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ABSTRACT: Calculation of normal mode frequencies and three-dimensional elastic constants 
is made for the first time for is 0 tactic polypropylene crystal on the basis oflattice dynamical theory. 
The vibrational frequencies are found in relatively good agreement with the observed values for 
both the internal and external modes. The calculated Young's modulus along the chain axis is 
40.1 GPa which agrees well with the X-ray observed crystallite modulus ca. 40 GPa. The anisotropic 
curves ofY oung's modulus and linear compressibility in the plane perpendicular to the chain axis are 
also calculated but agreement with the values observed at room temperature is not good. This 
discrepancy is erased successfully by considering a large anharmonic effect of methyl torsional 
modes. 
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In recent years many trials have been made 
to produce fully extended fibers with ultra high 
modulus and strength.1.2 Such a trial may be 
classified into two types. One is to utilize the 
so-called rigid-rod polymers. For example, 
poly(p-phenylene benzobisthiazole) (PBT) and 
poly(p-phenylene benzobisoxazole) (PBO) show 
the bulk tensile moduli of about 330 and 420 
GPa, respectively.3 Further development of 
fibers with higher modulus is still being tried 
so as to approach the limiting Young's modulus 
or crystallite modulus: 395 GPa (observed4 ) 

and 405 GPa (calculated5) for PBT and 477 
GPa (observed4 ) and 460GPa (calculated5) 

for PBO. Another trial to produce ultra high 
modulus fibers is usage of flexible polymers. 
Young's modulus of polyethylene fiber, for 
example, was reported to reach about 230 GPa 
at room temperature by drawing the dried gels 
by several hundred times the original length6 . 

This value is close to the limiting modulus of 
the crystalline region, 250-3 I 0 GPa. 7,8 Such 

a trial has been also made for isotactic poly
propylene (it-PP) and the Young's modulus of 
about 40 GPa was reported for the ultra
drawn fibers. 9 ,lo This macroscopic modulus is 
comparable to the crystallite modulus ca. 
40 GPa. 7,11 In these studies we may notice that 
evaluation of the limiting modulus is very 
important as a guiding principle to develop 
more mechanically qualified samples. 

Experimentally, the limiting modulus of 
polymer crystal is estimated mainly by the 
X-ray diffraction measurement under tension. 7 

An alternative method is evaluation of velocity 
of phonon propagating in the polymer crystal, 
which can be made by measuring the Raman 
LAM band 12 (LAM: longitudinal acoustic 
mode) or the frequency-dispersion curve by 
neutron scattering experiment. 13 Thus eval
uated limiting modulus must be interpreted 
from the molecular theoretical point of view in 
terms of crystal structure and intramolecular 
and intermolecular interactions. Such a theo-
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retical approach is very difficult for polymer 
crystals with complicated structure. In a series 
of papers,14 we developed lattice dynamical 
equations to calculate the three-dimensional 
elastic constants of polymer crystals such as 
orthorhombic polyethylene,8,15 poly(vinyl al
cohol),8 nylon 6a and y forms,16 poly(vinyli
dene fluoride),17 cellulose I and II forms,18 
and poly(m-phenylene isophthalamide),18 the 
mechanical anisotropy of which was discussed 
based on molecular and crystal structures. In 
these calculations, symmetry relations between 
crystallographically asymmetric units in the 
unit cell are utilized and therefore the dimen
sions of matrices used in the numeric calcula
tion can be reduced drastically. 15 This reduc
tion makes it possible to calculate the 
three-dimensional elastic constants of polymer 
crystals with complicated structures and 
increases reliabilility of the calculated results 
because of simpler and more confirmative 
preparation of input data necessary for 
computer calculation. The calculation is based 
on the three-dimensional Cartesian coordinate 
system, which makes it possible to reserve 
the translational symmertry of the crystal 
lattice even under application of external 
stress. 15 .19,20 

In this paper we focus attention on it-PP 
crystal and estimate the three-dimensional 
elastic constants on the basis of thus developed 
lattice dynamical theory. In spite of its 
significance in industrial and scientific fields, 
no trial has been reported so far for it-PP 
crystal on the calculation of three-dimensional 
elastic constants as well as on the calculation 
of the normal modes frequencies of both the 
internal and external vibrational modes. One 
of the reasons may come from the complicated 
crystal structure. Calculation of normal modes 
frequencies is necessary for correct estimation 
of the intramolecular and intermolecular force 
fields of the it-PP crystal, which will definitely 
guarantee the calculated results of three
dimensional elastic constants. 

