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ABSTRACT: It is frequently encountered in polymers literature that a set of experimental 
curves can be translated along a given direction to form a master curve. One of the most known 
examples is the time-temperature superposition, where the translation is generally performed along 
the horizontal axis. The superposition of the different experimental curves is normally made 
graphically leading to some ambiguities in the construction of the master curve and in the 
determination of the translation paths. Starting from the analytical conditions to be satisfied by 
a set of curves which are related by a translation along a given direction, a computer programme 
is developed in order to get the master curve form a set of experimental data, when such a master 
curve is present. Finally, some examples of the applicability of the computer programme developed, 
for simulated storage shear compliance, viscosity against shear rate, and stress relaxation data are 
presented. 
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The translation of a set of curves along a 
given direction is a concept widely used to 
analyze the mechanical behaviour of polymers. 
For amorphous polymers, examples of transla­
tions along the horizontal direction are given 
by the time-temperature superposition princi­
ple (TTSP). This principle establishes that a set 
of curves of any mechanical property measur­
ed as a function of time or frequency and 
parametrized in temperature can be matched 
smoothly, leading to a master curve. 1 The 
curves of a mechanical property can also be 
related ·by scaling along a non-horizontal 
direction when glassy polymers with different 
ageing treatments are considered. 2 Moreover 
translations along a direction with a slope 
different from zero can be found, for instance, 
when measurements of viscosity of diluted 
polymeric solutions are represented in a 

double-log plot against the shear-rate at 
different concentrations. 3 Any of these transla­
tions of the individual curves let to construct 
a master curve extended over a wider range of 
the measured variables, providing a powerful 
tool not only to extrapolate the mechanical 
response but also to fit the parameters of 
molecular models. 1 •3 •4 

The smooth matching of the individual 
segments displaced rigidly along a certain 
direction is usually made graphically so, the 
procedure turns out to be rather subjective and 
may lead to a seudo master curve built with 
individual segments that do not really belong 
to the same family of curves related by scaling. 
In effect, it has been shown previously that 
classical examples of the TTSP given in the 
literature lead to severe inconsistencies when 
their master curves are considered. 5 •6 On the 
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other hand, if the master curve is not used the 
dependence of viscosity on the shear-rate of 
diluted polymeric solutions may be incorrect­
ly derived. 3 In order to solve this subjective 
analysis of a set of curves, the scaling conditions 
have been described rigurously, 7 leading to a 
mathematical procedure that determines with­
out doubt if the curves are really related by a 
translation along a certain direction. This 
procedure, based on the analysis of the de­
rivatives of the individual curves, has been 
done graphically. Thus, it is a long and tedious 
way to calculate the translation paths which, 
in addition, depend on the skill of the operator. 

Therefore, it is the purpose of this paper to 
describe a numerical method to establish if a 
set of curves are really related by scaling and, 
in that case, to calculate the slope and paths 
of the translation needed to build a master 
curve. This method will be applied to simulated 
and experimental curves, pointing out the 
improvements of the numerical determination 
of the master curves. 

THEORY 

The scaling conditions verified by a pair of 
curves with translation along a certain direction 
can be described on considering Figure. l. This 
figure shows two curves y vs. x parametrized 
by two different values of the variable z. On 
doing a rigid translation along a direction of 

y 

µ=tan,'.J-

X 

Figure 1. Two curves in the (x, y) plane, parametrized in 
z, related by scaling along the translation path of slopeµ. 
Points A, A' or B, B' have the same derivatives. 
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slope µ=tan fJ, the curves parametrized in 
z + L1z can be matched smoothly onto the curve 
parametrized in z, leading to a master curve. 
This matching is possible because 7 : 

l. The translation joins points of equal 
derivatives, that is, 

Yx(x+L1x,z+L1z)=Yx(x,z) (1) 

Yx(x + L1x + L1x', z + L1z) = yx(x + L1x, z) 

2. The slope of translation is independent 
of the variables, that is 

L1y L1y' 
-=--=µ=constant (2) 
L1x L1x' 

3. The translation is rigid, or equivalently, 
the shift path is only a function of L1z according 
to 

[(L1x)2 + (L1y)2] 112 = [(L1x')2 + (L1y')2] 112 = M(L1z) 
(3) 

