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Lattice models have been extensively used to 
estimate equilibrium dimensions of polymer 
chains. These models may also be used to 
simulate dynamical properties of polymer 
chains. The dynamics of polymers are discussed 
in terms of two models which are supposed to 
describe the motions of chains at the two 
extremes of behavior. In dilute solution the 
relaxation of chains may be studied using a 
lattice model of the chain and simple local 
chain-movement rules to simulate the ran­
dom collisions of the chain with solvent mol­
ecules. 1 - 5 In bulk solution the reptation 
model of De-Gennes is ordinarily used. 6 - 7 

Despite the reptation model has been very 
fruitful and has received considerable experi­
mental support, 8 the reptation hypothesis re­
mains controversial, especially at high concen­
tration. Many investigators have studied the 
dynamics of chains in entangle systems. 9 - 13 

These investigations indicate that a descrip­
tion of the chain internal motions in terms of 
the Rouse coordinate is adequate even in the 
range of concentrations. 12 Much of the dis­
cussion centeres around the chain length de­
pendence of the relaxation time. They present 
the scaling exponents ix, which characterize 
their variation with chain length for a given 

concentration, expressed by the scaling law 
T----{_N -1)", and the exponents IX increase 
with concentration. We notice that the dy­
namics of chains in entangle systems depends 
strongly on the concentration. Here we aim to 
investigate the concentration dependence of the 
relaxation quantitatively. In the present paper, 
we report the results of simulation studies of 
the dynamical behavior oflattice-model chains 
of from 25 to 100 beads, at concentrations 
ranging from very dilute to near melt, and 
exhibit the dependence of relaxation times 
upon chain length and concentration. 

MODEL 

In our simulation, the face-centred-cubic 
lattice model 5 is adopted. The identical chains 
each consisting of N beads (N -1 steps) are 
placed on a face-centred-cubic lattice. The 
simulation box with periodic boundary condi­
tion (20 x 20 x 20) are employed, Brownian 
motion of the chain is simulated by choosing 
a piece of a chain at random and then moving 
only this piece of this chain according to rules 
which maintain chain connectivity. Entangle­
ment and excluded volume effects are in­
troduced by not allowing beads to move to 
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sites which are already occupied. The model 
has been described in detail previously. 5 From 
time to time the coordinates of all the beads 
are sampled and recorded for later data 
analysis. The time scale for all simulations is 
taken to be equal to the total number of beads 
in the periodic system. If there are n chains in 
the periodic system, a single time step is taken 
to be nN attempted moves. 

To analyze the dynamics of the chain, we 
use the values of the end-to-end vector, R(t), 
to compute the autocorrelation function, PR(t), 
defined by 

pit)= (R(t)· R(0))/(R2 ) (1) 

where the broken brackets represent an 
equlibrium ensemble average. The relaxation 
time, TR, is estimated by fitting an unweighted 
least-squares line to the linear, long-time region 
of a semilog plot of PR(t) vs. time. The inverse 
of the relaxation time is the negative of the 
slope of the line. To analyze the dynamics in 
more detail, we also study the the relaxation 
of the first three normal modes. The normal 
modes Uit) are given by the Rouse formula 14 

N 

Uk(t)= L ((2-bk0)/N)112 

j= 1 

where Rit) is the position of the j-th bead at 
time t. The autocorrelation function of the k-th 
normal mode, Pk(t), is given by 

pit)= (Uit)· Ui0))/(Uf) (3) 

The relaxation time of the k-th mode, Tk, is 

computed by fitting a least-squares line to a 
semilog plot of pit) vs. time. The negative of 
the relaxation time is the inverse of the slope 
of this line. 

