
the polymer is defined by 

(1) 

where Mis the molecular weight, mi is the mass 
of atom (or group) j, and si is the distance of 
atom j from the center of mass of the chain. 
Equation 1 may be also expressed as1 

3x 4x ) 

+ L L + I m;m/& 
i=2x+l j=3x+l 2x+lsi<js4x 

(2) 

where r;i is the distance from atom i to j, rii 
can be calculated by following way. The 
skeletal bond vector is founded on the bond 
j with the direction from atom j- I to j. Here, 
vector 0 is also expressed by matrix T; 

(3) 

with 3 x 1 orders. A series of Cartesian 
reference frames {xi, Yi, zi} affixed to consecu­
tive skeletal bond vectors are connected by the 
axis transformation matrices Ti expressed by 

Ti= I sinc;::s <P - co:i; :os <P si: <P J 
L sin e sin <P - cos e sin <P _ cos <P j 

(4) 

where ei, the supplementary of bond angle, is 
the angle between bond vectors 0 and 0 + 1 . 

That is, ea or 8r is between vectors and 4 or 
vectors 4 and~ respectively. <Pi is the angle of 
internal rotation for bond}. That is, <Pa and <Pr 
are the angle for bonds a and f respectively. 
Therefore the distance rii can be expressed by 
maxices Ti and 0- In accordance with the RIS 
theory, 1 the average value of S 2 , which is 
expressed by <S 2 ), may be calculated by the 
statistical weight matrix ui depended on the 
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conformation of the polymer. The conforma­
tion for some polymers, depend on the 
rotational angle <Pi, is described by three-state 
model, one for the trans (t) and two for the 
gauche (g+, g-). The internal rotation of the 
side bonds may be ignored. Then, two statis­
tical weight matrices ua and Ur, depended on 
the states of <Pa and <Pr, are enough to describe 
the statistical characteristics of the chain in 
Figure l(a). Therefore, <S 2 ) is 

<S 2 )=M- 2(<Sf)+<SI)+<SJ)) (5) 

where 

<Sf)= L m;mi<r'f) (6) 
0si<js2x 

3x 4x ) 

+ I L m;mi<rG) 
i = 2x + 1 j= 3x + 1 

(7) 

<SD= L m;mi<r&> (8) 
2x+ 1 si<js4x 

<Sf) only relates to the skeletal atoms. 
Following Flory, 1 •2 it has been given as 

<Sf)= 2z- 1 F"G?x>F= 2z- 1 F"(GaGr Y F 

(9) 

where 

F"=[l O···O] F=[0···0 11 IY(lO) 

l ui mi_ 1Pgi mi_ 1m/ll/2)ui J 
Gi= 0 gi migiQ (11) 

0 0 ui 

F", F, and Gi are matrices with 1 x21, 21 x 1, 
and 21 x 21 orders respectively. j is taken 
1,3,5 ··· 2x-lfortheatomaand0,2 ··· 2x 
for the atom f. The partition function Z is 

Z=J"u~2x)J=J"(uaurYJ (12) 

where 

J"=[l O OJ J=[l 1 IY (13) 
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Figure 1. (a): Diagrammatic representation of the monosubstituted polymer with two side groups. (b): 
Diagrammatic representation of the consecutive Cartesian reference frames affixed to bonds. 

=g(uj, (, T) 

L 7l~.l 
0 

II Tllj= T(<Pg+) 

0 

(l}/2)ui J 
ui®½ 

ui 

(14) 

J (15) 

T(<Pg-) J 

J"', J, gj, and II T Iii are matrices with I x 3, 
3 x 1, 15 x 15, and 9 x 9 orders. 