It should be noticed that if only one of these 
conditions is not fullfilled, the curves will not 
be related by scaling. The scaling conditions 
for a set of curves ensures that they belong to 
the same family, that is, they can be described 
by the same constitutive equation. It should be 
pointed out, however, that a set of curves might 
belong to the same family without satisfying 
the scaling conditions. In this case, it is always 
possible to find an appropriate change of 
variables in such a way that the scaling con­
ditions are obeyed and the curves will never 
intersect if they describe an equation of state. 7 

Now, on assuming the validity of conditions 
l to 3, that is, on considering two curves relat­
ed by scaling, the relationship between the 
functional description of these curves can be 
derived. In fact, on integrating eq l it results 

y(x+L1x,z+L1z)=y(x,z)+L1y (4) 

where L1y is a constant. Furthermore, taking 
into account eq 2 the curves y(x) parametrized 
in z and z + L1z, superimposed by a shift along 
a direction of slope µ can be related by 

y(x + L1x, z + L1z) = y(x, z) + µL1x (5) 

Polym. J., Vol. 26, No. 9, 1994 



Numerical Procedure to Form a Master Curve 

READ NUllBER OF CURVES 
B 

READ DATA OF REFERENCE CURVE 

DO C = 2, B >----,..--:_-_--:_-_-_-_-_-~":...---~ 

T 

F 

CAN THE DERIVATIVES 
BE RELATED BY A 
HORIZONTAL SHIFT 

SLOPE-+VSHFT/HSHFT 

REFERENCE CURVE CURVE C 

CALL MEANSLOPE 

CALL WATCHING 

BY SCALING' 

PRINT 'THE CURVES 
DO NOT BELONG TO 
THE SAME FAMILY 
or CURVES' 

Figure 2. Flowchart of the numerical procedure developed to analyze the scaling conditions. 
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where Jx depends only on Jz, since from eq 
2 and 3 it is easy to show that 

L1x= M(Jz) 

Ji+µ2 
(6) 

Particularly, if the curves are related by a 
horizontal translation then µ = 0 and eq 5 
reduces to an identity between the function y 
parametrized in z and in z+Jz, evaluated on 
x and x + Jx, respectively. This type of identity 
is found in eq l. 

Therefore, if two curves are related by scaling 
then their derivatives will also be related by 
scaling along a horizontal direction. Further­
more, the horizontal component of the 
translation path between the original curves 
will be the same as the shift path used to 
superpose the derivatives. In this way, the 
horizontal path can be easily determined from 
the matching of the two derivatives. Once the 
horizontal shift is known, the vertical transla­
tion can be determined according to eq 4 
providing a fairly good matching between the 
segments. Finally, the slope of translation is 
calculated straightformward from eq 2. 

NUMERICAL METHOD 

The numerical method proposed to analyze 
the scaling conditions of a set of curves is 
depicted in the flowchart of Figure 2. In order 
to follow the actions taken during the execution 
of the program two examples, one of simulated 
data and another of experimental points, will 
be considered. 

A Simulated Example 
The storage shear compliances measured as 

a function of frequency at two different tem­
peratures are simulated using typical param­
eters given in the literature. 8 These com­
pliances, represented in curves (a) and (b) of 
Figure 3, correspond to a lognormal retarda­
tion spectrum9 characterized by the same 
half-width /3 = 5 and different mean times, 
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Figure 3. Storage shear compliance against frequency for 
a longnormal spectrum characterized by a half-width /3 = 5 
and mean retardation times , 1 = 1 s (curve (a)) and , 2 =0.1 s 
(curve (b)). The circles represent simulated data and the 
curves correspond to the spline approximation. 

r 1 = 1 s and r 2 = 0.1 s, respectively, in order to 
satisfy the scaling conditions for a horizontal 
translation. 10 In fact, the horizontal transla­
tion path needed to superpose curve (b) onto 
curve (a) is10 log(r2 /r 1)= -1, a value that 
should be derived through the numerical 
procedure, as well. 

The first step of the programme is to read 
the number of curves to be superposed, namely 
B, being in this case B = 2. After reading the 
points of the curve taken as a reference, for 
instance curve (a), the program enters into the 
DO-loop, where the data of curve (b) are read, 
too. 

