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ABSTRACT: An attempt was made to clarify a general principal describing the steps of 
nucleation to the growth of the primary particles, based on the thermodynamics of phase equilibrium 
of mono-dispersed polymer/single solvent systems. Activation energy of formation of critical nucleus 
tJ.c/JCN and radius of the critical nucleus SCN were calculated by using the free energy change due 
to coagulation per unit volume tJ.fv and interfacial free energy between polymer-rich and -lean 
phases (J on various phase separation points located within the metastable region of phase diagrams. 
SCN of critical nucleus generated near a cloud point curve was larger than those near a spinodal 
curve, but tJ.c/JCN became smaller when the phase separation occurred near the spinodal curve, 
indicating that nucleation tends to occur much more easily near the spinodal curve. Nuclei thus 
formed and passed though a potential barrier are considered to be in equilibrium with the region 
surrounded by the local solution spheres of polymer-lean phase. The spheres having radii of So 
are surrounded by an outer original bulk solution. Growth rate of growing particles were obtained 
in the isothermal process by solving the general equation of diffusion of polymer molecules from 
the outer phase. When the phase separation of whole system is attained at time tp, all the nuclei 
are conventionally defined as the primary particles. By combining the rate of production of critical 
nuclei and the total volume of So spheres including growing particles, tp was determined and 
distribution of those primary particles was calculated. 
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Solvent-casting method is now the most 
commonly used for preparing the porous 
polymeric membranes and utilizes the phase 
separation phenomena of polymer solutions as 
its basic tenet. The membranes prepared by 
this method are often composed of the polymer 
particles as skeleton structure, regardless of 
their pore sizes. It is clarified by electron 
micrography (EM) that even reverse osmosis 
membranes are composed of fine polymer 
particles. 1,2 

preparation of porous polymeric membranes 
by the solvent-casting method is unquestion­
ably important in both aspects of science and 
industry. Kesting, 3 Smolders,4 and Pusch 5 

attempted to give very qualitative explanation 
for mechanism of formation of unsymmetric 
membranes. 

Establishment of underlying principle in the 

* To whom all correspondence should be addressed. 

Kamide et al. made a pioneering work on 
the relation between the casting conditions and 
the pore characteristics for cellulose acetate 
membrane, showing that when cooled down or 
mixed with poor solvent or solvents mixture 
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the polymer solution separated into two liquid 
phases by nucleation mechanism and the trace 
of the primary particles of polymer-lean phase 
were detected by EM in the polymer particles 
constituting dry membranes. 6 From these, it 
was demonstrated that the polymer particles 
constituting the back-bone structure of mem­
branes are the secondary particles, grown from 
the primary particles in the casting process. 
Kamide et al. named "Micro-phase separation 
method" for the method, in which fine 
polymer-rich phase particles are formed by 
phase separation of polymer solutions, propos­
ing rather tentative, but quantitative theory for 
the mechanism of membrane structure forma­
tion by solvent-cast method. 7 In addition, 
Kamide and his coworkers observed by EM 
the ultra-thin sections, sliced parallel to the 
surface of cellulose and cellulose acetate 
membranes, prepared by the micro-phase 
separation method, showing that the cellulose 
and cellulose acetate membranes evidently 
consist of the small spherical particles having 
a radius (S2) of about 0.2!lm and the mor­
phology, including pore radius distribution 
varies continuously with the distance from the 
membrane surfaces. 8 

In a series of articles, we attempted to 
establish a more rigorous and generalized 
theory of thermodynamics on the formation of 

Growth of 

porous polymeric membranes. 
The process of membrane formation can be 

divided into several elementary steps as shown 
in Figure 1. Depending on the initial (overall) 
polymer concentration [i.e., the solution 
concentration at the instance of phase 
separation, which should be strictly dis­
tinguished from the polymer concentration of 
the starting ( in this case, casting) solution, 

either the polymer-rich phase or the 
polymer-lean phase will initially separates as 
the dispersed phase from the solution. 

If < (the critical solution concentration), 
the polymer-rich phase separated as small 
particles suspended in a medium (i.e., polymer­
lean phase), and these particles grow by 
amalgamation. The interstitial space between 
particles gives pore (non-circular pore) (Figures 
Ib-Ij). 

When is larger than the polymer-lean 
phase is separated as shown in Figures I b'-Ij'. 
Since this phase has a comparatively low 
viscosity, the particles of the polymer-lean 
phase gradually become larger by amalgama­
tion. The aggregated polymer-lean phase 
particles are themselves circular, smooth pores. 
Even in this case, stage (g') in Figure I should 
be stable in order to prepare the microporous 
membrane. Figures Ib'-Ij' strongly suggests 
that the circular pores will be formed from 
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Figure 1. Elementary steps in porous polymeric membrane formation by the micro-phase separation 
method: polymer volume fraction of the solution when the phase separation occurs; polymer volume 
fraction of critical solution point. 
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concentrated solution. 
In this article, we intend to clarify a general 

principle describing the steps of the nucleation 
to the growth of the primary particles, based 
on the thermodynamics of phase equilibrium 
of multi component polymer-solvent system. In 
other words, we attempted to elucidate (1) the 
mechanism of nucleation from homogeneous 
solution, (2) the mechanism of growth from 
critical nuclei to primary particles, (3) the time 
at which the phase separation of the whole 
system is attained, and (4) distribution of radius 
of the primary particle. 

THEORY 

Generation of Critical Nuclei (Step b) 
Before examining the details of the theory, a 

general explanation of the mechanism of 
nucleation from the polymer solution will be 
first presented. The generation and growth of 
polymer particles (nucleus) by phase separation 
from homogeneous solution are principally 
based on the same principle as the condensation 
of liquid droplets from super-saturated vapors 
or the formation of ice particles from super­
cooled liquids: In homogeneous polymer so-

E 
Critical Cloud 
Solution Point E' 
Point Curve 

Figure 2. Cloud point curve (solid line), spinodal curve 
(broken line) and critical solution point (open circle) of 
monodisperse polymer/solvent system: A and B, coexisting 
points (at T= Tp; Tr • phase separation temperature); C 
and D, spinodal points (T= Tp); E and E', one phase 
points; F and F', cloud point; G and G', metastable one 
phase points; Hand H', spinodal points I and 1', 
unstable points. 
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lutions in the metastable region of the phase 
diagram (points G or G' in Figure 2) critical 
nuclei having radius of SeN (see, eq 15), are 
formed by "concentration fluctuation" and can 
grow further in size spontaneously. The 
generation of the precipitated nuclei is always 
time-retarded and the nuclei thus formed grow 
by passing through a potential barrier (see, 
Figure 5). On the other hand, under adequate 
conditions passing through the critical point, 
the precipitation occurs instantly because of 
lack in potential barrier: This is spinodal 
decomposition. 9 

Figure 2 shows the cloud point curve (full 
line), spinodal curve (broken line), and critical 
solution point (open circle) for mono disperse 
polymer (X-mer)/single solvent system and 
Figure 3 shows Gibbs' free energy change I1Gv 

per unit volume at a given temperature Tp for 
X-mer/single solvent system. VX(1) and VX (2) are 
the polymer volume fractions of the polymer­
lean and -rich phases in equilibrium and V¥tl) 

and V¥t2) are spinodal concentrations. In the 
figure, points A and B are two-phase 
equilibrium points and points C and Dare 
spinodal points. If the initial polymer con­
centration for monodispersed X-mer lies at 
Tp between VX(l) and VX (2)' the two-phase 
separation occurs. When lies between VX(l) 