The expressions of (S}) and (Sl) must take 
account of the structure of the side groups in 
every repeat units. The mark from O to 4x in 
Figure l(a) are renumered serially from O to 
6x in Figure l(b). Similarly, new Cartesian 
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reference frames {xi' y i' z i} affixed to the 
skeletal bonds and side group bonds are 
founded as shown Figure I (b ), where j is taken 
with 6i- 5, 6i-4, 6i- 3, 6i-2, 6i- 1, and 6i 
( or expressed as a, b, c, d, e, and f) respectively 
in the i-th repeat unit, and i is taken from 1 to 
x. Let the axis x 6;- 5 , x 6; _ 4, x 6;- 3 , and x 6; of 
the consecutive coordinate systems affixed to 
the bonds be in the direction of the bond vectors 
~, 4,, t and 4, respectively. The axis x 6 ;_ 2 and 
x 6 ; _ 1 affixed to the bonds b and c in opposite 
direction of the bond vectors 4, and ~' 
respectively. The axis Yi and zi are defined by 
the similar way to the RIS theory. Then, 0~ is 
the angle between axis x 6 ;-s and x6 i_ 4 ; eh is 
that between axis x 6 ;_ 4 and x 6 ;_ 3 or x 6;-z and 
x6i-1; and ee is that between x6i-1 and x6i· <Pj 
may be separated into two parts, <Pi and <1>;. 

123 



H. MA and L. ZHANG 

The former describes the states of internal 
rotation ofbondj. The latter, depended on the 
geometric structure of the polymer, denotes the 
dihedral angle between plan xiyi and plan 
xi+ 1Yi+ 1 when <Pi is in trans. Therefore, in each 
repeat unit, the axis transformation matrix Ti 
relating to consecutive coordinate systems is 
given by eq 4 as 

T6;- 5 =T.=T(0~, <P.+<P~) 

T6;- 4 = Tb= T(0b, <P~) 

T6 ;_ 3 =Tc= T(l80°, 0°) 

T6;-2=Td=T(0b, 180°) 

T6i-1 =Te= T(0e, <P;) 

T6 ; =Tr= T(0r, <Pr+ <Pi) 

i= ], 2, 3 · · · X 

where <P~ and <P; can be calculated by 

cos <P; = -(cos ee + cos e~ cos e.)/sin e~ sine. 

cos <P; = -(cos e~ + cos 0r cos 0e)/sin 0r sin ee 

(16) 

(17) 

(18) 

<P~ and <P; are correlative to the dihedral angle between the plan of side groups and the plan 
of the skeletal bonds in all-trans, and <P~ and <P; are connected by 

cos e; cos ee cos2 eb +sine~ sin ee sin 2 eb +sine; sin ee(cos <P~ cos <P; + sin <P~ sin <P;) = -cos e. (19) 

Moreover, <P1 may be taken with the same angles in all repeat units for isotactic polymers, and 
with the different angles in the alternating units for syndiotactic polymers, even with the angles 
of probability in the different units for atactic polymers by using the computer simulation. 
Because of ignoring internal rotation of bonds b and c, i.e., 

(J=6i-4, 6i-3, 6i-2, 6i- l orb, c, d, e) 

then, the statistical weight matrix ui is 

(i=2, 3, · · · x) 

(J=6i-4, 6i-3, 6i-2, 6i- l, 1, 6x) 

(i = 1, 2, · .. x- 1) 

(20) 

(21) 

(22) 

(23) 

with E3 being the identity matrix of orders 3. Using the method of matrix algebra, <SJ) can 
be derivated by 

where 

( 
x 3x x 4x ) 3x 4x 

+ m.mb --~ _ L +m.mc --~ _ L <rl) +mbmc _ L _ L <rl) 
, =1;=2x+l , =1 ;=3x+l ,=2x+l ;=3x+l 

i' = j/2 

i" =(i+ 1)/2 

(J=0, 2, 4 · · · 2x) } 

(J= 1, 3, 5 · · ·2x- l) 

Following Figure l(b), <Si) is also expressed as 

(24) 