The next two steps of the loop calculate the 
derivatives of both curves (a) and (b) using the 
subroutine DERIVE which considers a cubic 
spline interpolation with the aid of the 
subroutines ICSICU and DCSEVU from the 
International Mathematical and Statistical 
Library. The interpolation provides an excel­
lent fitting to the simulated data as it is shown 
in Figure 3 and a fairly good calculation of the 
derivatives represented in Figure 4. 

The following two actions determine whether 
the derivatives can be matched through a 
horizontal displacement. Firstly, the sub­
routine HSHFT determines the interval of 
derivatives common to both curves and 
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Figure 4. Derivatives of the curves represented in Figure 
3. The dashed lines join points of equal derivatives (with 
second derivative of the same sign), giving the "local" 
horizontal shifts. 

calculates, for several values in this interval, 
the difference between the abscissae char­
acterized by the same derivative. The mean 
value of these differences, shown in Figure 4, 
results - 0.997 ± 0.045, for the simulated data. 

Next, the IF statement represented in the 
flowchart through the question: "Can the 
derivatives be related by a horizontal shift?" 
corresponds to the logical condition HSHFT 
x0.l ~HDV, where HDV indicates the de­

viation of the horizontal shift. That is to say, 
a tolerance of 10% is allowed for the dispersion 
of the horizontal path. This percentage depends 
on the experimental error considered for the 
variable in the abscissae axis, and its de­
termination will be discussed in detail later in 
this paper. The relative error for the simu­
lated example is less than 5% due to the inter­
polating approximation so, the programme 
establishes that, in principle, the simulated 
compliances can be related by scaling. If the 
IF statement is false, a printed statement ends 
the program pointing out that the scaling 
conditions are not obeyed. 

The next action in the programme is to 
calculate the vertical shift using the subroutine 
VSHFT. This subroutine modifies, first, the 
abscissae of the points of curve (b) by adding 
the horizontal path determined from the 
derivatives, then calculates the difference 
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between the ordinates of the reference curve 
and those of the translated curve, for different 
abscissae. The mean value and deviation of 
these differences give the vertical shift with its 
error. It should be noticed that the IF statement 
used for the horizontal shifts is unnecessary in 
this case because of eq 4. For the simulated 
data the program gives a vertical path 
VSHFT = - 0.002 ± 0.02, that is zero whithin 
the fitting error due to the spline interpolation. 

Finally, on knowing the vertical and 
horizontal shifts, the slope is directly de­
termined as 

VSHFT 
µ= HSHFT 

(7) 

Consequently, for the numerical example, the 
program gives a horizontal translation (µ~0) 

with a shift nearly equal to - I as it were 
established originally from the parameters of 
the simulated curves. 

As the counter C is equal to B the DO-loop 
ends, leading to another IF-condition where 
the variable I is used as a flag that has been 
zeroed and that increases its value only if the 
derivatives cannot be matched through a 
horizontal shift. Thus, when the IF statement 
is false (I =f= 0) the program ends, but if it is true 
the mean slope of the translation paths and the 
points of the master curve are calculated. As 
the superposition of two curves lead to only 
one slope of translation, the subroutine 
MEANSLOPE gives directly the value of the 
variable SLOPE. At the end of the program, 
the subroutine MATCHING adds the hor­
izontal and vertical shifts to the abscissae and 
ordinates of the points of curve (b ), respec­
tively. The translated points and those of the 
reference curve become the points of the master 
curve which after being sorted to reorder the 
abscissae constitute the output of the program. 

Viscosity vs. Shear-Rate Data 
The purpose of the numerical method is not 

only to determine if the scaling conditions are 
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Figure 5. Shear-rate dependence of the viscosity 11 of 
O.!M NaCl solutions of an extracellular polysaccharide 
(CC-EPS) measured at 298 K at the concentrations indi­
cated. The circles are the experimental data and the curves 
correspond to a least squares fitting. 

satisfied but also to calculate the slope and 
paths of translation and the points of the 
master curve. Though the aims of the sub­
routines have been described in detail in the 
previous example, when a set of experimental 
data are considered the procedure becomes 
more complex. In order to analyze the mod­
ifications introduced in the subroutines the 
shear-rate dependence of the viscosity of 0.1 M 
NaCl solutions of an extracellular poly­
saccharide (CC-EPS) measured at 298 Kon a 
wide range of concentrations 11 will be 
considered. These data are represented in 
Figure 5; from now on, the curve parametrized 
by a concentration c will be referred as curve 
c, for example, curve 5 is the one parametrized 
by c= 5 gl- 1 . 