VX(1) Vx vX(1) vi8) Vx VX(2) 

Vx 

Figure 3. Gibbs' free energy change I'1Gv (eq 3) per unit 
volume at a given temperature Tp for monodisperse 
polymer/solvent system: A and B, coexisting points; C and 
D, spinodal points; J and J', metastable one phase points; 
K and K', points of average free energy of two coexisting 
phases. 
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and or between and VX (2)' the polymer 
solution can exist as a metastable single phase, 
from which two-phase separation is initiated 
by formation of nuclei. In this sense, the 
spinodal concentration is the upper limit (or 
lower limit) of concentration, below (or above) 
which the solution can exist as a metastable 
single phase for < critical polymer 
volume fraction) (or for > vD. When the 
polymer solutions at point E (in Figure 2) are 
cooled down to point F on cloud point curve, 
nuclei with a radius of SCN (see, eq 17) are 
formed by thermal fluctuation, which can be 

/ 
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Figure 4. Local equilibrium region and concentration 
profile of critical nuclei: a) initial (overall) polymer volume 
fraction of the solution when the phase separation occurs 
vg <polymer volume fraction of critical solution point 
b) vg > Dp(!) and Vp(2); polymer volume fractions of 
polymer-lean and -rich phases; VO(!) and VO(2)' solvent 
volume fractions of polymer-lean and -rich phases 
(V O(1) = I - vp(!) and VO(2) = 1- Vp(2»; SeN' radius of critical 
nucleus; So, radius of local equilibrium region. 
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regarded as concentration fluctuation only and 
a nucleus thus formed is considered to be in 
equilibrium with the region immediately 
surrounded by the local solution (polymer-lean 
phase), which can be approximated as a sphere 
with a radius of So (see, eq Ilc). In the case 
of > the critical nucleus with the radius 
of SCN generates according to cooling the 
polymer solution from point E' to point F' 
and is surrounded by the region of a sphere 
So, mentioned above. Figures 4a and 4b show 
local equilibrium region and concentration 
profile of critical nuclei in the case of < 
and > respectively. Here, v8( = I - is 
the initial concentration of the solvent and vOrl) 

( = I - VX(l» and VO(2) (= I - VX (2» are the 
solvent volume fractions of polymer-lean and 
-rich phases, respectively. The extent of nu­
cleation depends strongly on the time period 
spent between points F and H (or F' and H'). 
H and H' are the points on the spinodal curve. 
For a given polymer solution, cloud point 
curve, the spinodal curve and critical solution 
point can be unambiguously calculated. lo - 13 

Consider first the isothermal process. The 
activation energy of formation of a nucleus 
with the radius S, 4>(S) is expressed in the 
same form as derived for nucleation from 
polymer melt 14: 

(1) 

where is the free energy change of 
coagulation per unit volume, and is defined as 
the difference between average Gibbs' free 
energy of coexisting phases A and B, 
(points K or K' in Figure 3) and Gibbs' free 
energy change of mixing per unit volume 

(points J or J' in Figure 3; metastable 
phase), given by 

(2) 

and (J is the interfacial energy between the 
nucleus and its surroundings. for single 
phase (e.g., points A, B, C, D, J, and J' in 
Figure 3) of mono disperse polymer/single 
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solvent system is 

!:lllo !:lllx 
!:lGv=vo--+vx--

Vo XVo 

( RT)[ vxlnvx = Vo (1-vx)ln(1-vx)+-X 

+xo{(vx-Vi )+ (vx-vi) 

+ (vx-Vi)}] (3) 

where !:lllo and !:lllx are the modified Flory­
Huggins type chemical potentials of solvent 
and polymer (i.e., X_mer),lO-13 given by the 
following equations, respectively, 

!:lIlO=RT[lnvo+(I-

+xo(l+P1vx+P2vi)vi] (4) 

!:lllx = RT[ln Vx - (X - 1)(1- vx) 

+xxo(1-Vx)2{1 +2vx) 
2 

(5) 

and Vo is the molar volume of solvent, R, the 
gas constant, T, Kelvin temperature, Xo, the 
polymer-solvent interaction parameter at in­
finite dilution, PI and P2' 1st and 2nd order 
concentration-dependence parameters of ther­
modynamic interaction parameter between 
solvent and polymer, X. 10 -13 X is given by 

x= Xo(1 +PIVX+P2Vi) . (6) 

The coordinates of the points A and B [(VX(l)' 
!:lGv(V X(1»)) and (VX(2)' !:lGv(V X(2»))] are de­
termined first by applying eq 4 and 5 into the 
Gibbs' conditions for two-phase equilibrium 
eq 7 and 8, respectively/o-13 

(7) 
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(8) 

and by substituting VX(I) and VX(2) thus 
calculated into eq 3. 

at point Mi(vm is given by the 
relation, 

(9) 

Then, substituting eq 3 and 9 into eq 2, !:liv 
can be straightforwardly calculated. 

Of course, between the phase volume ratio 
R, VX(I)' and VX(2) the relation 

V(I) V X (2) -
(10) 

V(2) 

holds. Here, V(1) and V(2) are the volumes of 
the polymer-lean and -rich phases, respectively. 
We adopt the hypothesis that thermodynamic 
equilibrium is attained between the nucleus 
(0 < S < SCN) and its surrounding sphere 
(SCN < S < So; So, radius of local equilibrium 
region), but there is no equilibrium between 
the sphere and its outer large homogeneous 
phase (S> So) (Figure 4). However, note that 
this hypothesis (i.e., "local equilibrium hy­
pothesis") has not yet been fully verified 
experimentally. When "local equilibrium hy­
pothesis" is accepted, V(1)' V(2)' and R are given 
by the formula: 
In the case of < 

4 3 3 V(l)=-n(So -SCN) , 
3 

4 3 
V(2) = - nSCN , 

3 

R= Sg-S2N 

S2N 

In the case of > vi 

(lla) 

(11 b) 

(1lc) 

(12a) 
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(12b) 

S2N 
R= 3 3 

So-SeN 
(l2c) 

Coordinates of the spinodal points C and D 
[(VWcl)' dGv(vWcl))) and (VWc2)' dGv(VWc2»))] can 
be calculated by solving the equation13 

1 1 2 
--+---Xo(2+3P1vX+4P2VX)=O 
I-vx Xvx 

(13) 

for a given Xo. And the critical solution point 
can be evaluated by solving the 

simultaneous equations (eq 13 and 14),u 

1 
----.,.---XO(3Pl +8P2VX)=O. (14) 
(1-VX)2 Xvi 

The above discussion on monodisperse poly­
mer/solvent system can easily be extended to 
more general systems including polydisperse 
polymer/solvent/non solvent system. 

Evidently, dcp is a function of S as illustrated 
in Figure 5. dcp of Figure 5 is calculated using 
dfv= -300.99Jm- 3 and a=3 x 10- 6 Jm- 2 . 