(25) 
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X X X X 

(S]) =mrmb L L (r~h,6k-4) +mrmc L L (r~h,6k-3) 
h=Ok=l h=Ok=l 

X X X X 

+mamb L L (r~h-5,6k-4) +mamc L L (r~h-5,6k-3) 
h=lk=l h=lk=l 

X X 

+mbmc L L (r~h-4,6k-3) 
h=l k=l 

O<;h<k<;x 

O<;h<k<;x 

+m m [ f ,2 +4z-1J"' " u(6h-5)pg(6k-6h+l)Qu(6x-6k+4)J] 
a b L, 6h-5,6k-4 L, 1 6h-4 6k-3 

h=l l<;h<k<;x 

+m m [ f ,2 +4z-1J"a ';:' u(6h-5)pg(6k-6h+2)Qu(6x-6k+3)J] 
a C L, 6h-5,6k-3 L, 1 6h-4 6k-2 

h=l l<;h<k<;x 

+m m [ f ,2 +4z-1J"a " u(6h-4)pg(6k-6h+l)Qu(6x-6k+3JJ] (26) 
b C L, 6h-4,6k-3 L, 1 · 6h-3 6k-2 

h=l l<;h<k<;x 

where 

P=[E3 OJ, (27) 

P and Q are matrices of 3 x 15 and 15 x 3 orders, respectively. The first terms in eq 26 can be 
expressed by 4mrmbz- 1 F"' S(l )\xJ F, where 

S(l);{ u~~>-s Pg~~>_ s Pgi7~ 5Qu~4;)_ 3 

0 gi1~ 5 gi7~ sQu~4;>_ 3 

0 0 u~~>_ s 

and gi from eq 14 may be expressed by 

g6i-5 = ga = g(ua, la, Ta) 

g6i-4=gb=g(E3, lb, Tb) 

g6i-3 = gc = g{£3, le, Tc) 

g6i-2=gd=g(E3, le, Td) 

g6i-1 =ge=g(£3, lb, Te) 

g6i=gr=g(uf, Ir, Tr) 

more·over, S(l)i may be identified with 

S(l){ uauf Pgagbgcgdgegf PgagbQur 

0 gagbgcgdgegf gagbQur 

0 0 uauf 
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(29) 

l (30) 
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Similar to the other terms in eq 26, then, (Si) can be given 

(Si) =4Z- 1[mrmbF"' S(JYF +mrmcF"' S(2YF 

+mambF"' S(3Y F +mamcF"' S(4Y F +mbmJ"' S(5Y F] 

where 

S(2){ uauf Pgagbgcgdgegf Pg.g,,g,Qu, j 
0 9a9b9d9c9e9f 9a9b9cQuf 

0 0 uauf 

8(3){ UaUf UaP9b9c9d9e9f (t;J4)u.u, j 
0 9a9b9c9d9e9f 9a9bQuf 

0 0 UaUf 

S(4){ uauf uaP9b9c9d9e9r (,;J4)u,u, j 
0 9a9b9c9d9e9f 9a9b9cQuf 

0 0 UaUf 

S(5){ uauf uaP9c9d9e9r (l; /4)uauf j 0 9a9b9c9d9e9f 9a9b9cQuf 

0 0 uauf 

r;c = I; + I; + 2/b/c cos 0b 

they are matrices of orders 21 x 21. Similarly, (Sf) can be derivated by 

=mt L (r~h-4,Gk-4) +m~ L (r~h-3,Gk-3) 
lsh<ksx lsh<ksx 

-2z-1[m2J"' '\"' u(6h-4)pg(6k-6h)Qu<6x-6k+4)j 
- b L.., 1 6h - 3 6k - 3 

lsh<ksx 

+m2 J"' '\"' d6h-3)pg(6k-6h)Qu(6x-6k+3)J] 
C L, 1 6h-2 6k-2 

lsh<ksx 

= 2z- 1 [ mtF"' S( 6Y F + m~ F"' S(7Y F] 

where S(7){ uauf UaP9d9e9r 

S(6){ UaUf UaP9c9d9e9r 0 

j 
0 9a9b9c9d9e9f 

0 9a9b9c9d9e9f 9a9bQuf 0 0 

0 0 UaUf 

(38) Therefore, the unperturbed 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