Analogously to the datafile of the simulated 
example, at the beginning of the program, the 
data of the first curve are read, becoming the 
data of the reference curve to be matched with 
the other points. Therefore, the choice of the 
reference curve, or equivalently, of the 
parameter of the master curve is made not on 
the execution of the program but on writing 
the input file. In this example the data are 
written in blocks parametrized in a decreasing 
order of the concentrations so, the master curve 
will correspond to c = 5 g 1- 1 . The choice of this 
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reference concentration will let to compare the 
master curve derived from the program with 
one previously built through a graphical 
superposition. 3 

In the execution of the program, the first 
difference from the former example is that in 
this case there are six different parameters so, 
B= 6 and, consequently the DO-loop will be 
executed more than once, redefining the data 
of the reference curve. In fact, similarly to the 
previous example, after reading the reference 
data (curve 5), the points of curve 4 are read, 
calculating the derivatives of the interpolating 
curves. If the derivatives can be superposed, 
the horizontal and vertical shift paths and the 
slope of the translation of curve 4 onto curve 
5 are obtained. Then, curve 4 is taken as the 
reference curve and the DO-loop is executed 
once more determining whether curve 3 can be 
superposed onto curve 4 or not. If this partial 
matching between the consecutive segments of 
curves is possible, it is immediate that curve 3 

will also translate onto curve 5. The shift paths 
between these curves will be the paths needed 
to superpose curve 3 onto curve 4 plus the 
paths used to match curve 4 onto the reference 
curve. Then, the slope of the translation of 
curve 3 is easily calculated, and on considering 
curve 3 as the new reference curve the DO­
loop is executed again, until the counter C 
equals B. If one of the individual segments does 
not verify the scaling conditions, the DO-loop 
considers the next segment without changing 
the reference curve. 

A second difference from the treatment of 
the simulated points is that the measured data 
include random experimental errors, so it 
cannot be expected that the spline interpolation 
would solve the problem properly. In effect, 
the dispersion of the points lead to an 
oscillating spline which greatly distorts the 
derivative of each curve as it is shown in Figure 
6 for curves 4 and 5. Therefore, rather than 
joining the experimental data, the interpolat­
ing curve should pass somehow between the 
measured points so as to minimize a certain 
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Figure 6. Derivatives of the spline approximation of the 
data shown in Figure 5, for the indicated concentrations. 

arbitrarily chosen measure of the deviations. 
This basic problem of smoothing measure­
ments has been widely treated in computation­
al papers 12 - 14 providing different solutions. 
Effectively, the choice of the appropriate 
method varies according to the set of 
measurements, but in any case it can be 
rigorously justified by statistics.15 Thus, the 
procedure usually assumes a smoothing con­
dition and check if it leads to a reliable de­
rivative of the interpolating curve. According 
to this statement, first it will be considered the 
method ofleast squares that minimizes the sum 
of the squares of the vertical distances between 
the points and the interpolating curve. Under 
this restricted condition, a good fitting to the 
experimental data is found only by considering 
smoothing polynomials of high degree. Hence, 
the derivatives include oscillations that even 
being larger than the ones observed for the 
spline interpolation, also lead to a distorted 
determination of the horizontal shift paths. In 
effect, Figure 7 shows the derivatives of the 
log-viscosity against log-shear-rate curves, 
while the crosses of Figure 8 gives the points 
of the master curve obtained when the 
experimental data are shifted according to the 
paths derived from the interpolation of least 
squares. Neither the limiting viscosity as the 
shear-rate y tends to zero, nor the slope of the 
translation path are according to the values 
found through the graphical superposition. 
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Figure 7. Derivatives of the least squares approximation 
of the data shown in Figure 5. 
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Figure 8. Master curves formed using the translation 
paths given by the numerical method when the least squares 
approximation ( x ) and the averaging method ( O) are 
considered. 

