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ABSTRACT: The network analyzer was used for measurement of the viscoelastic properties 
of dilute polymer solutions. It is a sensitive instrument to measure resonance resistance and resonant 
frequency of crystals by the admittance circle diagrams shown on the digital oscilloscope. 
Measurements can be conducted more correctly and rapidly compared to the previous measuring 
system. Its validity was verified by measuring the complex shear modulus of dilute polymer solutions 
and comparing the results with the Rouse theory. The complex shear modulus was determined by 
measuring changes in the properties of a torsionally vibrating crystal. Frequency dependence of 
complex shear modulus is investigated in the frequency range from 3 to 252 kHz and temperature 
range from - 60 to 23°C. The samples are several kinds of dilute solutions of polystyrene in toluene. 
The use of polystyrene is limited in narrow molecular weight fractions ranging in number-average 
molecular weight from 2.1 x 103 to 1.60 x 105 . The results agreed with the theory by Rouse. 
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In order to investigate the viscoelastic 
properties of polymer solutions, it is necessary 
to measure the complex shear modulus at 
various frequencies. If liquids are sheared 
sufficiently rapidly, they exhibit a shear elastic 
effect as well as viscous effect. 1 It is the purpose 
of this paper to describe a method for 
measuring viscoelastic properties of polymer 
solutions at ultrasonic frequencies using 
torsionally vibrating crystals and a new 
measuring system, the network analyzer. 

Measurement of viscoelastic properties of 
dilute polymer solutions requires very sensitive 
instruments. The first technique suitable for 
work in this field was introduced by Mason. 1•2 

Mason et al. measured the resistance and 
reactance of a torsional crystal by a bridge 
circuit. This method has been extended by 
McSkimin and his coworkers. 3 •4 They made 
improvement so that small change in phase
shift can be determined using AT-cut quartz 

unit. Birnboim and Ferry5 measured over a 
continuous frequency range from 0.01 to 5 Hz 
by amplitude-phase shift measurements. Wada 
and his coworkers6 measured amplitudes and 
phase-shift in the frequency range from 20 to 
300kHz. 

In the present paper, a simple technique is 
presented for measuring accurately and directly 
the equivalent circuit elements of a crystal. The 
network analyzer used in this experiment is a 
fully automatic instrument designed to measure 
several impedance parameters of electronic 
devices. The procedure of measurement has 
been more simplified compared to that by using 
the previous electrical measurement systems. 

The longitudinal relaxation is complicated 
even in a dilute solution due to the presence 
of excess absorption originated from a 
compressional mode motion. The merit of the 
shear measurement lies in the fact that 
relaxation behavior in a normal state is well 
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known and analytic methods are firmly 
established. It is of interest to compare the 
theory with data on a polymer solution where 
long range cooperative motion plays an 
important role. Three narrow molecular weight 
fractions ranging in molecular weight from 
2.1 x 103 to 1.6 x 105 were employed. The 
complex shear modulus of polystyrene-toluene 
solutions was measured at frequencies of3 kHz, 
51 kHz, and 252kHz. The data are compared 
with the theoretical curves by Rouse. 7 

EXPERIMENT AL 

Principle of the Method 
If we set a crystal vibrating in a purely 

torsional mode, the motion is tangential to the 
surface and highly attenuating viscous waves 
can be set up in the medium. 

The shear wave equation for a plane wave 
propagation along z can be derived from the 
definition of viscosity. Thus the different 
equation becomes 

(I) 

where p is the density of the medium, , the 
velocity of the motion along x, and 17* = 
(G*/iw)=r,-i(G'/w), complex shear viscosi
ty, where G* = G' + iG", complex rigidity, w is 
the angular frequency. For simple harmonic 
motion, the plane viscous wave has the 
solution, 

'= '+ ei(wt-k*z). (2) 

Inserting eq 2 into eq 1, the plane viscous wave 
has the following relation, 

. ( iwp )'12 
zk*= ~-

17* 
(3) 