The radius of critical nuclei, SeN is derived by 
applying the condition of Jdcp/JS=O to eq 1 
to yield 

2a 
SCN=--' 

dfv 

5 lnm) 

(15) 

Figure 5. Plot of activation energy of formation of 
nucleus !,!¢(S) as a function of nucleus size S (eq I): 
!'!fv= -300.99 J m 0'= 3 X J m in this case, 
SCN ",,20 nm and !'!¢cN",,5 x J. 
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When a nucleus formed at a given instant 
has a radius SN larger than SeN, the nucleus 
will continue to grow spontaneously. The 
activation energy of formation of critical 
nucleus dCPCN is written by combining eq 15 
with eq 1 as 

(16) 

It should be emphasized that in this case, 
although the phase equilibrium has not yet been 
attained over the whole solution system, R for 
the local equilibrium region surrounding each 
nucleus is considered to coincide with R for 
the whole system (eq 10). 

Growth of Nucleus (Step c) to Primary Particle 
(Step d) 

The profile of polymer concentration around 
a nucleus < is demonstrated in Figure 6. 
Then, the polymer concentrations of a nucleus, 
its surrounding sphere and outer homogeneous 
phase are Vp(l)' Vp(2)' and respectively. So is 
related to R through the relation: 

sg - S2N ( Vp(2) -
R= S3 = 0 

eN Vp -Vp(l) 
for 

(17) 

for 

(18) 

Of course, Vp(l) and Vp(2) can be calculated 
theoretically for any polymer solution. 

For < after the generation of a nucleus, 
the polymer molecules in the outer phase, based 
on the concentration difference - Vp(l)' im­
mediately diffuse into the sphere (Figure 6b). 
The number of the polymer molecules diffusing 
through the unit area of the spherical surface 
from the outer phase per unit time is given by 
solving the general equation of diffusion in the 
form 

(19) 
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t=O 
,----Vp 
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VP(1) ____ , 

d)vp(2) , 5 

5 

Figure 6. Concentration profiles of a critical nucleus with 
a radius of SN(/) and its surrounding sphere with a radius 
of So(t): a) the profile of polymer concentration around 
the critical nucleus at 1 = O. Vp(2)' the polymer concentration 
of nucleus, Vp(I)' its surrounding sphere and its outer 
homogeneous phase; b) increase of the radius of the nucleus 
(shadowed area) due to diffusion [vp(S. 1 I)' hatched area] 
from the outer phase at 1 = 1 I (= .1.1); c) the profile of 
polymer concentration around the nucleus at 1 = 1 I; d) 
increase of the radius of the nucleus (shadowed area) due 
to diffusion [vp(S, 12 ), hatched area] from the outer phase 
at t = t 2( = 2.1.t). 

with 

+ _1_ {_l_ (Sin 
S 2 sin 0 00 00 sin 2 00'" 2 

(20) 

(0 and '" are polar coordinates) under the 
boundary conditions of vp(S, 0) = Vp(l) in the 
range of SCN < S < So(O) and vp(S, 0) = for 
SCN>SO(O) (Figure 6a) as15 

(S t)=( 0_ ) [4>(So+)+ 4>(So-) 
vP ' vp Vp(l) 2 
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1 f;t{ 2 +- - exp( -so+) 
S n 

-exp( -S5-)} ]+Vp(1) (21) 

where 

(22) 

(23a) 

(23b) 

Here, 4>(x) is the error function, D, the diffusion 
coefficient and t, the growing time of nucleus 
by diffusion. We define t = 0 as the instant of 
appearance of a critical nucleus and the 
concentration profile around the nucleus at 
t = t 1 (= is illustrated in Figure 6b. If we 
can also assume that the thermodynamic 
equilibrium holds even at t = t 1 between the 
nucleus (O<S<SN(t 1)) and the surrounding 
sphere (SN(t1)<S<SO(t1))' the diffusion of 
polymer molecules (hatched area in Figure 6b) 
from the outer phase into So(O) sphere will 
instantly result in an increase in the radius of 
the nucleus (shadowed area in Figure 6b) 
yielding SN(t 1) [i.e., SCN (== SN(O))-+SN(t 1)] 
(see, Figure 6b). This can be understood as 
nucleus growth. When the thermodynamic 
equilibrium between the nucleus and its 
surrounding sphere holds even at t = t 2 (== 2M), 
the radius of the nucleus increases from SN( t 1) 
to SN(t2) (Figures 6c and 6d). The concentra­
tion profile of diffusion at t= t2, vp(S, t2 ) can 
be numerically evaluated in this case by solving 
the diffusion equation (eq 19) under the bound­
ary conditions of vp(S, t1)=Vp(1) (SN(t 1)<S< 
SO(t1)) and vp(S, (S>S(t 1))· 

The above treatment can be readily extended 
to the more general case of a nucleus with a 
radius of SN(t 1) and its surrounding sphere with 
a radius of So(t 1), obtained at time t = ti (== iM). 
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V/S, t 1) can be estimated by solving eq 19 under 
the boundary conditions of vp(S, ti -1) = Vp(1) 

(SN(ti- 1)<S<SO(ti-1)) and vp(S, 
(S> SO(ti-1)) when the following relation holds 

R=SO(tY-SN(tY (i=l 23"') (24) 
SN(t;)3 ' , , 

among SN(t;), So(t;) and the phase volume ratio 
R determined by eq 17. 

An increment of polymer volume during 
t=ti- 1 and t=ti in the polymer-lean phase 
ranging from SN(ti-1) and SO(ti), Vp(l) is given 
by the following equation; 

fSO «(') 

{vp(S, ti)-vp(1)}S2dS. 
SN(I, - tl 

(25) 

As the thermodynamics equilibrium is main­
tained between the nucleus (0 < S < SN(t;)) and 
its surrounding sphere (SN(t;) < S < SO(ti)) (in 
other words, eq 7 and 8 hold), polymer 
concentration of nucleus and its surrounding 
sphere should be kept as Vp(2) and Vp(l)' 

respectively, and increment of the polymer 
volume in the polymer-rich phase during 
t=ti- 1 and t=ti' is the same as 
I Vp(l/ t ;) I under the condition given by eq 24. 
Here, Vp(2/tJ is given by 

4n {3 3 
"'-Vp(2) SN(tJ -SN(ti- 1) } (26) 
3 

and combining eq 25 and 26, we obtain 

3 fSO«(;) 
SN(tY=- (v/S, tJ-vp(1)}S2dS 

Vp(2) SN(t, - ,) 

+ SN(ti_ 1)3 . (27) 

Solving the integral equation eq 27 under the 
conditions of eq 24, SN(ti) and So(t;) are 
obtained. 