This comparison does not seem to be enough 
as to invalidate the interpolating method, 
however, only the physical parameters derived 
from the graphical matching verifies Morris' 
equation. 3 • 16 Therefore, the skill of the 
operator turns out to be a reliable tool for the 
graphical construction of the master curve, 
pointing out that the method of least squares 
is not proper to interpolate the experimental 
data. 

Another possibility is the so-called method 
of chosen points. 15 •17 This method is based 
on a smooth curve drawn by the operator in 
order to fit the experimental points as good as 
possible, compensating the experimental er­
rors. Then the points of this curve, used as the 
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Figure 9. Derivatives of the curves that fit the data shown 
in Figure 5, when the least squares(--) and the averaging 
(------) methods are considered. 

input for the numerical method, are inter­
polated using the spline subroutine. Even when 
this procedure is quite intuitive, takes no 
account of the statistical distribution of errors 
and introduces a subjective determination of 
the shapes of the fitting curves. 

The average procedure, however, turns out 
to be a reliable method to interpolate the 
measured curves. Its smoothing condition 
establishes that the sum of the vertical distances 
between the experimental data and the inter­
polated curve must be zero. 18 This condi­
tion, less rigurous than the one used in the 
method of least squares, determines that the 
interpolating curves result analogous to the 
graphical representation obtained with an 
elastic ruler. These curves are not represented 
because its difference from the interpotation of 
least squares cannot be distinguished. How­
ever, on considering the derivatives of the 
curves calculated by both interpolations and 
represented in Figure 9, it is easy to show that 
the averaging procedure gives not only a mean 
description of the measurements but also of 
their derivatives. In this figure it is observed 
that some of the derivatives determined 
through the averaging method are straight lines 
while others are parabolas, according to the 
interpolating function that can be of second or 
third order. Thus, the first scaling condition 
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Table I. Horizontal and vertical paths, and slope 
of translation for the superposition of the curves 

parametrized by the indicated concentrations, 
shown in Figure 5 

Reference curve: c = 5 g 1- 1 

c/gJ- I HSHFT VSHFT µ 

4 -1.40 1.27 -0.908 
3 -2.29 2.09 -0.915 
2 -2.58 2.74 -1.061 

-4.20 3.95 -0.942 
0.5 -5.34 4.63 -0.867 

Mean slope: µ=(-0.94±0.07) 

would establish that these curves could not be 
translated strictly. Nevertheless, on establish­
ing a certain relative error e for the variable 
on the x-axis, the IF-condition HSHFT x e~ 
HOV determines if, on average, a horizontal 
matching is possible, even when the curves have 
different shapes. 

Taking into account the averaging method, 
and considering an error e = 0.2, the numerical 
method leads to the horizontal and vertical 
shift paths indicated in Table I. Using these 
shift paths a smooth matching of the segments 
is obtained. The points of this master curve are 
represented by the circles in Figure 8. 

In Table I it must be noticed that the slope 
of the translation paths needed to superpose 
each curve exhibit a certain dispersion so, a 
mean slope is calculated. In previous pa­
pers 19·20 this slope was determined as the slope 
of a linear regression applying the method of 
least squares to points which abscissae and 
ordinates are the horizontal and vertical 
components of the different translation paths, 
respectively. Since both the horizontal and 
vertical shift paths have similar relative errors, 
the method of least squares could be used only 
on considering the errors of the two variables. 
That treatment is much more complicated and 
it can be demonstrated21 that the mean slope 
of the translation can be approximated rather 
well by the average of the slopes of the 
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translation determined from the superposition 
of each pair of consecutive curves. This average 
is calculated by the subroutine MEANSLOPE 
and afterwards and IF-condition is executed in 
order to establish if eq 2 is verified, that is if 
the slope does not depend on the parameter of 
the curves. In this case, the parameter is the 
concentration and the IF-condition imposes 
that the relative error of the slope must be less 
than 10% in order to satisfy the scaling 
condition. This percentage, however, must be 
chosen according to the experimental errors 
involved. 

On comparing the master curves determined 
graphically with the one derived from the 
numerical procedure, a total coincidence, 
within the experimental errors, is found 
between the slope and the paths of translation 
for both treatments. 