0 

j 9a9b9cQuf 

UaUf 

(39) 

mean-square ra-
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Mean-Square Radius of Gyration of 1,2-PBD 

dius of gyration of the polymer chains, such 
as isotactic and syndiotactic 1,2-PBD, can be 
calculated by eq 5~-39 or by the following 
equation 

<S 2 ) =2z- i M- 2 F"'(G.GrYF 
7 

+2z-iM- 2 L m(q)F"'S(qYF (40) 
q= i 

where m(l)~m(7) replace 2mrmb, 2mrmc, 

2m.mc, 2m.mc, 2mbmc, mt and mz, respectively. 
The first term in eq 40, only related to the 
skeletal atoms of the polymer, is derivated 
without considering the side groups. The 
second term may be regarded as the revision 
with considering the geometric structure of side 
groups. The expression 40 is easy to be executed 
numerical calculation. 

If the geometric structure of the second side 
groups for the polymer chain is ignored, eq 40 
can be reduced to that of the polymer chains 
with single side group as follows: The first, the 
mass mb is assumed to be zero, eq 40 may be 
simplified to 

<S 2 ) = 2z- i M- 2 F"'[(G.GrY +2mrmcS(2Y 

+ 2m.mcS( 4Y + mz S(7Y]F ( 41) 

The second, the structure of side groups is 
changed into one side group instead of two side 
groups. Let vector ( be taken in the direction 
of vector 4,, i.e., Ob and cPb are regarded as 0° 
and 180° respectively, or the axis transforma­
tion matrices Tb and Td become the identity 
matrix. Then, c1>; given by eq 19 as 

cos c1>; = (cos o. + cos oe cos e;)/sin oe sine~ 

(42) 

The third, the bond length lb is regarded as 
zero. Substituting eq 16-18 and 42 into eq 29, 
g i can be expressed by 

g.=g(u., l., T.)=ga 

gb=g(E3, 0, E3)= Eis 

gc=g(E3, le, Tc)=gp 

gd = g(E3, le, E3) 

ge = g(E3, 0, Te) 

(43) 

where Eis is the identity matrix of orders 15. 
Moreover, we have 

gdgc = g(E3, /e, Te)= gy (44) 

Then, S(2), S(4), and S(7) can be simplified 
to 

S(2)-L 

S(4){ 

X6i-4 

u.ur Pgagflgygb PgagpQUr 

0 gagflgygb gagpQUr 

0 0 u.ur 

u.ur u.Pgflgrgo (lz /4)u.ur 

0 gagflgygb gagpQur 

0 0 u.ur 

6:x:-4 6x-2 

X6i-5 

6x 

3,' 

6x 

] 
(45) 

] 
(46) 

Figure 2. Diagrammatic representation of the consecutive Cartesian reference frames affixed to the bonds 
for the polymer, such as PDMS. 
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Figure 3. Schematic representation of the isotactic 1,2-polybutadiene chain in the all-trans. 

L UaUr uaP9y9o O J 
S(7)= 0 9a9p9y9o 9a9pQUr 

0 0 UaUr 

(47) 

Therefore, eq 41 can be investigated the mean­
square radius of gyration of the polymers with 
single side group, such as isotactic and 
syndiotactic PP. 