RESULTS AND DISCUSSION 

Simulations are carried out for chains of 25, 
50, and 100 beads. For all but the 100-bead 
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Figure 1. Semilogarithmic plot of autocorrelation func­
tions pit) vs. time t for the system of the chain of N = 50 
beads occupying fraction c=0.50. 

chains, simulations are carried out at seven 
values of the bead volume fraction c, defined 
as the fraction oflattice sites occupied by beads. 
The numbers of chains are chosen to give values 
of c spanning the range from 0.125 to 0.875. 
For the 100-bead chains, systems are studied 
at four values of c, from 0.125 to 0.50. Figure 
1 shows semilogarithmic plot of the auto­
correlation function pit) vs. time t for the 
system of the chains of N = 50 beads occupying 
fractions c=0.50. The relaxation time of the 
k-th mode, Tk, are calculated by fitting an 
unweighted least-squares line to the curves. We 
also find end-to-end vector autocorrelation 
function pk(t) is a single exponential at long 
times. For example, the long time range is from 
1500 to 5000 for c=0.50 and N=50. The 
relaxation time, TR, is calculated from the 
long-time slopes of the ln pk(t) vs. t plot. The 
numerical values of relaxation times are 
collected in Table I. For c=0.0 (the ap­
proximate case), the relaxation times of the 
isolated chains are also given in Table I. We 
find that relaxation times may be determined by 

TRo---{N - l)"R(O) 

TkO---{N - l)"k(O) 
(4) 

where T Ro and Tko are the relaxation times of 
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Table I. Values of relaxation times as a function of chain length N, and concentration c 

N=25 N=50 N=IOO 
C 

a b a b a b 

0.0 TR 282 1370 7000 
T, 281 1370 7010 
T2 62.3 331 1670 
T3 26.3 137 730 

0.125 TR 336 338 1700 1670 8600 8530 
T, 340 337 1710 1680 8680 8600 
T2 75.8 74.8 415 403 2030 2070 
T3 31.8 31.5 167 167 866 906 

0.25 TR 430 418 2060 2100 10800 11200 
T, 420 417 2130 2110 11800 11200 
T2 91.0 92.4 517 507 2600 2660 
T3 39.6 39.0 217 210 1080 1160 

0.375 TR 529 527 2700 2750 14100 15000 
T, 523 535 2730 2740 14600 15000 
T2 121 119 637 664 3310 3580 
T3 50.1 51.9 286 295 1540 1560 

0.50 TR 728 728 3900 3820 21000 21500 
T, 716 726 3980 3850 21900 21500 
T2 160 161 927 923 4800 5130 
T3 69.3 68.0 389 382 2100 2240 

N=25 N=50 

a b a b 

0.625 TR 1030 1080 6090 5850 
T, 1010 1080 6100 5890 
T2 230 239 1450 1410 
T3 106 IOI 565 585 

0.75 TR I9io 1870 11000 10600 
T, 1800 1880 10900 10700 
T2 431 416 2620 2580 
T3 170 176 1010 1070 

0.875 TR 4910 4860 32100 29800 
T, 4890 4850 31200 30000 
T2 1160 1080 7600 7190 
T3 478 454 3100 2970 

• Monte Carlo simulation. 
b Values of eq 5, where YR2 s =y.25 = 1.37, YRso=Y•so = 1.48, and YR too =Yuoo = l.62. 

the isolated chains. The values of aR(O) and 
aiO) are determined by making plots of ln TR 
vs. ln(N -1) and ln Tk vs. ln(N -1) respectively, 
and the results are aR(0)=2.27, a 1(0)=2.27, 
a2(0) = 2.29, and aiO) = 2.27. In Table I, 
relaxation times increase with increasing c. 
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Relaxation times are close to oo when c = 1.0 
because no bead volume is permitted to move. 
Relaxation times may depend on the bead free 
volume (1-c). We plot ln TR vs. ln(l -c) and 
ln Tk vs. ln(l-c) at constant N, and find 
relaxation times are well described by the 
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relationship 

TR= TR0/(l-c)1RN 

Tk = Tk0/(1- c)YkN 
(5) 

The values YRN and YkN are nearly the same for 
various k, and only depend on the chain length, 
N. In our model, the values are YR 2 s = Yk 2 s = 
1.37, YRso =Ykso = 1.48, and YR100 =Ykloo = 1.62 
(fork= 1, 2, and 3). The values of TR and Tk 
from eq 5 are also listed in Table I. It is found 
that the maximum deviation from the results 
of Monte Carlo simulation is only 7.0%. Since 
the scaling exponents YRN and 'l'kN increase with 
increasing N, relaxation times from eq 5 show 
deviations from the the Rouse theory, 
T--{N -1)2 ·2 , at high concentrations. For 
small c, the deviations are significant. This 
means that the Rouse theory is described for 
the short nonentangled system, and this result 
is agreement with previous simulation. 9 - 13 
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