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Relaxation or retardation distribution functions are sometimes used to determine 
the molecular models of the polymeric structure of a linear viscoelastic material. These spectra arc 
usually calculated from the double-log representation of any mechanical property, using 
approximation methods. In this paper it is shown that the double-log plots distort the viscoelastic 
behavior, leading to spectra that do not describe the real mechanical response. To solve this 
problem, a normalized representation of the measurements is proposed and its improvements are 
discussed in detail. Particularly, the retardation spectrum determined from the normalized dynamic 
compliance of polyisobutylene is taken as an example, showing some inconsistencies in the model 
determined from the double-log representation. Finally, even with the normalized representation, 
the spectra derived from the master curves do not always provide a good fitting of these curves. 
Hence, it is pointed out that the analysis of individual curves measured over several decades of 
time or frequency leads to a better determination of the real distribution function of characteristic 
times. 

KEY WORDS Viscoelastic Functions I Double-Log Representation 1 Re-
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The mechanical properties of a polymeric 
rna terial are used to characterize the micro­
mechanisms that control its linear viscoelastic 
behavior. In fact, the spectra related to the 
linear viscoelastic functions by integral trans­
formations, give a quantitative distribution of 
the relaxation or retardation mechanisms in 
different regions of the time scale. As these 
integral transformations are usually complex, 
the spectra are calculated by approximation 
methods from the measured moduli or com­
pliances. 1 - 4 These methods use the first 
derivative or even derivatives of higher order 
of the viscoelastic functions measured over 
several decades of time or frequency. As it is 
difficult to measure them over large intervals 
of time or frequency, in the transition region 

from the glassy to the rubbery state, a master 
curve constructed using the time-temperature 
superposition5 (ref 5, Chapter II) is generally 
used. In this transition region any viscoleastic 
property varies by approximately over three 
orders of magnitude thus, the data are usually 
plotted as a function of time or frequency in 
a double-logarithmic plot, though other re­
presentations may be considered as well. 
Moreover, though the relaxation and retarda­
tion distribution functions should be calcu­
lated, the linear viscoelastic relationships 
indicate that both spectra provide the same 
information of the structure. Generally, the 
tests can be divided into two groups: the one 
related to measurements made under a given 
stress and the other related to tests done at a 
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fixed strain, but the link between creep and 
relaxation processes leads to an interrelation 
of the spectra. 6 In a classical literature, how­
ever, it is established that: "Generally the 
short time processes are revealed in more detail 
in the relaxation spectrum and the long time 
processes in the retardation spectrum" (ref 5, 
Chapter 3). Therefore, an apparent contradic­
tion between the interrelation of the distribu­
tion functions and the prevalence of long or 
short time processes in the spectra appears. 
It will be shown in this paper that the con­
tradiction is originated from the double-log 
representation of any transient or dynamic 
property. Furthermore, an alternative re­
presentation using normalized viscoelastic 
functions will be discussed in detail. 

THEORY 

In the following analysis the mechanical 
properties used to determine the approximate 
distribution functions will be divided into two 
groups: the one that corresponds to a visco­
elastic property V that evolves from a least 
value V, to a maximum value Vm such as the 
creep compliance, the relaxation modulus or 
the real part of the dynamic functions, and the 
other associated with the imaginary component 
of the dynamic functions characterized by a 
peak. 

As was pointed out in the Introduction 
though the mechanical properties are usuall; 
represented as a function of time or frequency 
in a double-log plot, the normalized viscoelas­
tic functions can also be considered. For the 
transient properties or the real component of 
the dynamic modulus or compliance, this 
function is given by 

f= V-:-:V1 

Vm- V1 

(I) 

while for the imaginary component of the 
dynamic modulus or compliance it is defined 
as 
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Vm-Vl 
(2) 

Now, according to eq I, the normalized 
functionfvaries from zero when V = V1 to one 
for V= Vm, being 0.5 for the mean value 
V* = ( V, + V m)/2. Hence, the mean mechanical 
property differs from the least value by the 
same amount as it differs from the highest 
value. This homogeneous distribution of the 
data, however, it not observed in the double-log 
plot. In fact, considering that the ratio Vm/ V1 

is of the order of I 03 , the difference between 
the maximum ordinate log(Vm) and log(V*) 
reduces practically to log 2. The difference 
between log(V*) and the minimum ordinate 
log ( V,), however, is equal to log[(V, + V m)/ 
2 V1] which is generally equal to or greater than 
2.7. Then in the double-log representation the 
values of V greater than V* are clustered in a 
small region whose width is equal to log 2, 
while the lower values extend over nearly three 
orders of magnitude. This distribution of the 
data leads to a distorted interpretation because 
in the compressed region where V*:::::; V:::::; V m 

there is not enough sensitivity to determine 
accurate derivatives and, accordingly, to calcu­
late the approximated spectrum properlv. On 
the other hand, in the normalized plot data 
are distributed proportionally to the values of 
the mechanical properties. 

