Polymer Journal, Vol. 24, No. 6, pp 591-595 (1992)

NOTES

Macrocyclic Peptides VII. Solution Conformation and Cation-Binding Properties of an Ionophorous Cyclic Octapeptide Containing N,N'-Ethylene-Bridged (S)-Valyl-(S)-Valine and Glycine

Yoshitane Kojima,[†] Hiroyuki Miyake, Youko Ikeda, Kozo Shibata, Tetsushi Yamashita, Akio Ohsuka, and Akio Sugihara*

Department of Chemistry, Faculty of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558, Japan * Osaka Municipal Technical Research Institute, 1–6–50, Morinomiya, Joto-ku, Osaka 530, Japan

(Received November 2, 1991)

KEY WORDS Cyclic Octapeptide / CD Spectra / Cation-binding Property / Glycine / Molecular Dynamics / NMR Spectra / Piperazin-2-one / Solution Conformation / (S)-Valine /

The preparations and conformations of various cyclic peptides, and their interactions with metal ions have been investigated widely by many workers.¹

The authors studied the preparations and conformations of several synthetic, cyclic peptides including N,N'-ethylene-bridged dipeptides (eXX) and their interactions with organic and inorganic substrates.^{2,3} Detailed, structural studies of cyclic peptides are necessary in order to examine their functionalities. In the preceding paper,³ the structure of Ba²⁺/cyclo[G-eLL-G]₂ {1; G=glycine and X=L=(S)-leucine} complex ion was clarified, though that of 1 itself have not yet been

established enough. This is the first paper in which the structure of a cyclic peptide{cyclo-[G-eVV-G]₂ = 2; X = V = (S)-valine} including eXX is determined clearly in acetonitrile/1,4dioxane(DOX) (v/v = 4/1) by NMR and FTIR measurements, and molecular mechanic calculations (MM2).⁴ The conformations and cation-binding properties of 2 with alkaline earth metal ions (Mg²⁺, Ca²⁺, and Ba²⁺) were examined by NMR and CD spectra, and then CPK model.

EXPERIMENTAL

Reagents grade perchlorates dried in vacuo

[†] To whom correspondence should be addressed.

at 120°C were used as alkaline earth metal salts.⁵ **2** was prepared according to a method similar to that of **1**.² **2**: mp > 300°C. $[\alpha]_D^{20}$ – 103° (c = 1 in methanol). MS: m/z 676 (M⁺). A cyclization yield calculated from the free carboxylic acid of Boc-octapeptide: 41%. *Anal*. Calcd for C₃₂H₅₂N₈O₈·3/2H₂O (703.8): C, 54.61%; H, 7.88%; N, 15.92%. Found: C, 54.76%; H, 7.99%; N, 15.95%.

CD data obtained in CH₃CN/DOX (v/v = 4/1) using a quartz cell (0.005 dm) over the wavelength region from 210 to 250 nm at 23°C were represented as mean residue ellipticities. NMR spectra were obtained in CD₃CN/DOX- d_8 (v/v = 4/1) at 30—60°C using DOX (3.50 ppm for ¹H and 66.5 ppm for ¹³C) as internal standards. The concentrations were 6 mmol dm⁻³. All signals were assigned by two-dimensional and selective decoupling methods. FTIR spectra were measured with concentrations of 0.5—6.6 mmol dm⁻³ in CH₃CN/DOX (v/v = 4/1) at room temperature in an NaCl cell.

A Jeol GX-400 (NMR spectra), a Jasco DIP-320 (optical rotation), a Nicolet 5ZDX-FTIR (FTIR spectra), a Jeol JMS-HX-100 (mass spectra), and a Jasco J-500A with a DP-500 data processor (CD spectra) were used for the measurements.

The molecular structure deduced from ¹H NMR data of **2** was optimized by MM2, using the parameters of Wolfe *et al.*⁶

RESULTS AND DISCUSSION

As shown in Figure 1, CD spectra resulted in 1.3—1.5 fold increase of negative ellipticities, and the extreme shifted from 229 nm of free **2** to 226 and 227 nm for Mg^{2+} and Ca^{2+} , respectively, when 10-fold alkaline earth metal salts were added to a solution of **2**.

The CD titration curves of $2/Mg^{2+}$, Ca^{2+} , and Ba^{2+} complex ions were negative hyperbolas, and only one plateau was observed for each metal complex ion within less than 10 mol equiv. of cation, suggesting the formation of a 1:1 complex. Of course, the existence of other species cannot be excluded in the presence of larger amounts of metal ions. K_1 Values of the complexes of 2 with Mg²⁺, Ca²⁺, and Ba²⁺, calculated by the methods similar to those of Bergeron *et al.*,⁷ are 4.7, 5.7, and 1.3×10^4 mol⁻¹ dm³, respectively.