The monosubstituted polymer chain shown 
in Figure 3 is also investigated by eq 40. The 
mass m j, the bond length lj and the angle 0 j 
are defined as above or shown in Figure 2. The 
axis transformation matrix Tj is given by 

T6i-s=T.=T(0~, <l>a+<l>~) 

T6 i_ 4 = Tb= T(l80°, 0°) 

T6i-3 =Tc= T(0c, <1>~) 

T6 i- 2 = Td = T(180°, 0°) 

T6i- 1 =Te= T(0e, <1>;) 

T6i =Tr= T(0r, <Pr+ <1>;) 

(48) 

where <1>~, <1>~, <1>~, and <1>; can be calculated by 

cos <1>~ = -(cos ec + cos 0~ cos e:)/sin 0~ sin; 

(49) 

cos <1>~ = (cos e: + cos 0~ cos e.)/sin 0~ sin ec 

(50) 

cos <1>~ = (cos e; + cos ec cos 0e)/sin ec sin ee 

(51) 

cos <1>; = -( cos 0;' + cos Br cos 0 e)/sin 0 e sin 0r 

(52) 
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where e; is angle between axis x 6 i-s and x 6;- 2 , 

e; is angle between x 6 ;_ 3 and x 6 i. Then, gj may 
be expressed by 

96i-5 = 9a = g(ua, la, Ta) 

96i-4=gb=g(E3, lb, Tb) 

96i-3 =gc=g(E3, lb, To) 

96i-2 = 9d = g(E3, Id, Td) 

96i- I= 9e = g(E3, /d, Te) 

96i = 9r = g(ur, lr, Tr) 

(53) 

where the statistical weight matrix uj is also 
given by eq 21-23. The expression of S(I), 
S(3), and S(6) are similar expressions to eq 30, 
33, and 38, respectively. Others of S(q) are 
given 

I u,ur 

S(2)=L 
0 

Pg.gbgcgdQur J 
9a9b9c9dQur 

u.ur 

(54) 

u.ur uaP9b9c9d9e9r (lJ/4)u.ur J 
0 9a9b9c9d9e9r 9a9b9c9dQur 

0 0 u.ur 

(55) 

S(5){ u.ur u.Pgc9d9e9r (r~d/4)u.ur 

J 0 9a9b9c9d9e9r 9a9b9c9dQur 

0 0 u.ur 

(56) 
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S(7){ 0 

0 

uaPgegf O J 
gagbgcogdgegf gagbgcgdQuf 

uauf 

(57) 

where 

(58) 

m(I )~m(7) in eq 40 replaces 2mrmb, 2mrmct, 
2mamb, 2mamct, 2mbmd, m~, and m~, respect­
ively. Therefore the mean-square radius of 
gyration of the polymer with considering two 
side groups, such as PDMS, may be inves­
tigated by eq 40, too. 

If the structures of two side groups are 
ignored, or the masses of side groups b and c 
in Figure 1 (orb and d in Figure 2) are assumed 
to be zero, the second term of eq 40 becomes 
zero. Then, the expression is in agreement with 
that by Flory. 1 •2 

CALCULATION OF <S2 ) FOR 
ISOTATIC 1,2-POLYBUTADIERE 

The unperturbed mean-square radius of 
gyration for one polymer depends on the 
conformational characteristics, the geomatric 
structure and the distribution of atom masses 
in a monomer. Such as isotactic 1,2-PBD 
shown in Figure 3, the conformation can be 
described by three-state model, the trans (0°) 
and the gauche (120° and -120°). The 
statistical weight matrices ua and ur are11 - 15 

L 17w" rw' J 
Ua = 1J w rw' 

17w' w' rww" 

(59) 

u,{ 0 : J (60) 

where the statistical weight 1J is the first-order 
interaction between caH and C "H, r is that 
between caH and C "H, CH2 ; w, w' and w" 
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are the second-order interaction between CH 2 

and CH2 , C2H 3 and CH2 , C2H 3 and C2H 3 , 

respectively. The statistical weight corre­
sponding to the temperature T may be defined 
by the relationship 

= ~o exp( - E~/ RT) 