DISCUSSION 

The previous examples have illustrated how 
the program works, giving a fast answer about 
the validity of the scaling conditions of any set 
of curves, and providing very important char­
acteristics of the superposition through the 
shift paths and the slope of translation. 
However, the best achievements of the 
numerical method can be evaluated on the 
whole if the graphical matching of the 
individual curves is considered. 

Firstly, a master curve, built by graphical 
translation of the individual segments of a set 
of curves, depends on the subjective criterion 
which the operator employs to interpolate the 
experimental points and on his knowledge on 
the physical meaning of the magnitudes 
involved. For instance, in the viscosity vs. 
shear-rate data, on one hand it is known that 
the viscosity of a polymeric solution tends to 
an assymptotic value 17 0 as the shear-rate tends 
to zero; on the other hand, as the concentration 
reduces, the curves tend to represent the 
viscosity of the solvent and the data are 
measured with much more error. Con-

Polym. J., Vol. 26, No. 9, 1994 

sequently, if for example curve 0.5 is taken as 
the reference curve, the dispersion of the 
experimental points will provide scanty in­
formation about the shift path needed to 
superpose curve 1 because even the skill of a 
practical operator is not enough to evaluate 
the statistical determination of a mean curve. 
Nevertheless, the data at higher concentrations, 
measured more accurately, lead to sharper and 
more reliable curves to determine even 
graphically the averaging curves. Thus, for a 
graphical matching the sharpest individual 
curve measured with less error is chosen to be 
the reference curve while the other segments 
are superposed onto this one. 

Secondly, the individual segments cannot 
always be matched directly onto the reference 
curve because of a great difference in the ranges 
of their variables. For example, curve 0.5 
cannot be superposed onto curve 5. Therefore, 
the graphical procedure generally used consists 
of superposing curve 4 onto curve 5 and build, 
if it is possible, a partial matching curve 
between these two segments. Then, curve 4 is 
taken as the reference curve to superpose curve 
3, following the construction of the master 
curve. 

When the numerical method is considered, 
however, any of the individual curves can be 
taken as the reference because the averaging 
interpolation always takes into account the 
statistical deviation of the measured points. In 
effect, each sequence in the DO-loop refers to 
the interpolation of a certain curve and the 
partial matching to the previous one in such a 
way that all the curves except the last one 
become reference curves while the program 
runs. This means that if any other segment is 
chosen to be the refecence curve to superpose 
the other segments, the same slope of 
translation and a master curve with the same 
shape but translated according to the new 
reference points will be obtained. 

The numerical procedure leads also to an 
accurate calculation of the translation paths 
which can be very important to determine other 
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Figure 10. Storage shear modulus measured as a function 
of frequency at different temperatures in polypropylene. 

Table II. Horizontal and vertical shifts and 
slope of translation for the data represented 

in Figure 10 

Reference curve: T, = 451.8 K 

T/K HSHFT VSHFT µ 

460.3 -0.096 0.002 -0.017 
472.1 -0.156 -0.015 0.096 
483.4 -0.251 0.008 -0.031 
503.8 -0.523 -0.054 0.104 

Mean slope: µ=( -0.038 ±0.062) 

physical parameters. For example, Ottani and 
collaborators22 measured the dynamic moduli 
of samples of polypropylene (PP) at different 
temperatures and, assuming the validity of the 
TTSP, constructed master curves of G' and G" 
through horizontal shifts. On considering an 
Arrhenius type dependence of the translation 
paths with the temperature of the displaced 
curves, they determined the activation energy 
of the relaxation process, namely L1H. On the 
other hand, they also calculated the activation 
energy from the parameters of the Cole-Cole 
diagram23 of the complex shear viscosity, 
namely L1H(r,0 ). Even when they measured 
samples of very different molecular weights 
obtaining similar values of the activation 
energies calculated from the shift factors and 
from the viscosity, a better agreement is found 
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Figure 1 I. Loss shear modulus measured as a function 
of frequency at the indicated temperatures in polypro­
pylene. 
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Figure 12. Master curves of the storage ( G') and loss ( G") 
moduli of polypropylene against frequency at T, = 451.8 K. 