Before details of the calculated results are 
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described, it is considered to be useful to briefly 
review the structural and spectroscopic studies 
reported so far for it-PP crystal, because these 
informations may help us to carry out the 
calculation with a use of reasonable structural 
and interaction parameters. 

Crystal Structure of it-PP 
Natta and Corradini 21 analysed the X-ray 

fiber photograph of it-PP and proposed the 
two kinds of crystal structural models with 
space groups C2/c and Cc. In the unit cell of 
C2/c, the molecular chains of (3/1) helical 
conformation are packed upward and down
ward with an equal statistical weight. In the 
unit cell of Cc, the chain packing is regular. 
They could not, however, determine which 
structural model is more reasonable, but 
speculated that the molecular chains in local 
domains are packed in a regular mode of the 
space group symmetry Cc and these domains 
are aggregated at random in the crystallites, 
resulting in an overall space group symmetry 
of C2/c. Mencik22 found several X-ray 
reflections unexplainable by the space group 
C2/c and proposed a structure of the' space 
group P2t/c for an ideally ordered state. At 
the same time he investigated a crystal 
structural model in the actual sample, which is 
an averaged structure consisting of the ordered 
(P21/C) and disordered (C2/c) chain packing 
with statistical weight of ca. 3 : 1. In
dependently, Hikosaka and Seto23 indexed the 
observed X-ray reflections based on the space 
group C2/c for the sample annealed at 
relatively low temperature and on the space 
group P2 1/c for the sample annealed at higher 
temperature. That is, the packing regularity 
changes remarkably by heat treatment of the 
sample; the intensity of the X-ray spots 
characteristic of the space group P2t/c 
increases gradually with a rise of annealing 
temperature and the regular structural domains 
grow in size within irregular crystallites of the 
space group symmetry C2/c. In other words, 
the it-PP crystal experiences a kind of 
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Space Group P2 l /c 

1 annealed at higher 
temperature 

Space Group C2/c 

Figure 1. Structures of ordered (P2Jic) and disodered 
(C2/c) crystal states of it-PP. 

disorder-order phase transition induced by the 
heat treatment as illustrated in Figure 1. 

Vibrational Analysis of it-PP 
Information on intramolecular and inter

molecular interactions, necessary for the 
present calculation, can be obtained from the 
normal modes analysis of infrared and Raman 
spectra. Vibrational analyses of it-PP have been 
reported by many investigators mainly for an 
isolated chain. Normal coordinates treatments 
were made for a (3/1) helical chain by Snyder 
and Schachtschneider,24 Miyazawa,25 Tado
koro et al.,26 and Zerbi and Piseri.27 In the 
low frequency region of skeletal torsional 
modes and external lattice modes, Raman 
spectral measurements were reported by Fraser 
et al. 28 and far-infrared spectral data by 
Goldstein et al. 29 But the normal mode 
calculation including the lattice vibrational 
modes with both the intramolecular and 
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intermolecular interactions taken into account 
has not been reported so far. This may be 
because of the complexity of the crystal 
structure of it-PP. In this paper we report the 
first normal modes treatment of it-PP crystal 
and compare the calculated results with the 
observed spectral data in the frequency region 
of 4000-30 cm - 1. Based on thus checked 
intramolecular and intermolecular force con
stants, the three-dimensional elastic constants 
are calculated and compared with the observed 
data. 

EXPERIMENTAL 

it-PP samples used in the spectral measure
ments were supplied from Mitsui Petrochemi
cal Industry Co., Ltd. and Sumitomo Chemi
cals Co., Ltd. in Japan. For measurements of 
polarized far-infrared spectra, oriented films of 
1.S mm thickness were prepared by elongating 
the melt-quenched plates by five times the 
original length at ca. 100°C. For the un
polarized far-infrared spectra the unoriented 
plates of thickness ca. S mm were utilized. 
These samples were annealed at a temperature 
of 100-16S°C. For the samples used in the 
Raman spectral measurements, rod specimens, 
prepared by extrusion of the melt through the 
glass cylinder, were elongated by about S times 
the original length at about 110°C and annealed 
at various temperatures under tension. 