To illustrate these concepts, the real part of 
the dynamic compliance, J', and the lognormal 
retardation spectrum are considered. The log­
normal distribution function is defined as (ref 
7, p 95) 

L(ln(r/rm))= ;J{g exp{ -[ln(r/rm)//3Y} (3) 

where T is the retardation time, rm the mean 
retardation time, {J the half-width of the 
distribution, Jg the compliance in the glassy 
state and Je the equilibrium compliance for a 
viscoelastic solid or the steady-state com­
pliance for a viscoelastic liquid. This function 

is symmetrical and can be expressed as 
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L(y) = L1(y) + L,(y) (4) 

being 

y= ln(r/rrn) (5) 

for y:o;;O 

for 
(6) 

y>O 

and 

L ={0 
for y:o;;O 

r L for y>O 
(7) 

This separation into the specular halves of the 
lognormal spectrum will be used to analyze 
how the short-time and long-time processes 
contribute to the mechanical response. 

It is known that the relationship between the 
spectrum L and J' can be written as (ref 5, 
Chapter 3) 

J'(x) = Jg +I x. L(y)dy . -- (8) 
_ o) + exp[2(x + y)] 

where x = log(wrrn), w being the angular 
frequency. Likewise, the contributions of L1 

and L, lead to the partial compliances 

J ' ( ) = J +I CX> • L(l,r)(y)dy 
(I r) X g 
· _ ""1 + exp[2(x + y)] 

(9) 

It is pointed out that J{ and 1; are assumed to 
have the same lower limit as J' in order to 
remark only the influence of L1 and L,. Then, 

(10) 

The double-log representations of the 
dynamic compliances J', J{ and 1; are shown 
in Figure I. From these curves it results that 
when x » 0, J' and J{ are nearly parallel to the 
horizontal axis with a vertical difference of 
about log 2. Thus, the approximated spectra 
associated with both curves will be zero for 
retardation times longer than 'm· Con­
sequently, the double-log representation is not 
sensitive to differenciate between L and L1 

lg(Je) 

lg((J4+Jg)/2) 

........ 
2 

0'1 
_Q 

(a) ----.-,..-::..::_-- ...... 
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using Lr 

lg(J,) 
-3 0 

X = fn(c.JT 111) 

Figure l. Double-log representation of the real compo­
nent of the dynamic compliance: the full line corresponds 
to J', the dashed curves (a) and (b) refer to J{ and 1;, 
respectively. 

two functions are different. In effect, a different 
response is found if the normalized component 
of the dynamic compliance is considered. 
Combining eq 1 and 8, the normalized function 
results 

1 Ioo L(y)dy 
f(x)=--
. Je-Jg _ 00 1+exp[2(x+y)] 

(11) 

Furthermore, the partial normalized functions 
_t; and fr, defined replacing L by L1 and L, 
respectively, verify that 

f(x) =.fi(x) + fr(x) (12) 

for all values of x. These two functions f.. and 
fr and also fare represented in Figure 2 showing 
that when x«O, 

f..::::o0.5 (13) 

and accordingly to eq 12 

f,(x)::::of(x)-0.5 (14) 

while for x»O 
because it expands the region where only the 
short-time mechanisms are involved and 
compresses the portion of the curve where these so that 

fr(x)::::oO (15) 
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Figure 2. Representation of the normalized real compo­
nent of the dynamic compliance: the full line corresponds 
to f and the dashed lines (a) and (b) are the curves off; 
and/;, respectively. 
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Figure 3. Plot of log J" against x, where x =ln(wrml· (a) 
a single mechanism with retardation time 'm• (b) and (c) 
two lognormal retardation spectra characterized by the 
mean time Tm and half-widths {3 = I and {3 = 2, respectively. 

t;(x) (16) 

Then, on applying the first order approxima­
tion of L 1 

Ll(y) = -(Je -Jg) lx= -y ( 17) 

to eq 13 to 16, the approximated partial spectra 
L1r and L 11 result 
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-3 0 

x = ln(wT J 
Figure 4. Nomalized representation of the imaginary 
component of the dynamic compliance. (a) a single 
mechanism, (b) and (c) two lognormal retardation spectra 
characterized by the mean time Tm and half-widths fi =I 
and {3 = 2, respectively. 