At the surface of the crystal, z = 0, the force 
acting on liquids is represented by the relation, 

(4) 
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The acoustic impedance, Zm becomes 

Zm = Fz=o/A,0 = ir,*k* = (iwpr,*) 112 

=Rm+iXm (5) 

where Rm and Xm are the specific acoustic 
resistance and reactance, respectively. Squaring 
the latter two terms of eq 5, we get the relations, 

R z_x z 
G' = m m , (6) 

p 

(7) 

The attenuation of wave propagation 
introduces a loading effect on the crystal which 
can be measured by increase in the resonant 
resistance and decrease of the resonant 
frequency of the crystal. The change in the 
measured electrical resistance .dRE and low
ering in frequency .df are related to RM and XM 
according to the formulae, 

.dRE 
RM=K-,~' (8) 

(9) 

where K1 and K 2 are constants depending upon 
the geometrical and electrical characteristics of 

Table I. Liquids for determination of 
constants, K 1 and K 2 

Liquids 

Ethyl ether 
n-Hexane 
Toluene 
Benzene 
Silicone 
Cyclohexane 
n-Butylbenzene 
Silicone 
Silicone 
Nitro benzene 
Silicone 
Silicone 
Silicone 
Polybutene 

4.06 X 10- 2 

4.54x10- 2 

7.00 X 10- 2 

7.40 X 10- 2 

8.10 X 10- 2 

8.25 X 10- 2 

9.17xl0- 2 

9.29 X 10- 2 

1.32xl0- 1 

1.48 X [0- l 

l.54xl0- 1 

2.65 X 10-l 
2.97 X 10-! 
3.14xl0- 1 
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Table II. Properties of polystyrene investigated as solute 

Smple No. M/ Mw/M/ Z' Nd c/gcm- 3 ' C*/gcm- 3 r 

J.60 X ]05 1.06 1524 305 2.49 X 10- 2 6.70 X 10- 2 

2 1.60 x 105 1.06 1524 305 5.QQ X 10- 2 6.70 X 10- 2 

3 J.QQ X ]04 1.10 95 19 l.OOxl0- 1 2.70xl0- 1 

4 2. ]Q X ]03 I.IO 20 4 l.OOxl0- 1 5.89x10- 1 

-----------

• M., the number-average molecular weight; M.= M 0 x Z, where M 0 is the molecular weight of monomer, 105. 
b The ratio M w! M., where M w is the weight average molecular weight. 
'Z, the average degree of polymerization; Z=Nq, q=5. 
d N, the number of Rouse mode. 
' c, the concentration used in the experiment. 
r C*, the concentration estimated by eq 18. 

the quartz crystal and may be determined from 
measurements using a Newtonian liquid of 
known shear mechanical impedance. Suitable 
liquids used in this investigation are listed in 
Table I. 

Two types of quartz crystals, fork crystal of 
3 kHz and cylindrical crystal of 51 kHz and 
252 kHz, were used in this investigation. 

Samples 
Commercial samples of polystyrene pro

duced by Polymer Laboratories Ltd. were used. 
Their characteristics are listed in Table II. 
Toluene of the special grade by Tokyo Kasei 
Kogyo Co., Ltd. was used as a solvent. 

Temperature was measured by the crystal 
thermometer (hp. 2801A). Density was mea
sured by an improved picnometer. The static 
viscosity of polymer solutions and solvent were 
measured using Cannon-Fenske viscometers 
and improved Ubbelohde viscometers. 

Apparatus 
The network analyzer (ADVANTEST R461 l) 

measures amplitude, phase, and impedance at 
extended frequencies ranging from 10 Hz to 
300 MHz. It has a digital oscilloscope which 
shows digital data together with admittance 
circle diagrams. 