Far-infrared spectra were measured by a 
Hitachi FIS-3 far-infrared spectrophotometer 
for the frequency region 400-30cm- 1 . Po
larized Raman spectra were measured at room 
temperature and liquid nitrogen temperature 
using a Japan Spectroscopic Company RSOO 
Raman spectrophotometer with an argon ion 
laser of S14.Snm wavelength as an excitation 
light source. 

CALCULA TIONS OF NORMAL MODE 
FREQUENCIES AND ELASTIC 

CONSTANTS 
Calculation of lattice vibrational frequencies 
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and elastic constant tensors was made on the 
basis of the three-dimensional Cartesian 
coordinates system. The dynamical equation 
for the normal mode frequencies is given as30 

IM-l/2BFRBM-l/2_),EI=0 (1) 

where FR , B, and M are matrices related to the 
force constants, geometry, and atomic masses, 
respectively. E is an identity matrix and A is 
an eigenvalue. The elastic constant tensor c is 
obtained by the following equation,u 

c=(I/v)[F(T-Fp(T(Fp)-lFp(T] (2) 

where v is the volume of asymmetric unit and 
F(T' Fp(T' and Fp are the matrices constructed by 
the atomic coordinates, B-matrix, and force 
constants. As can be seen in eqs 1 and 2, the 
vibrational frequencies and elastic constants 
can be calculated simultaneously using a set 
of structual parameters and force constants. In 
other words, we may obtain the calculated 
elastic constants as reasonably as possible by 
using the Band FR matrices checked by a 
comparison of observed and calculated vibra
tional frequencies. Utilized structural and force 
field parameters are described below. It should 
be noted here that the structural unit required 
for these calculations is only one crystallo
graphic asymmetric unit and all parameters for 
whole unit cell are not necessary because of 
space group symmetry. 

Crystal Structure 
The crystal structure model proposed by 

Hikosaka and Set023 (space group P2tfc) was 
used for the highly ordered crystal state (Figure 
I). The unit cell parameters are a = 6.65 A, 
b=20.73A, c (fiber axis)=6.50A and f3= 
98°40'. For a low-order state, the molecular 
chains directing upwards and downwards 
along the chain axis were positioned at each 
site of the cell with a statistical weight 0.5, 
where unit cell parameters were assumed the 
same with those of the regular state. Hydrogen 
atoms of the CH 2 and CH groups were 
assumed located at the positions determined by 
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Figure 2. Calculated potential energy as a function of 
torsional angle of methyl groups. -, ordered state 
(P2dc); ------, disordered state (e2/c). 

the conditions of LHCH (LHCMe)= 109.5", 
LHCC=LHCC (+1) and C-H=1.09A. 
The positions of hydrogen atoms of methyl 
(Me) groups were determined so that the lat
tice energy became minimal. In this energy 
calculation, the skeletal chain conformation 
was given from the X-ray crystallographic data 
and kept unchanged. The rotational angles of 
three Me groups contained in the repeating 
period of the chain were assumed to be equal 
although the actual molecular chains are not 
required to have any 31 helical symmetry in 
the unit cell. The interactions considered in the 
lattice sum calculation were Me torsional 
barrier, 

(3) 

where r is a torsional angle and Vo = 8.36 
kJ mol- 1, and the non-bonded interatomic 
interactions of Buckigham type potential 

Vr =A/r6 +Bexp(-Cr) (4) 

for all atomic pairs of H· .. H, H··· C and 
C' .. C with the interatomic distance shorter 
than 20 A. Numerical values of the parameters 
A, B, and C were taken from Williams' set 
IV (For H··· H, A = -114.1 kJ A6 mol-l, B= 
11094 kJ mol-I, C=3.74A -1;forH' . ·C,A = 
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Figure 3. Crystal structure of ordered state of it-PP, where torsional angles of methyl groups are 
minimized as shown in Figure 2. 