Lu={0 for y»O 

Lt for y«O 
( 18) 

and 

{L1 
for y»O 

Llr= 0 
for y«O 

(19) 

which are in accordance with the definitions of 
L 1 and Lr. 

Hence, through the approximation methods, 
f provides genuine information about the 
distribution of the times that characterize the 
viscoelastic mechanisms. 

Analogously, the double-log plot of the 
imaginary component of any dynamic property 
does not provide the whole information about 
the spectrum. Figure 3 shows the curves log 1" 
vs. x corresponding to: (a) a single process 
characterized by a retardation time rm and (b), 
(c) two lognormal distribution functions with 
half-widths {3 = I and {3 = 2, respectively. It is 
clear that the approximated spectra calculated 
from these three curves will not be much 
different, particularly those determined from 
curves (b) and (c). However, the molecular 
mechanisms and the viscoelastic properties 
characterized by these three spectra are 
completely different. This can be shown in 
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Figure 4 where the normalized imaginary 
components of the dynamic compliances are 
plotted. The differences in the height and 
width at the half-maximum of the peaks are 
more evident because this plot suffers no 
distortion. As was indicated before, the log-log 
plot compresses the high values, that is, all the 
peaks are in a small fringe while the rest of the 
curve extends over several decades as J" goes 
to zero. 

Consequently, the normalized functions f 
and g are more suitable to determine the dis­
tribution functions through the approximate 
methods. Sometimes, however, the spectra can 
be determined analytically from the viscoelastic 
functions without making approximations. 
Also in this case, the normalized functions 
provide more information than the double-log 
plot. In fact, in previous papers, 8 - 11 proce­
dures to determine if the spectrum associated 
with any mechanical property is lognormal and 
to find its parameters, were given. These 
procedures are based on recurrency relation­
ships and special values of the normalized real 
component of a dynamic function. For in­
stance, if the normalized real component of 
the dynamic function verifies that 

f(x)= 1-f( -x) (20) 

then, it can be affirmed that the spectrum is 
symmetrical. Furthermore, since its inflection 
point is characterized by an ordinate value of 
0.5 at w = r,;; 1 , the value of 'm can be 
determined. Finally, from the recurrency 
relationships off, it can be established whether 
the distribution is lognormal and, in that case, 
what is the value of the parameter f3. 8 Applying 
the same procedure to the double-log re­
presentation, however, no accurate results can 
be obtained. In effect, even if the spectrum is 
symmetrical this plot cannot be characterized 
by a recurrency relationship analogous to eq 
20. Furthermore, the inflection point, identified 
only by its ordinate log V*, would fall in the 
compressed region of the curve. Thus, the mean 
time of the distribution would be determined 
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with much more error. Moreover, though the 
recurrency equations valid for f 11 can be 
expressed in terms of the logarithm of the 
viscoelastic function, the distortion of the curve 
leads to a less accurate value of f3. 

The analytical determination of a spectrum 
can also be obtained from the imaginary 
component of the dynamic modulus or 
compliance. In this case, a symmetrical peak 
is related to a symmetrical spectrum. This 
spectrum is characterized by a mean time that 
corresponds to the inverse of the frequency at 
the maximum of the peak. Furthermore, from 
the recurrency relationships it can be esta­
blished whether the spectrum is lognormal. If 
that is the case, as the parameter f3 is calculated 
from the width of the peak at its half­
maximum, 8 the normalized representation is 
better to use. In fact, in this representation the 
value of f3 results from the width of the peak 
at 50% of its height while in the double-log 
plot this width corresponds to a peak decrease 
not greater than 5%. This introduces much 
more error in the determination of the spectrum 
as was pointed out before by a qualitative 
analysis of Figure 3. 