When the crystal resonator is connected with 
the network analyzer, the equivalent circuit is 
shown in Figure 1. It is expressed by the parallel 
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CRY ST AL EQUIVALENT CIRCUIT 

OUTPUT INPUT 

r:E-+--.,':Q_-·Q 1----~-------+---"''"-L-,: 
Figure 1. Equivalent circuit of the crystal connected with 
the network analyzer. 

equivalent capacitance of free space C0 and 
motional impedance of the crystal composed 
of capacitance C, inductance L, and resistance 
R. From Figure I, we find that the admittance 
of crystal Ye, conductance Ge, and susceptance 
Be are written in the following equations. 8 

Ye= iwC0 +-------= G c - iBc 
I 

R+iwL+--
iwC 

R 

Ge~ R'+( wL- ~c)' 
1 

wL--
wC 

where w is angular frequency. 

(I 0) 

( 11) 

(12) 

From eq 11 and 12, a circular locus for 
representing admittance of crystals can be 
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Be 

Ge 

Figure 2. Admittance circle diagram of the crystal. 

represented as shown in Figure 2. As the 
frequency increases, the operating point on the 
circle moves clockwise. The point y shows the 
frequency of the total current or the minimum 
impedance. It is a slightly lower frequency than 
that at mechanical resonance. If the denomi
nator of eq 11 becomes the minimum, the 
conductance goes to 1/R at a frequency 

(13) 

which is the resonance frequency of the 
mechanical series branch of the crystal. Thus, 
the frequency and resistance at resonance are 
determined by the maximum conductance of 
the admittance circle. Such desired parameters 
at the point o can be given by digits through 
the front panel control keys. The point a' shows 
the electrical series resonance frequency. 

RESULTS AND DISCUSSION 

The temperature dependence of resonance 
frequency / 0 in dry air is expressed by the 
following experimental expressions for three 
crystals, 
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fo = 2.5226 X 105 + 1.4349 t 

+6.6358 X 10- 3 t 2 

/ 0 =5.1182 x 104 +0.21573t 

¥ 51170 
;;::-
() 

as 51160 
::, 
0 

51150 
LL 

51140 

51kHz o F(ina1r) 

• F (1n toluene) 

51130 ~-~--"----~-~---'------'---_J 

-80 -60 -40 -20 0 20 40 60 

TEMPERATURE ('C) 

Figure 3. Resonance frequency plotted against tempera
ture for the 51 kHz crystal in air and in toluene. 

-7.2163xl0- 4 t 2 

fo=2.8724 X 103 + 5.5329 X 10- 2 t 

+ 5.2890 X 10- 4 t 2 

where t represents temperature measured in 
degrees centigrade. They are obtained from the 
best fit curve of measured values by computer. 
Typical magnitudes of change of resonance 
frequency in dry air plotted against tempera
ture appear in Figure 3 for 51 kHz crystal. 

Many kinds of Newtonian liquids shown in 
Table I were measured by the previous method. 
The value of G' becomes zero in simple 
Newtonian liquids. Then the following rela
tions is obtained. 

RM=XM=Ffu 

Thus, the constants K1 and K2 in eq 8 and 9 
may be evaluated by carefully measuring LIRE 
and LI/ on a liquid of accurately known density 
p and viscosity r,, at given frequency and given 
temperature. The temperature dependence of 
K1 and K 2 is determined from that of LIRE and 
Llf of toluene. 

Measurements by the method described 
above were conducted on all solutions shown 
in Table II. Typical results are shown in Figure 
4 for sample 1. The values of G' and G" are 
plotted against frequency at several tempera
tures from 23 to - 60°C. 
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10 5 

Mn=160000 
c=0.0249 (g /cm 2) G" 

10 5 10' 

"E 
Q 

10' 10' C 
>, 

"E CJ 
23°c 

Q 23 

C 10' '3 10 2 
>, '3 
:s, 
CJ 

G 

10 2 G' -3C 10' 
-30 

G -45 
G -45 

10' 
10' 10 ' 10 5 10 6 

FREQUENCY(Hz) 

Figure 4. Measured values of G' and G" plotted against 
frequency at several temperatures for the sample I. 