Differentiation of eq 27 with respect to t gives 

OSN(t) = 1 2 fSO(l) (OVp(S, t)) S2dS . 
at Vp(2)SN(t) SeN at 

(28) 

1120 

Equation 28 is an expression giving the growth 
rate of the nucleus. Kamide and Manabe 7 

proposed a somewhat different approach to the 
estimation of the growth rate using a rather 
rough approximation. ov(S, t)/ot in eq 28 can 
be determined by differentiation of eq 21 with 
respect to t, in the form: 

RESULTS AND DISCUSSION 

Generation of Critical Nuclei (Step b) 
Figures 7a and 7b show the cloud point curve 

(full line) [in a), vs. Vx and in b), cloud 
point temperature Tcp VS. vx], spinodal curve 
(broken line) [in a), VS. Vx and in b), Tsp 
vs. vx] and critical solution point (unfilled 
circle) in a case of X = 1 X 102• Figures 7c and 
7d show vs. Vx curve and 
RT] vs. Vx curve, respectively. Here, the 
calculations were carried out under the 
following conditions; P1 = 0.642, P2 = 0.190, 
8=307.1K, t/Jo=0.27 and Vo=108.74cm3 

mol- 1 . These values except X and Vo were 
determined for atactic polystyrene (PS)/cyclo­
hexane (CH) system by analyzing the critical 
point data through use of Kamide-Matsuda 
method in 1984Y 8 and t/J 0 are substituted 
into eq 30 

T (30) 

Polym. J., Vol. 25, No. II, 1993 
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F'igure 7. Cloud point curve (solid line), spinodal curve 
(broken line) and critical solution point (open circle) of 
monodisperse polymer/single solvent system [a) XO vs. 

Vx plot, b) T vs. Vx plot] together with !1GJRT vs. plot, 
c) and -[(!1G-!1G,)/RT] vs. Vx plot, d): Original 
polymer; monodisperse (X = I X 102 ) and P, =0.642, 
P2=0.190, 8=307.1 K and 1/10=0.27. and 
Xo=0.5377 (T=269.5K) and XO (and T) at phase 
separation point (and T=248.8K). 

to convert Xo to T. The area, surrounded by 
cloud point curve and spinodal curve is the 
metastable region where the critical nuclei are 
formed as previously mentioned. For X = 1 X 

102 , the critical solution point is 
and Xo=0.5377 (Tc =269.47K) (see, eq 13 and 
14). I:!Gv and I:!G were calculated for the phase 
separation temperature Tp = 248.8 K (i.e., 

= 0.5633) when X = 1 X 102 • In this case, the 
coexisting compositions are VX(l) = 0.02 (point 
A) and V X (2) = 0.4368 (B) and the spinodal 
compositions are vr(l) = 0.0774 (C) and Vr(2) = 

0.3405 (D). I:!Gv VS. curve is roughly linear 
in the range but -(I:!G-I:!Gv) vs. 

curve has two minimums at points A and B 
and two inflection points at points C and D 
(spinodal points). 
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Figure 8. The cloud point curve (broad solid line), 
spinodal curve (broken line) and critical solution point 
(unfilled circle) of monodisperse polymer/single solvent 
system: P, =0.642, P2=0.190, 8=307.1K and 1/10=0.27; 
e, phase separation point (hypothetical one phase); 
Arrows indicate phase separation points listed in Tables I 
and II; a) and d), X= 100; b) and e), X=300; c) and f), 
X=1000. 

Wolf and Heinrich 16 measured the inter­
facial tension (= interfacial free energy) a 

between the coexisting phases of the systems 
cyclohexane/polystyrene and methylcyclohex­
ane/polystyrene and revealed that the knowl­
edge of the chain length of the polymer and 
of the polymer content in the two coexisting 
phases suffices to predict the a between them, 
at least for typical vinyl polymers. They 
presented experimentally the generalized equa­
tion 

a(mN m -1) = 0.153Xo.5 (v X (2) - V X (I»)3.85 

(31) 
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where X is the number of monomeric units of 
the polymer. In the calculation of the size of 
critical nuclei this equation was employed. 

Figure 8a shows the phase separation points 
(i.e., hypothetical metastable single phase, filled 
circle) as well as the cloud point curve (solid 

line), spinodal curve (broken line) and critical 
solution point (unfilled circle) for PS with 
X = 1 x 102 /eR. Figures 8b and 8c show results 
obtained in cases of PS with X = 3 X 102 and 
1 x 103 , respectively. Larger figures of numbers 
in Figures 8a-8c like 1 of 11 or 5 of 53, etc. 

Table I. Size of critical nuclei SCN and activation energy of formation of critical nuclei, d ¢CN' 
of polystyrene (X-mer) solution in eyclohexane: Effect of initial polymer concentration 

X 

100 248.8 

200 268.9 

300 277.6 

500 286.0 

1000 293.8 

3000 300.8 

5000 302.6 

No.' 

15 
25 
35 

45 
55 

0.0296 
0.0391 
0.0487 
0.0582 
0.0678 

0.0276 
0.0352 
0.0427 
0.0503 
0.0579 

0.0266 
0.0331 
0.0397 
0.0463 
0.0528 

0.0254 
0.0308 
0.0363 
0.0417 
0.0471 

0.0241 
0.0282 
0.0322 
0.0363 
0.0404 

0.0224 
0.0248 
0.0272 
0.0296 
0.0320 

150 0.0218 
250 0.0236 
350 0.0253 
450 0.0271 
550 0.0289 

VX (2) 