APPLICATIONS 

The procedure based on the normalized 
viscoelastic functions, developed to determine 
the spectrum associated with a certain mechan­
ical property, will be applied to measure­
ments of the dynamic compliance of poly­
isobutylene. Generally the measurements are 
represented in a double-log plot without giving 
a table of data. In this case, the distortion of 
the double-log representation discussed before 
makes it difficult to recalculate the viscoelastic 
functions including only the experimental er­
ror. Fortunately, Fitzgerald et a/. 12 measured 
the frequency dependence of J' and J", and 
tabulated the data. The measurements are 
normalized using eq I and 2 with V = J' and 
J", respectively, VI= !.1 X I0- 9 Pa- 1, Vm= 
3. 1 x 10- 6 Pa- 1, and the corresponding fre-
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Figure 5. Master curve of the real component of the 
dynamic compliance of polyisobutylene. The crosses ( +) 
are data measured by Fitzgerald eta/. 12 reduced to 298 K 
using the translation paths given in ref 13. The full line 
corresponds to a lognormal retardation spectrum char­
acterized by log rm = -2.6 and f3= 2.7. 
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Figure 6. Master curve of the normalized imaginary 
component of the dynamic compliance of polyisobutylene. 
The crosses ( +) are the measurements done by Fitzgerald 
et a/. 12 shifted according to ref 13. The full line is the 
function g calculated using a lognormal retardation 
spectrum with log rm= -2.6 and /3=2.7. 

quencies are reduced using the translation 
paths given ref 13. In this way, the master 
curves of f and g are determined from the 
normalized data up to log w = 5 and re­
presented with crosses in Figures 5 and 6, 
respectively. It should be noticed that the 
measured values off and g exhibit a great 
dispersion at low angular frequencies. Even in 
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Figure 7. Retardation distribution function of poly­
isobutylene: the full line is a lognormal function char­
acterized by log rm = -2.6 and f3 = 2. 7; the first order 
approximated spectra determined from the normalized 
curve and the double-log plot are represented by the open 
circles ( 0) and the crosses ( + ). respectively. 

this case, from the special values of .f and its 
recurrency relationships, a description of the 
retardation spectrum is possible. At first, the 
angular frequency at the inflection point off, 
w*, is determined. Then, on defining the 
variable x=log(w/w*), it can be shown thatf 
verifies eq 20. Hence, the distribution function 
associated with f is symmetrical, being 
characterized by a mean time rm = ( w*)- 1 . 

Furthermore, f satisfies the recurrency equa­
tions of a lognormal distribution function and, 
from these equations the value of fJ can be 
obtained. This procedure leads to a lognormal 
retardation spectrum with log rm = -2.6 and 
fJ=2.7. The function 

ji ) Joo exp( -w2)dw 
(x = 

_ 00 I +exp[2(x+fJw)] 
(21) 

calculated using the parameters given before 
provides a good fitting to the normalized 
measurements as shown in Figure 5. Therefore, 
the lognormal spectrum gives a symmetrical 
contribution to the mechanical behavior of any 
process with retardation time r, that is, not 
only when r < rm but also when r > 'm· The 
spectrum determined from the double-log plot, 
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however, emphasises the influence of the 
short-time mechanisms, falling sharply to zero 
at times longer than rm. This comparison is 
shown in Figure 7. The spectrum can also be 
calculated using the first order approximation 
of the normalized curve off Applying eq 17 
to the reduced curve shown in Figure 5, the 
approximated spectrum is obtained, being 
represented in Figure 7 by the open circles. 
This spectrum also is a symmetrical function 
centered at the same mean time rm though it 
is larger and, consequently, lower than the real 
distribution. Therefore, the normalized real 
component of the dynamic compliance leads 
not only analytically but also through an 
approximation method, to a symmetrical 
spectrum. This is another proof of the 
distortion not only of the viscoelastic functions 
but also of the distribution functions de­
termined from the double-log representation 
of any mechanical property. 