Table I shows ¹H NMR chemical shifts and coupling constants of **2**, **2Mg** ($[Mg^{2+}]/[2] =$ 5) and **2Ca** ($[Ca^{2+}]/[2] = 1$). Tables I and II indicate that **2**, **2Mg** ($[Mg^{2+}]/[2] = 5$), **2Ca** ($[Ca^{2+}]/[2] = 1$ and 5) and **2Ba**($[Ba^{2+}]/[2] =$ 5) each have different C₂-symmetry structures from their simple NMR data. The assignments of their signals were established with NOE observed between asymmetric (H7) and amide (H21) protons.

Table I reveals that G-eVV(C14-N3) peptide bonds of **2**, **2Mg** and **2Ca** are all *trans* from their chemical shifts (4.85, 4.38, and 4.60 for H2 and 3.63, 3.79, and 3.71 ppm for H4e, respectively), based on previous data on a unit of **2**, Boc-G-eVV-OH(**3**).⁸ The coupling constants (7.3, 10.4, and 9.8 for H2 and 11.3,

Figure 1. CD Spectra of free 2 and 2 in the presence of Mg^{2+} , Ca^{2+} , and Ba^{2+} in acetonitrile/1,4-dioxane(v/v = 4/1). Mole ratios of salts to 2 are shown in Figure. [2] $\simeq 2.3 \times 10^{-4}$ mol dm⁻³.

Conformation and Cation-Binding of Cyclic Octapeptide

	Chemical shift, δ /ppm (Coupling constants/J, Hz)											
	H17	H16A	and B	H2	H4e	H4a	H5e	H5a	H7	H21	H22A	and B
2	6.71 (s ^b)	3. (ABqd,°	93 17.4,4.6)	4.85 (d, 7.3)	3.63 (m)		3.3—3.4 (m)	ļ	4.63 (d, 11.3)	7.14 (dd, 7.6, 4.9)	4.05 (dd, 16.5, 7.6)	3.31 (dd, 16.5, 4.9)
2Mg	7.16 (t, 5.7)	4.09 (dd, 17.5, 7.2)	3.69 (dd, 17.4, 4.9)	4.38 (d, 10.4)	3.79 (bd, 14.3)		3.3—3.6	5d	4.42 (d, 11.3)	6.90 (bs)	4.25 (dd, 17,1, 8.6)	3.4 ^d
2Ca	7.32 ^b	4.22 (dd, 17.1, 7.2)	3.77 (dd, 17.1, 4.9)	4.60 (d, 9.8)	3.71 (dt, 12.2, 4.7)		3.4—3.6	5 ^d	4.68 (d, 11.6)	7.60 ^ь	4.21 (dd, 16.8, 7.6)	3.54 (dd, 16.8, 4.6)

Table I. ¹H NMR Chemical shifts and coupling constants of 2^a , 2Mg ($[Mg^{2+}]/[2] = 5$)^a and 2Ca ($[Ca^{2+}]/[2] = 1$)^a in DOX- d_8 /CD₃CN (v/v = 1/4) at 35°C

^a The numbering of 2, 2Mg and 2Ca: iso-C₃H₇: iso-propyl.

^b Triplet-like.

° Quartet-like.

^d Overlapped signals.

11.3, and 11.6 Hz for H7, respectively) of 2, 2Mg, and 2Ca show that α - and β -methine protons of two V residues of each eVV situate in *trans* each other, though the side chains on the piperazin-2-one (MKP) ring vibrate in a manner similar to those of 3.⁸ The MKP ring of 2 cannot take a boat form because of steric hindrance of the iso-propyl group on MKP ring. Accordingly, the multiplet signals of the ethylenic protons suggest that the MKP ring of 2 exists in equilibrium, between a pseudochair form and distorted one deviating a little from a pseudo-chair form, compared with the

on H4e observed clearly. Moreover, changes (from n a 7.3 to 9.8 Hz) of the coupling constants of H2 indicate that the vibration of the side chain on MKP ring is reduced because of the fixation to the pseudo-chair form. On the basis of the torsional angles (ϕ and ψ)⁹ of **2** estimated from ¹H NMR data of Table I by the method of Bystrov,¹⁰ steric energies were obtained by MM2. In MM2, ϕ of G-1 changed in the range the of 360°, and minimized steric energies (45.7,

MKP ring of 3.8 On the other hand, the MKP

ring of **2Ca** may be a pseudo-chair form from

the coupling constants (dt, 12.2 and 4.7 Hz) of

Polym. J., Vol. 24, No. 6, 1992

Y. КОЈІМА et al.

		Chemical shift, $\delta/\text{ppm} (\Delta \delta^a)$						
	[M² ']/[2]	G-1 (C14)	V-2 (C1)	V-3 (C8)	G-4 (C23)			
2 ^b		168.03	169.29	170.26	169.38			
2Mg ^b	5	170.52	171.64	170.61	173.21			
8		(2.49)	(2.35)	(0.35)	(3.83)			
	1	170.46	170.94	170.70	173.47			
		(2.43)	(1.65)	(0.44)	(4.09)			
2Ca [®]	5	170.43	170.91	170.59	173.03			
		(2.40)	(1.62)	(0.33)	(3.65)			
2Ba ^b	5	170.45	171.32	170.54	174.33			
	-	(2.42)	(2.03)	(0.28)	(4.95)			

Table II.	¹³ C NMR data of amide carbons of 2, 2Mg, 2Ca, and 2Ba
	in DOX- d_8 /CD ₃ CN ($v/v = 1/4$) at 35°C

^a $\Delta \delta = \delta$ (complex ion) $- \delta$ (**2**).