(~=1J, r, w, w', w") 
(61) 

where 

E{= (£0 /2)(1-cos 34>J + L (aap/r~f-bap/r~p) 
a</3 

(62) 

the barrier height £ 0 is 11. 70 kcal mo1- 1 . The 
interaction parameters aa/3 and ba/3 are listed in 
Table I(a). The conformational energy E~ and 
the conformational parameter ~o are given by 
Table I(b). 15 The geometric parameters for 
isotactic 1,2-PBD are listed Table I(c), and the 
dihedral angle between the plan of side groups 
and the plan of skeletal bonds in all-trans is 
90°. Thus, 4>~ can be calculated by 

Table l(a). Exclusionary parameter a,,p and 
London astigmatic parameter b,p 

Atom and a,p x 10- 5/ b,p X 10- 2 / 

atoms pair A'2·kJ·mo1-1 A6 ·kJ ·mol- 1 

C -- · C 16.5 15.2 
C -- · H 2.3 5.3 
H -- · H 0.3 2.0 

C" -- · C" 46.7 22.8 
C"' -- · C 27.9 18.6 
C" -- · H 4.3 6.5 

C2H 3 • · • C" 697.2 192.2 
C2 H 3 • • • C 110.0 53.7 
C2H 3 · · · H 17.7 19.3 

Table I(b). The conformational energies Es and the 
conformational parameter !; 0 for isotactic 1,2-PBD 

c; C:o E,/J·mol- 1 

11 1.0 1670 
T 0.4 4180 
(J) 0.7 2930 
w' 1.2 5850 
w" 1.0 10450 
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Table I(c). The geometric parameter for 
isotactic l,2-PBD 

Bond 
Bond 

Bond angle Angle/° 
length/A 

C-C" 1.53 L cc·c" L cc·c 112 
C"-C" 1.51 LC"CC" 112 
C"=C 1.35 LC"C"C 120 

(52)/ 2xl2 1 ---------2 

0.5 

0 50 100 150 200 X 

Figure 4. The characteristic ratios (S 2 )/2x/2 vs. the 
degree of polymerization x at 340 K for isotactic 1,2-
polybutadiene considering side groups I and without 
considering side groups 2. 

sin cl>~= -(cos(0a/2))/sin0~ (63) 

Substituting the geometric parameters into eq 
17-19 and eq 63, we have 

cl>~= 126.8° ' 

cl>~= - 63.4° ' 
(64) 

The characteristic ratios of mean-square radius 
of gyration <S2)/2x/2 vs. the degree of poly­
merization x at 340 K for isotactic 1,2-PBD 
with considering side groups and without 
considering side groups may be numerical 
calculated shown in Figure 4, where l is the 
length of bond ca-c. The ratio of mean-square 
radius of gyration for isotactic 1,2-PBD with 
considering side groups is greater 11 % than 
that without considering side groups wh.en x 
exceeds 200. The root-mean-square radius of 
gyration, depended on the molecular weight 
M, is 

<S2) 112 =0.298M 112 (65) 
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The mean-square radius of gyration for 
isotactic PP with considering side groups, 
which has been reduced as eq 14-47, is given 
the identical result with the experimental data, 
i.e., the molecular weight dependence of root­
mean-square radius of gyration is obtained as 

(66) 

Besides, the relation for PE without considering 
side groups is given 1 

and with considering side groups given10 

<S2)1;2 =0.44M1;2 

(67) 

(68) 

the latter is more approached to the experi­
mental data9 

<S2)1;2 = 0.4SM112 (69) 

The ratio for PE with considering the side 
group is greater 8% than that without con­
sidering the side group. Obviously, if the 
geometric structure of side groups is con­
sidered, the centers of mass of monomers will 
be changed. Then, the distances of the center 
of mass of chain from the centers of mass of 
each monomer are changed. That is, the 
dimension of the polymer chain is also changed. 
Therefore, it is possible that the ratio of 
mean-square radius of gyration of polymer 
chains with considering the geometric structure 
of side groups is different form that without 
considering the geometric structure of side 
groups. 
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