0.0200 0.4368 

0.0200 0.3431 

0.0200 0.2948 

0.0200 0.2409 

0.0200 0.1795 

0.0200 0.1068 

0.0200 0.0816 

R 

42.6 
20.8 
13.5 
9.9 
7.7 

41.6 
20.3 
13.2 
9.7 
7.5 

40.9 
19.9 
13.0 
9.5 
7.4 

39.8 
19.4 
12.6 
9.2 
7.2 

38.1 
18.5 
12.0 
8.8 
6.8 

35.1 
17.1 
11.0 
8.0 
6.2 

d/v/Jm- 3 

-2.67 X 102 

-9.09 X 102 
-1.78 X 103 

-2.78x 103 

-3.85 x 103 

-8.63 x 10 
-2.98 X 102 

-5.89 X 102 
-9.26x 102 

-1.29 x 103 

-4.28 x 10 
-1.49 X 102 
-2.96 X 102 

-4.67 X 102 
-6.53 X 102 

-1.68 x 10 
-5.92 x 10 
-1.18 X 102 

-1.88 X 102 
-2.63 X 102 

-4.32 
-1.54 x 10 
-3.10 x 10 
-4.95 x 10 
-6.98 x 10 

-3.65xlO- 1 

-1.32 
-2.69 
-4.35 
-6.16 

33.7 -9.24x 10- 2 
16.3 -3.39xlO- 1 

10.6 -6.95 x 10- 1 

7.7 -1.13 
I 5.9 -1.60 

5.26 X 10- 5 

2.79 x 10- 5 

1.83 x 10- 5 

1.02 x 10- 5 

4.13 X 10- 6 

6.86 x 10- 7 

394.5 
115.8 
59.3 
37.9 
27.3 

646.8 
187.2 
94.9 
60.3 
43.3 

857.7 
246.1 
124.1 
78.5 
56.2 

1213.6 
344.8 
172.7 
108.8 
77.6 

1910.2 
536.2 
266.2 
166.6 
118.3 

3755.2 
1037.8 
508.9 
315.5 
222.5 

3.43 x 10- 17 

2.96 x 10- 18 

7.75 x 10- 19 

3.17xI0- 19 

1.64 x 10- 19 

4.89 X 10- 17 

4.10 X 10- 18 

1.05 X 10- 18 

4.25 X 10- 19 

2.19xlO- 19 

5.65 X 10- 17 

4.65 X 10- 18 

1.18 X 10- 18 

4.74 X 10- 19 

2.43 X 10- 19 

6.30xI0- 17 

5.09 X 10- 18 

1.28 X 10- 18 

5.06x 10- 19 

2.57 x 10- 19 

6.3IxlO- 17 

4.97 X 10- 18 

1.22 X 10- 18 

4.80x 10- 19 

2.42 x 10- 19 

4.05 X 10- 17 

3.09 X 10- 18 

7.44 x 10- 19 

2.86 x 10- 19 

1.42 X 10- 19 

5118.02.59xlO- 17 

1396.8 1.93 x 10- 18 

2.36xI0- 7 680.1 4.58xlO- 19 

419.6 1.74 x 10- 19 

294.8 8.61 x 10- 20 

a Locations in phase diagram for X = 100, 300, and 1000 are shown in Figures 8a-8e. 
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__ __ 
X=lQOO 

Figure 9. Effect of the free energy change of coagulation per unit volume, 1'1/, on the relation between 
activation energy of formation of nucleus 1'14>(S) and nucleus size S at constant interfacial free energy (J 
between polymer-lean and -rich phases under the following conditions: a), X = 100; VX(') = 0.02; 
V X(2) = 0.4368; (J=5.26xlO- sJm- 2 ; I" =0.0296; 1'1/,=-2.67xI02Jm- 3 ; 2" 0.0391; 
1'1/,=-9.09xI02 Jm- 3 ; 3" 1'1/,=-1.78xI03 Jm- 3; 4" 1'1/,=-2.78 x 103 
Jm- 3; 5" 1'1/,= -3.85 x 103 Jm- 3 ; b), X=300; vX (1)=0.02; vX (2)=0.2948; (J= 1.83 x 10- 5 

Jm- 2 ; 13 , 1'1/,= -4.28 x IOJm- 3; 23 , 1'1/,= -1.49 x 102 Jm- 3; 33 , 

1'1/,= -2.96 x 102 Jm- 3 ; 43, 1'1/,= -4.67 x 102 Jm- 3; 53' 1'1/,= -6.53 x 102 

Jm- 3; c), X= 1000; VX(,)=0.02; V X(2)=0.1795; (J=4.13 x 10- 6 Jm- 2 ; 1'0' 1'1!v= -4.32Jm- 3; 
2'0' 1'1/,= -1.54x IOJm- 3 ; 31o, 1'1!v= -3.IOx IOJm- 3; 410' 
1'1/,= -4.95 x IOJm- 3; 510' 0.0404; 1'1/,= -6.98 x IOJm- 3; closed circle, 1'14>(S) and S of critical 
nucleus (i.e., I'14>CN and SCN)' 

correspond to positions where a line between 
a cloud point and a spinodal point at the 
constant Tp are divided into six equal parts. 
Small suffixes (1, 3, and 10) mean X/100. 
Accordingly, 11 is the nearest point to a cloud 
point and 51 is the nearest to a spinodal point. 

Table I collects the values of Aiv, (J and SCN 
which were calculated for PS with X = 1 X 102_ 

5 x 103 in CH at V p(l) = 0.0200. Here, interfacial 
free energy (J between polymer-lean and -rich 
phases of PS/CH solution was determined by 
use of eq 31. The radius of critical nuclei SCN 
ranges from the order of several thousand nm 
to several ten nm, decreasing with increase 
in initial concentration or when the phase 
separation point comes nearer the spinodal 
curve. SCN becomes smaller for smaller X. 
For X = 1 X 102 or 2 x 102 , SCN had magnitude 
of the same order as those of the primary 
particles observed by EM. 

Figure 9 shows relation between radius of 
nuclei Sand AcjJ(S) at a given phase separation 
point. Numbers on curves are those (11-51, 
13-53 , and 110-510) listed in Table I and are 
also shown in Figures Sa-Sc. SCN of critical 
nuclei generated near the cloud point curve 
were larger than those near a spinodal curve, 

Polym. J., Vol. 25, No. 11, 1993 

but AcjJCN became smaller when the phase 
separation occurred near the spinodal curve, 
indicating that nucleation tends to occur much 
more easily near the spinodal curve. 

Figures 1 Oa-l Od show effects of on R, 
Aiv, SCN, and AcjJcN under the phase separation 
condition, shown as closed circles in Figure Sa. 
If solutions having different initial polymer 
concentrations obey to phase separation at the 
constant temperature, R, Aiv, SCN, and AcjJCN 
become smaller at larger Figures lla-llc 
show SCN generated at phase separation points 
as shown in Figures Sa-Sc. In the figures, data 
points for SCN> 500 nm were omitted. 

When a solution is cooled from a single phase 
state to bring about two-phase separation, the 
solution passes through the cloud point and 
Aiv attains the minimum on the cloud point 
curve and accordingly, SCN on the cloud point 
is the maximum. Table II shows results 
calculated on phase separation points as shown 
in Figures Sd-Sf for PS solutions with 
X = 1 X 102 , 3 X 102 , and I x 103 . In these 
figures, point a is the nearest to the cloud point 
curve and suffixes (small figures) mean X/100. 
Critical nuclei seldom generate on the cloud 
point curve and the activation energy of 
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Figure 10. Effects of initial polymer concentration 
on phase volume ratio R(a), free energy change of 
coagulation per unit volume tJ./v (b), radius of critical 
nucleus SeN (e) and activation energy of formation of 
critical nucleus tJ.<PeN (d): X = 100; numbers mean phase 
separation temperature Tp; I, Tp=214.4 K; 2, Tp=238.7 K; 
3, Tp=241.1 K; 4, Tp=245.5K; 5, Tp=248.8K; 6, 
Tp=253.4K; 7, Tp=256.8K; 8, Tp=259.3K; 9, Tp= 
261.4K; 10, Tp=263.0K; 11, Tp=264.4K; 12, Tp=265.5 
K; 13, Tp=266.4K; 14, Tp=267.2K; 15, Tp=267.9K; 16, 
Tp=268.4K; 17, Tp=268.8K; 18, Tp=269.1 K; 19, 
Tp=269.3K; 20, Tp=269.4K. 
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Tp(K) 
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Figure 11. Three dimensional views of relation between 
radius of critical nucleus SeN' phase separation points 
and Tp) on a phase diagram: a), X = 100; b), X = 300; c), 
X = 1000: Data points of SeN> 500 nm are not shown 
here. 

formation of critical nucleus I'1<PCN and SCN are 
the smallest on the spinodal curve. 