^b Refer^a of Table I for the numbering of 2, 2Mg, 2Ca, and 2Ba.

Figure 2. A structure of **2** with a pseudo-chair form for MKP ring was optimized by molecular mechanics calculations. \bullet , oxygen atoms.

Table	III.	Torsional angles $(\pm 20^\circ)$ for a
prop	osed	conformation of 2, 2Mg, and
20	a in	$DOX-d_{g}/CD_{3}CN (v/v=1/4)$

	2		2N	Лg	2Ca		
	G-1	G-4	G-1	G-4	G-1	G-4	
φ	-173.8	86.5	60	a	60	60	
ψ	162.4	43.3	170	165	165	165	

^a Not estimated owing to overlapping signals.

44.4, and 46.3 kcal mol⁻¹, respectively) were obtained for the ϕ (-173.8, -75.2, and 90.6°). Table III shows the most reasonable calculated values of ϕ and ψ of G-1 and -4 of **2**, and those estimated from NMR data for **2Mg** and **2Ca**.

The temperature coefficients¹¹ (ppm deg⁻¹) of the amide protons obtained in CD₃CN/ DOX- d_8 (v/v = 4/1) by ¹H NMR measurements are -1.4 and -2.5×10^{-3} for H17 and H21 of **2**, respectively, and -3.4×10^{-3} for N- methylacetamide without intramolecular hydrogen bond. Small temperature dependence observed for H17 of 2 indicates that, in spite of the increasing temperature, the conformation of 2 does not change. Also, the temperature coefficients in dimethyl sulfoxide- d_6 were -3.7and -7.1×10^{-3} for two amide protons of 2, and almost identical with those of the other amide compounds¹² without intra-molecular hydrogen bonds. These results and the CPK model speculation suggest that no intra- and inter-molecular hydrogen bonds of 2 exist.¹³ Moreover, the NH absorption (3388 cm^{-1}) of 2 in IR spectra varied scarcely in CH₃CN/ DOX(v/v = 4/1) at various concentrations, thus excluding the existence of inter-molecular hydrogen bonds. From the above results and MM2, the structure of 2 with a pseudo-chair form is proposed in Figure 2.

As shown in Table II, the signals of three amide carbons (G-1, V-2, and G-4) of **2Mg**, **2Ca**, and **2Ba** each shifted down markedly from those of **2**, while that of V-3, a little. When the alkaline earth metal salts were added to the solution of **2**, the oxygen (O24) of the most flexible amide group of **2** moved into the cavity. As a result, Mg^{2+} , Ca^{2+} , and Ba^{2+} were in the cavity surrounded by the six amide oxygens of G-1, V-2, and G-4.

REFERENCES

- Y. Imanishi, Adv. Polym. Sci., 20, 1 (1976); K. D. Kopple, Y.-S. Wang, A. G. Cheng, and K. K. Bhandary, J. Am. Chem. Soc., 110, 4168 (1988).
- H. Miyake, Y. Kojima, K. Shibata, T. Yamashita, and A. Ohsuka, *Makromol. Chem.*, *Rapid Commun.*, 11, 667 (1990).
- Y. Kojima, Y. Ikeda, H. Miyake, I. Iwadou, K. Hirotsu, K. Shibata, T. Yamashita, A. Ohsuka, and A. Sugihara, *Polym. J.*, 23, 1359 (1991).
- N. L. Allinger and Y. H. Yuh, "MM2," Quantum Chemistry Program Exchange 395, Bloomington, IN, 1980, p 6.
- D. Baron, L. G. Pease, and E. R. Blout, J. Am. Chem. Soc., 99, 8299 (1977).
- S. Wolfe, D. F. Weaver, and K. Yang, Can. J. Chem., 66, 2687 (1988).
- R. J. Bergeron, M. A. Channing, G. J. Gibeily, and D. M. Pillor, J. Am. Chem. Soc., 99, 5146 (1977).
- Y. Kojima, Y. Ikeda, E. Kumata, J. Maruo, A. Okamoto, K. Hirotsu, K. Shibata, and A. Ohsuka, *Int. J. Pept. Protein Res.*, 37, 468 (1991).
- 9. IUPAC-IUB Commission on Biological Nomenclature, *Biochemistry*, 9, 3471 (1970).
- 10. V. F. Bystrov, Prog. Nucl. Magn. Reson. Spectrosc., 10, 41 (1976).
- 11. L. G. Pease and C. Watson, J. Am. Chem. Soc., 100, 1279 (1978).
- H. Miyake, Y. Kojima, T. Yamashita, and A. Ohsuka, *Bull. Chem. Soc. Jpn.*, 65, 917 (1992), and its references.
- 13. S. Kimura and Y. Imanishi, *Biopolymers*, 22, 2191 (1983).