Rouse9 developed molecular theories of the 
viscoelastic properties of dilute solutions of 
polymers. When his theory is applied to the 
concentrated solution, the real and imaginary 
parts of the complex shear modulus G* at the 
normal state for a Gaussian distribution of 
molecular weight are given by 

cRT N Joo (wT )2µ4/p4 
G0 '=~_- L 1 

2 4 4 e-µdµ(l4) 
Mn p=l o I +(WT1) µ /p 

,, cRT f J'° wT 1µ 4 /p4 

Go =w11. +-=- L.. 2 2 4 
Mn p=l O l+(wT 1) µ /p 

X e-µdµ (15) 

(16) 

where c is concentration per ml., R gas 
constant, T absolute temperature, l'/o viscosity 
of polymer solution at the normal state, l'/a 

solvent viscosity, and µ=Mwf M .. The number 
of Rouse modes N and number of monomer 
units in a segment q have the relation Nq=Z, 
where Z is average degree of polymerization. 
When the molecular weight of monomer unit 
and the number average molecular weight are 
denoted by M 0 and M., respectively, the 
relation ZM O = Mn holds. 

The value of T 1 can be calculated by eq 16 
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i=' 
a: 
Q 
6 
? 

i=' 
a: 
Q 
6 
('.l 

Table III. Parameters of the viscosity equation, 
ln11=A+B/T 

Smple No. A 

2 
3 
4 

10' 

10' 

10' 

10·1 

rn-2 

10·3 

10·4 

10·2 

Mn=160000 
cc:c0.0249 (g /cm 2) 

(G"-rn11)(M/cRT) 

.. 

G'(MlcRT) 

-8.009 
-7.329 
-8.858 
-9.121 

10° 

OJ't1 

10' 

B 

1264 
1264 
1253 
1251 

13 
13 
0 

0 
-15 

4 -15 

-30 
-30 

-45 
-45 
-60 

!!I -60 

10 2 

Figure 5. Reduced values of G' and G" plotted against 
COT 1 for the sample 1. 

and measured values of l'/o and l'/a· The results 
of the static viscosity are expressed by 
Andrade's equation: 

B 
ln110 =A+~ 

r' 
(17) 

where A and Bare constants for given solution, 
whose values are determined by a digital 
computer to obtain a least-squares fit to the 
data, and given in Table III. 

The reduced values for G' and G" are plotted 
against WT 1 in Figure 5. The two solid curves 
represent the theoretical lines calculated from 
eq 14 and 15 when N=305. The theory agrees 
with the data of reduced G' and G" in a range 
of WT1 from ~5 X 10- 2 to ~5 X 101 . The 
deviation of the measured values of G' / ( cRT) 
at WT 1 below 10 - 1 seems to be due to the 
roughness of 3 kHz crystal. 
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10' 

10· 

10" 

i=' 
a: 
Q 10' e, 
CJ 

10' 

10' 

rn·4 
10·2 

o Mn=1 6x1Q5 c=O OS(g/cm~ 

Mn=1 Ox104 C=O 10(g/cm2) 

e> Mn;;2 1x1c3 c=O 10(g/cm 2 ) 

10' 1 o' 

Figure 6. Reduced values of G' plotted against WT 1 for 
the sample 2--4. The marks of 0, x, and I',., represent 
the measured values of the sample 2-4, respectively. The 
solid lines are theoretical curves by Rouse of N = 305, 19, 
and 4, respectively. 

10' ~--------------~ 

o Mn=1 6x1D5 C=O 05(g/cm2) 

x. Mncc1 Ox1cr' C=O 10(g/cm2 ) 

t,. Mn=2 1 x1a3 C=O 10(g/cm2) 

N=305 

N=19 

10·2 10·1 10° 10 1 10 2 10' 

Figure 7. Reduced values of G" plotted against wr 1 for 
samples 2--4. The marks of 0, x, and I',., and the solid 
lines have the same meaning as Figure 6. 