Growth of Nucleus (Step c) to Primary Particle 
(Step d) 

Figure 12 demonstrates the concentration 
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Table II. Size of critical nuclei SCN and activation energy of formation of critical nuclei, 
I'>.</>CN' of polystyrene (X-mer) solutions in cyclohexane: Effect of Tp 

X Tp/K No." V X (1) V X (2) R I'>.f,/Jm- 3 O"/J m- 2 SCN/nm I'>.</>CN/J 

248.8 a l 0.0200 0.4367 433.8 -3.18 5.26 x 10- 5 33064.8 2.41 x 10- 13 

245.5 b l 0.0150 0.4567 73.1 -1.52 x 102 6.58xlO-5 866.7 2.07 x 10- 16 

241.1 ci 0.0100 0.4818 42.1 -6.74x 102 8.49 x 10- 5 252.0 2.26x 10- 17 

100 238.7 d l 0.0210 0.0080 0.4944 36.5 -1.08 x 103 9.54 x 10- 5 176.7 1.25 x 10- 17 

235.7 el 0.0060 0.5094 32.7 -1.70x 103 1.09 x 10-4 128.4 7.52 x 10- 18 

231.7 fl 0.0040 0.5287 29.9 -2.69 x 103 1.28 X 10- 4 94.8 4.81xlO- 18 

225.3 gl 0.0020 0.5574 28.3 -4.61 x 103 1.59 X 10- 4 69.0 3.17xlO- 18 

219.5 hi 0.0010 0.5819 28.1 -6.63 x 103 1.89 X 10-4 57.0 2.57 x 10- 18 

214.1 il 0.0005 0.6031 28.5 -8.66 x 103 2.18 X 10-4 50.3 2.30 x 10- 18 

275.7 a3 0.0150 0.3125 808.8 -2.27 x 10- 1 2.49 x 10- 5 219513.4 5.03 x 10- 12 

273.0 b3 0.0100 0.3350 59.5 -6.56 x 10 3.50 x 10- 5 1066.4 1.67 x 10- 16 

271.6 c3 0.0080 0.3462 44.9 -1.44 x 102 4.08 X 10- 5 564.9 5.45 x 10- 17 

300 269.7 d3 0.0154 0.0060 0.3598 36.8 -2.82 x 102 4.85 X 10- 5 344.4 2.41 X 10- 17 

267.2 e3 0.0040 0.3772 31.8 -5.28 x 102 5.96 x 10- 5 225.8 1.27 x 10- 17 

263.1 f3 0.0020 0.4032 29.0 -1.04 x 103 7.87 x 10- 5 151.2 7.54 x 10- 18 

259.2 g3 0.0010 0.4256 28.6 -1.62 x 103 9.79 X 10- 5 120.9 5.99 x 10- 18 

255.6 h3 0.0005 0.4451 28.9 -2.23 x 103 1.17 X 10- 4 105.1 5.41 x 10- 18 

291.6 a lO 0.0100 0.2127 266.2 -4.43 x 10- 1 1.04 x 10- 5 46862.7 9.54 x 10- 14 

290.8 b lo 0.0080 0.2220 76.6 -6.99 1.28 x 10- 5 3661.1 7.18 x 10- 16 

289.8 c lO 0.0060 0.2332 46.7 -2.57 x 10 1.61 x 10- 5 1252.0 1.06 x 10- 16 

1000 288.5 d lo 0.0108 0.0040 0.2476 35.0 -6.82 x 10 2.llxlO- 5 617.8 3.37xlO- 17 

286.3 e lo 0.0020 0.2692 29.5 -1.72 x 102 3.01 X 10- 5 350.6 1.55 x 10- 17 

284.2 flO 0.0010 0.2878 28.4 -2.98 x 102 3.95 x 10- 5 264.7 1.16 x 10- 17 

282.2 glo 0.0005 0.3040 28.6 -4.37 x 102 4.91 x 10- 5 224.7 1.04 x 10- 17 

a Locations in phase diagram are shown in Figures 8d-8f. 

profile of a critical nucleus and its surrounding. 
PS/CH system is employed as a model system 
where X = 500, Pl =0.642, Pz =0.190, entropy 
parameter 1/10=0.27, and Flory theta tempera­
ture e = 305.1 K. ll ,lZ In the figure, = 0.0147, 
Tp=270.22K (i.e., vp(l)=O.OOI, 
vp(2)=0.362, R=25.387, I1lv= -930Jm- 3 , 

11t=0.005ps, D=2.5 x 1O- 10 mZs- 1 , and (J= 
5 x 10- 6 Jm- Z (so, SCN=SN(O)= 1O.75nm and 
So(O) = 32.004 nm) were assumed. From the 
figure, the growth of the nucleus SN(t) and the 
expansion of the local equilibrium region So(t) 
with time can be readily understood. 

Figure 13 shows the effect of (J on the plots 
of SN(t) or So(t) against t. Under the conditions 
employed here, critical nuclei grow up after 
0.4 Ils of its birth to a particle with radius of 
ca. 750 nm and at the same time, the local 

Polym. J., Vol. 25, No. II, 1993 

equilibrium region expands to as wide as ca. 
2000 nm, irrespective of (J. 

As the nucleus grows in this manner, the 
surrounding sphere with radius of So also 
continues to become bigger. During the growth 
of the nucleus, the outer homogeneous region 
generates a new critical nucleus (see, Figure 
14). Ultimately (at a given time t= t p) the 
original outer homogeneous phase (hatched 
area) will disappear completely, due to 
consumption by continuous expansion of the 
So sphere and further generation of critical 
nuclei. All the nuclei (i.e., the particles) at this 
instant (t= tp) are conventionally defined as 
primary particles (Figure 14). 

We assume that nucleation is always 
absolutely sporadic and spinodal decomposi­
tion is never predominant, then the rate of 
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Figure 12. Concentration profile of nucleus and its 
surroundings together with diffusion vp(S, t) (hatched area) 
and increase of radius of nucleus (shadowed area) of 
polystyrene/cyclohexane system (X = 500, PI =0.642, P2 = 

0.190,1/10=0.27, and 11=305.1 K): Initial polymer volume 
fraction, =0.0147; concentration of coexisting phases, 
VP(l) =0.001 and vp(2)=0.362 (accordingly, R=25.387); 
difference of free energy between before and after phase 
separation, ft.fv= -930Jm- 3 ; phase separation tempera­
ture, Tp=270.22K: Interfacial free energy, (1=5 x 10- 6 

Jm- 2 [accordingly, SCN=SN(0)=10.75nm and So(O)= 
32.00nm] and diffusion coefficient, D= 2.5 x 10- 10 m2 S-2 

assumed; a), t=0.005/1s; b), t=O.OIO/1s; c), t=0.015/1s; 
d), t = 0.020 /1S; e), t = 0.025 /1S; f), t = 0.030 /1S; g), 
t = 0.035 /1S; h), t = 0.040 /1S. 

production of critical nuclei per unit volume is 
given by 

dNcN -k (f..¢CN) ---- CNexp ---
dt kBT 

(32) 

with 

k =k' {l- NCN(t) } (33) 
CN CN NCN(oo)' 

NCN is the number of critical nuclei per unit 
volume (numberm- 3), NCN(t) , NCN at t, 
NCN(oo), NCN at t= 00 and the rate 
constant (numberm- 3 's- 1) and f..¢CN can be 
calculated using eq 16. Here, nucleation is 
considered to be described by the same formula 
as that for the zeroth order reaction. However, 
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Figure 13. Time dependence of radius of nucleus SN(t) 
and that of its surrounding sphere So(t) of poly­
styrene/cyclohexane system (X = 500, PI = 0.642, P2 = 