on considering the shift paths derived from the 
numerical procedure. For example, Figure 10 
shows the storage component of the dynamic 
modulus of samples of PP characterized by a 
weight-average molecular weight of 784000. 
When these data are treated using the 
numerical procedure, the shift paths and the 
mean slope of translation given in Table II are 
obtained. Also the maginary component of the 
dynamic modulus, G", shown in Figure 11 for 
several temperatures, can be shifted to get a 
master curve. The shift paths calculated for G" 
are in excellent agreement with those given in 
Table II, except for the curve measured 
T= 503.8 K. This curve is better matched 

Polym. J., Vol. 26, No. 9, 1994 



Numerical Procedure to Form a Master Curve 

numerically using VSHFT= -0.024, leading 
to a partial slope µ = 0.046. Thus, the mean 
slope for G" results µ = (0.024 ± 0.055). In 
summary, the sets of curves of both G' and G" 
can be matched properly to the respective 
master curves by using virtually the same 
translation paths. This coincidence shows that 
the numerical procedure proposed is not 
artificious since the shifts of G' and G" 
are identical. Effectively, Figure 12 represents 
the master curves of G' and G" against 
frequency, determined numerically. It should 

be noticed that within the experimental error 
both slopes of translation are zero, that is, the 
TTSP is verified. 

Furthermore, on considering an Arrhenius 
type dependence of the HSHFT on temperature 
(T), i.e., on assuming that 

LJH 
HSHFT=---

2.303kT 

LJH 

2.303kT. 
(8) 

where k is Boltzmann's constant and Ts is the 
temperature of the reference curve, the acti­
vation energy can be calculated through the 
slope of the curve HSHFT against 1/T. The 
linear regression gives an enthalpy LJH = 10.5 
kcal mo! - 1 which coincides with other value 
referred in the literature of polymers. 24 

Furthermore, this value is a little bit greater 
than the one derived by Ottani et al. through a 
graphical superposition, therefore it certifies 
more properly the equivalence they had 
proposed between the enthalpies LJH and 
LJH(1J 0). Thus, the numerical method comes out 
to be a useful tool to determine accurately the 
physical parameters associated to the scaling 
conditions. 

Nevertheless, the master curve cannot be 
considered independently of the physical 
analysis of the magnitudes it provides. In effect, 
in a previous paper 5 it was considered the 
example of a set of curves of stress-relaxation 
of styrene-butadiene rubber measured at 
different temperatures, which derivatives could 
be matched rather good by a horizontal 
translation. Although the master curve seems 
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to be an extrapolation of the evolution of the 
individual curves, the intensity of relaxation 
calculated from this master curve leads to 
inconsistencies in the interconversion between 
the distribution functions of relaxation and 
retardation times. This discrepancy, due to the 
very small pieces of the individual curves being 
matched may also be obtained through the 
computational program. 

CONCLUSIONS 

A numerical method was developed to 
determine if a set of curves are related by scaling 
calculating, in that case, the paths and slope 
of translation needed to form a master curve. 
This method comes out to be independent of 
the choice of the reference curve which is 
selected on writing the input file with the data 
of the experimental points. Furthermore, it 
includes a fairly good interpolating method 
that describes the polinomial approximation 
of a curve that passes between the points 
minimizing their statistical deviations. In this 
way, the subjective determination of the mean 
curve built graphically with an elastic ruler is 
avoided. 

A fast answer to a usual demand in the field 
of the mechanical properties of polymers as it 
is to know if the curves can be matched to 
construct a master curve is not the only 
achievement of this program. It has been shown 
that even when the shift paths can be easily 
determined (that is, on assuming a horizontal 
superposition), the translation paths derived 
from the numerical procedure can ratify the 
assumption of a null slope and lead to accurate 
translation paths. Also in the case of a 
translation along a non horizontal direction, 
the program calculates a mean slope with less 
error than what has been usually done in the 
literature. Moreover, the program can be easily 
changed to obtain an average translation path 
for the real and imaginary components of the 
dynamic moduli or compliances. This average 
translation path can be used to build the master 
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curves, reducing errors. 
Therefore, the more precise determination of 

the parameters that characteize the master 
curve (mean slope and paths of translation) 
may lead to establish more accurate values for 
the physical magnitudes coming out from these 
parameters. 
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