DISCUSSION 

Even when a spectrum gives information of 
the viscoelastic behavior of a polymeric system, 
it does not provide a direct description of the 
molecular mechanisms. In some cases, how­
ever, according to the shape of the spectrum, 
it can be established a certain mechanical model 
which molecular parameters are adjusted 
according to the distribution function of the 
characteristic times. For instance, a wedge 
retardation spectrum characterized by a slope 
of 0.5 in a double-log plot may be associated 
with the molecular model of Rouse. 14 This 
model, originally applied to diluted polymer 
solutions, was subsequently extended to 
undiluted polymers just by finding log-log plots 
of relaxation or retardation spectra char­
acterized by a straight line with a slope of -0.5 
or 0.5, respectively. Particularly, Catsiff and 
Tobolsky 16 determined the approximate re­
laxation spectrum of polyisobutylene (PIB) 
from the double-log plot of the relaxation 
modulus and assumed that it could be 
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represented by a wedge-shaped function with 
a slope of0.5. Furthermore, on considering the 
approximated expression for the interconver­
sion formula (ref I 5, p 96), they determined 
that the retardation spectrum was also 
wedge-shaped, but with a slope -0.5. There­
fore, they concluded that the viscoelastic 
behavior of PIB might be explained by the 
molecular mechanisms of Rouse's theory. 
However, in this paper it has been demon­
strated that the distribution function of the 
characteristic times of this material cuts sharply 
just because of the distortion of the double-log 
representation of the mechanical properties. 
The normalized representation of the real 
component of the dynamic compliance, how­
ever, leads to a retardation spectrum of PIB 
that can be described by a lognormal dis­
tribution function. This symmetrical distribu­
tion is defined for all the retardation times and 
exhibits no terminal time as Rouse's theory 
do. Furthermore, in a double-log plot the 
lognormal distribution function is represented 
by a parabola which can be approximated by 
a straight line of slope 0.5 only in a very short 
interval of retardation times. Hence, using a 
distorted representation of any viscoelastic 
function leads to interpret the mechanical 
behavior of a polymeric structure in terms of 
an incorrect model. 

It should be pointed out that the normalized 
master curves must be considered with care 
because they can also lead to inconsistencies 
originated from the time-temperature super­
position. Particularly these inconsistencies 
appear more clearly in the plots of the 
normalized imaginary component of the 
dynamic functions. For instance, going back 
to the example treated in the Applications, the 
normalized measurements of J" are calculated 
according to eq 2 and shifted using the 
translation paths proposed in the original 
reference, 13 leading to the master curve shown 
in Figure 6. This figure shows that the fitting 
to the normalized measurements of J" is not 
good neither in the left portion of the peak nor 
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at its maximum and only the right side is fairly 
well approximated. This difference between the 
data and the predicted shape of g is originated 
from the construction of the master curve. In 
fact, in a previous publication, 17 it has been 
demonstrated that the time-temperature super­
position is not strictly obeyed and that the 
matching of two segments of curves measured 
at different temperatures is not characterized 
by an unique translation path but by a mean 
path determined subjectively. This means that 
two curves can be superposed fairly well if their 
central regions match properly, even when their 
extremes do not superpose at all. Particularly 
this is noticed in the upper limit of the master 
curve of .f, shown in Figure 5, where the 
dispersion of normalized data reveals that all 
the curves measured at different temperatures 
have not the same equilibrium compliance Je. 
In the plot of g, the difference between the 
individual curves increases because of their 
sharper shapes. Particularly the spreading of 
points near the maximum of the peak, hidden 
by the double-log plot, is due to the different 
limiting values of the individual curves. 
However, to construct the master curve it is 
assumed that all the curves have the same 
limits, hence the normalized representation of 
J" points out another discrepancy of the 
time-temperature superposition. Now, even if 
the limits are assumed to be independent of 
temperature, the different widths of the in­
dividual peaks makes difficult their matching 
through horizontal displacements. Conse­
quently, a criterion to construct the master 
curve of g may be to shift the curves parallel 
to the horizontal axis until the right branches 
match. This seems to be the way used by Ferry 
et a!. 13 to determine the shift factors 
corresponding to the individual curves of J". 
Therefore, analogously to the matching of the 
individual segments of the f function, this 
"master peak" provides information about an 
average behavior of the system where it is 
assumed that the limiting moduli or compli­
ances do not depend on temperature. Hence, 

the master curve of g might be described by 
the same values of rm and f3 as the ones 
determined from the master curve off The 
expression used to calculate g considering a 
lognormal spectrum is 11 

1 JCX) 
g(x) =- exp( w2 ) cosh - 1(x + f3w)dw 

2 n _ 00 

(22) 

leading to the curve represented in Figure 6. 
From this figure it is clear that the curve do 
not approximate the experimental points 
neither in height nor in width, that is, the 
parameters of the lognormal distribution do 
not characterize the master curve of all the 
dynamical properties. 