0.190,1/10 =0.27, and 11=305.1 K) : Initial polymer volume 
fraction, = 0.0147; concentration of two coexisting 
phases, vP(l)=O.OOI and vp(2)=0.362 (accordingly, R= 
25.387); difference of free energy between before and after 
phase separation, ft.fv= -930Jm- 3; phase separation 
temperature Tp = 270.22 K; interfacial free energy, (1 = 5 X 

10- 6 J m -2 [accordingly, SCN= SN(O) = 10.75 nm and 
So(0)=32.004nm], (1= I x 10- 5 Jm- 2 [accordingly, 
SCN =21.505 nm and So(0)=64.024nm] and (1=2x 10- 5 

Jm- 2 [accordingly, SCN=43.01nm and So(0)=128.04 
nm]; diffusion coefficient, D=2.5x 1O- IO m2 s- l • 

the nucleation does not continue without limits 
as was confirmed repeatedly by a large number 
of actual experiments if available surveys are 
to be believed, and it will stop at the instant 
when the phase equilibrium of total system is 
realized (i.e., t = tp; see, Figure 14). 

Substitution of eq 33 into eq 32 yields 

dNcN(t) = v {l- NCN(t) } (34) 
dt NCN(oo) 

with 

f..¢CN). (35) 
kBT 

By solving the differential equation (eq 34), we 
obtain 

NCN(t)=NCN(oo)[I-exp(- v t)]. 
NCN(oo) 

(36) 
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Figure 14. Schematic representation of nucleation and 
growth of nuclei [a)] and time dependence of nucleation 
NCN(t) and rate of nucleation dNcN/dt of critical nuclei 
[b)]: a), e, nucleus (polymer-rich phase); 0, surrounding 
sphere (polymer-lean phase); hatched area, outer homoge­
neous phase. 

Combination of eq 34 and 35 gives 

dNcN(t) ( v ) vexp t . 
dt NCN(oo) 

(37) 

The total volume of So spheres including 
growing particles at t, Vo(t) is expressed as 

Vo(t)=ftdNCN(t) 4n So(t-r?dr (38) 
o dt 3 

where r is the time of formation of nucleus and 
t - r is the growing time of nucleus at t. So and 
SN are the functions of t - r [i.e., So = So(t - r) 
and SN=SN(t-r)]. 

At t = tp , V(t) = 1 holds. In other words, in 
order to estimate tp , the following equation 
should be solved. 

f
tPdNCN(t) 4n S ( )3d-I 
---- 0 tp-r r- . 

o dt 3 
(39) 

Since dNcN/dt can be evaluated from NCN( 00) 

and v [accordingly, I'lCPCN and T {see, eq 
35}] by eq 37 and So(t-r) together with 
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SN(t-r) can be calculated by solving simultan­
eous equations Ceq 24 and 27], tp can be 
unambiguously determined by eq 39 under 
given phase separation conditions. Here, 
NCN(oo) (numberm- 3 ) should be below the 
number of polymer molecules (in this case, 
monodisperse polymer) per unit volume. For 
example, in the case of the weight fraction of 
polymer with molecular weight M = 3 X 104 

g mol- 1, Wx = 0.03, the following relation 

NCN(oo):::::: Wx x dPL X 106 (= 0.03 x 1 x 106 N ) 
M 3x104 A 

NA 

=NA ( =6.023 x 1023 numberm -3), 

(40) 

should be satisfied. Here, dPL is the density of 
polymer and NA is Avogadro's constant. 

Figure 15 shows the effect of (j and NCN(oo) 
on the relations between tp , obtained by solving 
an integral equation Ceq 39], and (Figures 
15a and 15b) and on the relations between 
NCN(tp), calculated by substituting tp into eq 
36, and (Figures 15c and 15d), respectively. 
In Figures 15a and 15c, I'lCPCN = 2.42 x 10- 21 J, 
(accordingly, exp(I'lCPCN/kBT) = 0.523) was esti­
mated by putting and (j = 5 x 10 - 5 J m - 2 into 
eq 16 and Figures 15b and 15d, I'lCPCN= 1.94 x 
10- 20 J (accordingly, exp(l'lcpcN/kBT) = 5.56 x 
10 - 3) was estimated, in a similar manners from 
(j = 1 x 10 - 5 J m - 2 and eq 16. Other conditions 
are the same as those in Figure 13. At 
(j=2 x 10- 5 , I'lCPCN= 1.55 X 10- 19 J (accord­
ingly, exp(l'lcpcN/kBT)=9.07 x 10- 19) is ob­
tained and eq 39 can not be solved numerically 
due to extremely small magnitude of the 
probability exp(l'lcpcN/kBT)=9.07x 10- 19 . As 

increases tp decreases monotonically, 
approaching an asymptotic value which is 
smaller for larger (j and for larger N CN( 00). 

NCN(tp) increases with attaining at NCN( 00). 
Figure 15 implies that in a relatively early stage 
of phase separation all possible nuclei generate 
completely and thereafter the separation 
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Figure 15. Relations between the time needed for 
attainment of equilibrium tp and rate constant of 
nucleation (eq 33) [a) and b)] and relations between 
the nuclei density NCN( 00) and [c) and d)] of 
polystyrenejcyclohexane system: 0'=5 x 10- 6 Jm- 2 [a) 
and en and 0'= I x 10- 5 Jm- 2 [b) and d)]; other 
conditions are the same as those of Figure 13. 
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Figure 16. Relations between the number- (or weight-) 
average radius of the primary particle Sn .[a) and b)] (or 
Sw (c and d» [i.e., the radius of particles at the time for 
attainment of phase equilibrium, t = tp] and rate constant 
of nucleation for various limiting nuclei density 
NCN(oo) of polystyrenejcyclohexane system: 0'=5 x 10- 6 

Jm- 2 [a) and c)] and 0'= I x 10- 5 Jm- 2 [b) and d)]; 
oiher conditions are the same as those of Figure 13. 

proceeds by diffusional growth of nuclei. 
Figure 16 shows the effect of N CN( (0) on the 

relations between the number-average or the 
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Figure 17. Plots of (ljv)dNcNjdt (eq 37) as a function of 
time [a), c), and e)] and normalized size distribution of 
primary particle per unit volume at the time of attainment 
of equilibrium t=tp [b), d), and f)], NpP(Sl)jNcN(oo) for 
various rate constants (number m - 3 S - I) of poly­
styrenejcyclohexane system: 0'=5 x 10- 6 Jm- 2 ; a) and b), 
NCN( 00) =2 X 1018 numberm -3; c) and d), NCN( 00) =2 x 
1019 numberm- 3 and e) and f), NCN(00)=2x 1020 num_ 
berm -2; v =2.971 X 1025 numberm -3 S-I 1 x 1026), 
v=5.942 X 1025 x 1026), v= 1.486 X 1026 

5 x 1026), V = 2.971 X 1026 = 1 X 1027), V = 5.942 X 1026 

x 10 27 ), v= 1.486 X 10 27 X 10 27 ), 
v=2.971 X 1027 I x 1028), v= 1.486 X 1028 

5 x 1028), V = 1.486 X 1029 = 5 x 1029), other conditions 
are the same as those of Figure 13. 