The reduced G' and G" for sample 2-4 are 
plotted against on 1 as shown in Figures 6 and 
7. The marks 0, x, and L. represent measured 
values of samples 2-4, respectively. The 
behaviors of samples 2-4 do not coincide with 
the only single theoretical curve at higher values 
of wr 1 . It is necessary to choose a suitable 
number of Rouse modes according to mo-
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lecular weight. The solid lines are the 
theoretical curves by Rouse of N = 305, I 9, and 
4, respectively. The Rouse mode numbers 
correspond to q = 5 for any molecular weight. 
Thus the measured values are at least a good 
first approximation to the Rouse theory when 

q=5. 
Agreement between theory and experiment 

is to be expected as the result of the following: 
(1) measurement at low frequencies where the 
spectrum by the Rouse theory is dominant, (2) 
monodispersity of a sample as shown in Table 
II, and (3) dilute solution where free-draining 
phenomena can be observed. 

Lamb et at. 10 made the same measurement 
for the molecular weight fraction with 
2.39 x I 05 and above. They predicted good 
agreement with the theory of Zimm. Some 
results of Rouse and Sittel7 for polystyrene f 
molecular weight 2.53 x 105 agree with the 
Rouse theory. Tshoegl and Ferry1 1 also found 
that in a solvent of high viscosity a polystyrene 
of molecular weight I. 7 x 106 agrees with the 
Rouse theory. The essential difference between 
the theories by Rouse and Zimm lies in the 
type of interaction between the polymer 
molecule and flowing solvent. Rouse assumes 
that the velocity of the solvent flowing through 
a molecule is unaffected by the presence of the 
molecule (free-draining case), while Zimm 
assumes that solvent velocity is less in the 
region of the center of the molecule than at its 
outer fringes (nonfree-draining case). The 
frictional coefficient for the molecule should 
depend on the size of segment, the number of 
segments, the size of the molecule and con
centration. 

If the size of segment b and number of 
segments N progressively decreased, the solvent 
flow will penetrate closer to the center and lead 
eventually to free-draining. The values of band 
N have the same effect on the frictional 
properties of polymer solutions, if they are 
independent of each other. A decrease in N will 
have the same effect as an increase in b, if 
the molecular weight is held constant. The 
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contradiction of the effects of b and N may be 
concerned with the value of q. The magnitudes 
of molecular weight measured in this ·experi
ment are very small compared to that by Lamb. 
As predicted by Bueche, 12 it is supposed that 
the molecule does not behave like a random 
coil, but essentially like a rod. 

If the size of molecule or the radius of 

gyration )72 is represented by the root-mean
square distance of segment from the center 
gravity, the critical concentration where 
molecules contact with each other in polymer 
solutions should be defined as 13 

M 
C*=-------

4 r:r -n(y s2 )3 NA 
3 

(18) 

where NA is Avogadro number. By statistical 
treatment when N» I, the following relations 
is derived, 

(19) 

where r2 is the mean-square end-to-end 
distance. Since the relation (r2 / M) 112 = 0.602 

has been obtained, 12 · 14 (s2 ) =0.602j}.ii6 will 
be derived. Putting this value into eq 18, the 
values of C* are obtained as shown in Table 
II. The values of C* are also obtained from 
the relation C*[11] = 1.6713 and the reference 
values of [11]. 14 Both are nearly equal. 
Comparing C* with c, it is reasonable to 
consider that samples 1-4 are dilute solutions. 

The viscoelasticity of solutions of poly
styrene in toluene can be explained by Rouse 
theory, when the molecular weight is smaller 
than I 05 and the concentration is so small 
as to be considered as a dilute solution. 

CONCLUSIONS 

The network analyzer is a useful and sensible 
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instrument to measure the viscoelasticity of 
polymer solutions precisely using torsional 
crystal. From the results it is found that the 
complex shear modulus of polystyrene in 
toluene can be explained by Rouse theory, 
when the concentration is smaller than the 
critical solution and the values of WT 1 are below 
102. 
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