Nevertheless, rm and f3 can also be calculated 
from some individual curves. In fact, in a 
previous paper11 it has been shown that if the 
function g is symmetrical with respect to its 
maximum, then the spectrum is also symme­
trical. Furthermore, if the inflection point off 
and the maximum of g occurs at the same 
frequency then, the mean time of the spectrum 
is the reciprocal of that frequency. Finally, 
considering the mathematical properties of the 
functionsfand g corresponding to a lognormal 
distribution, the value of f3 can be determined 
from the intersection point of curves f and g. 
Therefore, this procedure cannot be applied to 
the individual curves measured at any tempera­
ture but only to those that exhibit the inflection 
point off and simultaneously the maximum of 
g. In the set of curves of PIB, the individual 
curves of J' and J" measured at 313 K and 
323 K show the inflection point and the 
maximum of the peak, respectively. Then, con­
sidering the recurrency relationships, a log­
normal spectrum characterized by the same 
average characteristic time log rm = 2.6 is 
obtained for both curves. Meanwhile the 
half-widths of both distributions reduce to 
f3 = 2.1 because the dispersion of the right 
branch of the master curve leads to a peak 
wider than any of the individual peaks whose 
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Figure 8. Reduced data of the imaginary component of 
the dynamic compliance of polyisobutylene 12 • 13 ap­
proximated by the normalized g function associated with 
a lognormal spectrum characterized by log rm = -2.6 and 
/3=2.1. 

widths can be measured. Then, on considering 
the new value of {3, eq 22 gives the normalized 
function shown in Figure 8, providing a better 
fitting to the data even at the maximum where 
the points are largely spread out. Moreover, if 
the new value of {3 is used in eq 21 to calculate 
the normalized function f, the curve re­
presented in Figure 9 is obtained. This function 
approximates the master curve off fairly well 
in the medium region, that is, near the inflection 
points of the individual curves used to 
determine the parameters of the distribution 
function. Hence, the new value of {3 can be 
considered a good parameter to characterize 
the lognormal distribution. However, this 
parameter implicitly includes the assumption 
that the instantaneous and equilibrium moduli 
or compliances do not depend on temperature. 
Consequently, though the double-log plot 
considerably distorts the information about the 
viscoelastic mechanisms, the normalized mas­
ter curves might also lead to inaccurate 
information about the spectra. 

CONCLUSIONS 

Because of the importance of distribution 
functions, the concepts related to the determi-
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Figure 9. Reduced data of the real part of the dynamic 
compliance of polyisobutylene 12• 13 fitted by a lognor­
mal spectrum with parameters: log rm = - and f3 = 

2.1. 

nation and interpretation of the spectra must 
be critically reviewed, the in­
completely information provided by the 
log-log plots of viscoelastic functions. The 
distortion in these plots, P.roduced by the 
logarithm leads to molecular models that do 
not describe the polymeric structure properly. 
The normalized functions, however, provide a 
better approach to the viscoelastic behavior. 
In fact, the distribution functions calculated 
using approximation methods, or from the 
recurrency relationships of the normalized 
functions, lead to a fairly good fitting to the 
normalized measurements. This fitting to the 
data also depends on the translation of the 
individual curves, that is, on the time­
temperature superposition. In effect, the 
normalized mechanical property calculated 
from the approximated spectrum does not 
adjust directly to the measured values but to 
values shifted parallel to the horizontal axis, 
according to certain translation paths. Then, 
when the time-temperature superposition is not 
strictly obeyed, because of the smooth shape 
of the transient properties and the real 
component of the dynamical properties, an 
apparent matching of the individual segments 
is found. On the contrary, the imaginary 
components lead to less defined master curves 
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due to their sharper shapes. Consequently, the 
procedure developed in this paper to calculate 
the distribution functions provides better 
results when it is applied to the normalized 
representation of the quasi-static properties on 
the real components of the dynamic functions. 
Anyway, the spectrum derived by the fitting to 
the master curves establishes implicitly that the 
limits of each individual curve do not depend 
on temperature. Therefore, a more accurate 
spectrum can be obtained if the normalization 
procedure is applied directly to an individual 
curve of any mechanical property measured 
over several orders of magnitude of time or 
frequency. In this way, the mechanical response 
will lead to a molecular model that interprets 
the viscoelastic structure adequately. 
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