weight-average radius of primary particles (i.e., 
the particles at tp) Sn or Sw and Here, Sn 
and Sw are calculated through use of the 
relations, 

_ too SlNpP(Sl)dS1 

Si == Sl) =---;;:----­

too NpP(Sl)dS1 

too SfNpp(Sl)dS1 r s, N,,(S,)dS, ' 

(4la) 

(4lb) 

where NpP(Sl) (numberm- 4 ) is the primary 
particle radius (= S 1) distribution. Particle size 
distribution NCN(SN(t - c), t) at time t (0 <, < t) 
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Figure 18. Plots of (I/v) dNcN/dt (eq 37) as a function 
of time [a), c), and e)] and normalized distribution of 
primary particle per unit volume at t=tp [b), d), and f)J, 
NpP(SI)/ NCN( CfJ) for various rate constant (number 
m - 3 S - 1) of polystyrene/cyclohexane system: a = I x 10 - 5 

J m - 2 assumed; other conditions are the same as those of 
Figure 17. 

is given by the following equation, 

NCN(SN(t-,), t)=vexp ( v ,) 
NCN(oo) 

O<,<t. (42) 

Note that SN(t-,) satisfies eq 27. At t=tp, 
NCN(SN(t-,), t) coincides with NPP(Sl)' With 
an increase in both Sn and Sw approach 
their asymptotic values, which strongly depend 
on N CN( 00). This means explicitly that Sn and 
Sw are mainly governed by N CN( 00), rather than 
by for larger 

Figures 17a, 17c, and 17e (0"=SxlO- 6 

J m - 2) and Figures 18a, 18c, and 18e 
(0" = 1 x 10- 5 J m -2) show change in (l/v)dNcN/ 
dt (see, eq 37) with time for various com­
binations of NCN( (0) and In the figure, 
tp is indicated as an unfilled circle and 
(l/v)dN/dt becomes zero beyond tp. (l/v)dNcN/ 
dt decreases mort' rapidly with time for larger 
NCN( 00) and larger 

Figures 17b, 17d, and 17f (O"=S x 10- 6 

Jm- 2) and Figures 18b, 18d, and 18f (0"= 

Polym. J., Vol. 25, No. 11, 1993 

1 x 10- 5 J m - 2) show normalized size distribu­
tion of the primary particles (i.e., t = t p), 

NpP(Sl)/NcN(oo). The mean particle size shifts 
to smaller S 1 side with an increase in N CN( (0). 
Extremely sharp distribution of the primary 
particles is obtained for larger in other 
words, the primary particles are uniform in 
size. Lower yields very broad size dis­
tribution of the primary particles, especially 
for larger 0" value (in this case 0" = 1 x 10 - 5 

Jm- 2). 

CONCLUSIONS 

There are at the initial stage two elementary 
steps: The nucleation and growth of nuclei by 
diffusion, which occur concurrently until t = tp. 
The following conclusions are obtained. 

(I) SCN is determined by both 0" and 111v 
(eq IS). 

(2) Growth rate of nucleus is proportional 
to vg - vp(1) and l/vp(2)' respectively (eq 28). 

(3) Integral equation which determine tp is 
suggested (eq 39) and tp is in the order of 
SO--SOOns. 

(4) Primary particles (PP) are rigorously 
defined as the nuclei at t = tp and are proved 
to be different each other in size depending on 
the time of nucleation. 

(S) The method to calculate distribution of 
radius ofPP, NPP(Sl) is established (eq 42) and 
NPP(Sl) becomes sharp with the increase of 
and with the decrease of NCN(oo) and 0". 

In this article, an isothermal process was 
treated, but this treatment can readily be 
generalized to any non-isothermal process. 

GLOSSARY OF SYMBOLS 

D = diffusion coefficient 
M = molecular weight of polymer 

NA = Avogadro's constant 
NCN = number of critical nuclei per unit 

volume (number m - 3) 

NcN(t) = NCN at t 
NCN(oo)=NcN at t=oo 
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N pP(SI) = primary particle radius distribution 
(numberm- 4 ) 

1130 

R = phase volume ratio 
R = gas constant 

So = radius of local equilibrium region 
So(t) = So at t 

SI = radius of primary particle 
S2 = radius of secondary particle 

SCN = radius of critical nucleus 
SN = radius of nucleus 

SN(t) = SN at t 
Sn=number average of SI 
Sw = weight average of S 1 

T= Kelvin temperature 
Tcp = cloud point temperature 
Tp = phase separation temperature 
Vo = molar volume of solvent 

Vo(t) = total volume of So spheres including 
growing particles at t 

V(I) = volume of polymer-rich phase 
V(2) = volume of polymer-lean phase 

X = degree of polymerization of po­
lymer 

dPL = density of polymer 
kB = Boltzman constant 

kCN=rate constant (numberm- 3 s- 1) 

= rate constant of nucleation 
PI = 1st order concentration-depen­

dence parameters of X 
P2 = 2nd order concentration-depen­

dence parameters of X 
t = growing time of nucleus by diffu­

sion 
tp = time at which the phase separation 

of the whole system is attained 
ti = il1t 

vg = initial concentration of solvent 
V O(I) = volume fraction of solvent of 

polymer-lean phase 
VO(2) = volume fraction of solvent of 

polymer-rich phase 
= initial (overall) polymer concentra­

tion 
= polymer volume fraction of critical 

solution point 
= polymer volume fraction of the 

starting solution 
= initial polymer concentration 
= critical polymer volume fraction 

VX (I) = polymer volume fraction of X-mer 
of polymer-lean phase in equili­
brium 

V X (2) = polymer volume fraction of X-mer 
of polymer-rich phase in equili­
brium 

vr;l) = spinodal concentration of X-mer of 
polymer-lean phase side 

Vr;2) = spinodal concentration of X-mer of 
polymer-rich phase side 

Wx = weight fraction of X-mer 

I1Gv = Gibbs' free energy change of mixing 
per unit volume 

at 
= average Gibbs' free energy of 

coexisting phases A and B 
11 Vp(I)(t;) = increment of polymer volume in the 

polymer-lean phase during t = t i - 1 

and t = ti (given by eq 25) 
11 Vp(2)(t;) = increment of polymer volume in the 

polymer-rich phase during t=ti- 1 

and t = ti (given by eq 26) 
I1fv = free energy change of coagulation 

per unit volume 
I1t = hypothetical time interval of dif­

fusion (=ti-ti- 1 ) 

11¢(S) = activation energy of formation of a 
nucleus with the radius S 

I1¢CN = activation energy of formation of 
critical nucleus 

11/.10 = chemical potential of solvent 
l1/.1x = chemical potential of X-mer 

X = thermodynamic interaction param­
eter between solvent and polymer 

Xo = at infinite dilution 
¢(x) = error function 

v = rate constant of nucleation 

[ 
I (I1¢CN)] =kCNexp - kBT 

(J = theta temperature 
(J = interfacial energy between the nu-

Polym. J., Vol. 25, No. II, 1993 



Formation of Porous Polymeric Membrane I. 

cleus and its surrounding 
r = time of formation of nucleus 

t/I 0 = entropy parameter 
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