-522.5, B=36642, C=3.67; and for C-. 'C, 
A=-2374.2, B=349573, C=3.60).31.32 Fig
ure 2 shows the calculated potential energy as 
a function of the internal rotation angle r(Me). 
An energy minimum is found at r = 71 0 for the 
P2t/c structure. For the disordered structure, 
the angle 73° gives the energy minimum. Figure 
3 illustrates the energetically minimal crystal 
structure of the ordered phase. 

Force Field 
For intramolecular force constants a mod

ified Urey-Bradley type was used, numerical 
values of which were quoted from references 
25 and 26 with some modifications as shown 
in Table I. For the intermolecular force 
constants the second derivatives of Bucking
ham type potentials Ceq 4J with respect to the 
distance r were used for all the intermolecular 
interatomic pairs with distance shorter than 
4A. 

RESUL TS AND DISCUSSION 

A. Vibrational Analyses of it-PP Crystal 
Most papers reported so far treated only the 

normal modes of the it-PP single chain, where 
the molecular conformation was assumed to 
have the 31 screw symmetry along the chain 
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axis. The factor group of the chain is 
isomorphous to point group C3 . But, as stated 
in the introductory section and Figure 3, the 
actual crystal belongs to the space group P2 1 /c 
and so the molecular chain has no such 
symmetry element as 31 helix but the site group 
symmetry is C l' A correlation between these 
symmetry groups is obtained as follows. 

Molecular group 
symmetry 

C3 

Site group 
symmetry 

C1 

Space group 
symmetry 

C2h 

Here the z and c axes are parallel to the chain 
axis. a' xx' a' aao etc. represent the Raman-active 
polarization components and J1' x' Ii a' etc. 
represent the infrared-active transition dipole 
components. As can be seen in this correlation 
table, the degenerated E modes split into two 
bands due to lowering of the molecular 
symmetry at the lattice site (site group 
splitting). Furthermore all molecular modes 
should split into four bands because of the 
phase relation among the four chains in the 
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Table I. Urey-Bradley-type intramolecular 
force constants of it-PP 

Force Related atomsb 
Values' 

constantsa (examples) 

K(CH, Me) (5, 7) 4.255 
K(CH, CH2) (1, 2) 3.980 
K(CH, CH) (4, 6) 4.030 
K(CC) (1, 4), (4, 5) 2.470 
H(CCC) (1,4, 10) 0.350 
H(CCH, Me) (4, 5, 7) 0.221 
H(CCH) (3, 1,4) 0.240 
H(CCH) (1, 4, 6) 0.249 
H(HCH, Me) (7, 5, 8) 0.407 
H(HCH, CH2) (2, I, 3) 0.387 
H(CCH, CH) (6, 4, 5) 0.309 
F(H" 'H, Me) (7, 8) 0.100 
F(H" 'H, CH2) (2,3) 0.121 
F(C" 'H, Me) (7,4) 0.433 
F(C" 'H, CH2) (2, 4) 0.433 
f(C" 'H, CH) (6,5), (6.1) 0.400 
F(C" .C) (1, 10), (I, 5) 0.200 
K(Me) Intramolecular -0.030 

tension 
K(CH 2 ) T ntramolecular -0.020 

tension 
K(CH) Intramolecular 0.030 

tension 
T(CCCC) (0, 1,4, 10) 0.176 

a K, bond stretching; H, bond angle deformation; F, 
interatomic repulsion (geminal atomic pairs); K, intra
molecular tension; T, skeletal torsion. Refer to ref 
25 and 26. 

b Numbering of atoms is an follows: 

H7 Hs 
\ / 

H2 Cs - H9 
I I 

-CO -C, -C4 -C lO -
I I 

H3 H6 
, Units, mdyn A - 1 for K, H, F; K, and T, mdyn A 

rad -2. 

unit cell (Davidov splittings): two bands 
(Ag and Bg) are active in the Raman spectra 
and the other two (Au and Bu) are active in the 
infrared spectra. As for the lattice vibrational 
modes, 13 bands in total are expected to be 
observed in the Raman or infrared spectra. In 
Figure 4 are illustrated the lattice vibrational 
modes. Figures 5 and 6 show examples of the 
observed far-infrared and Raman spectra, 
respectively. The calculated vibrational fre-
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Rg Modes 

L(Tz) (31) cm- 1 L(TH) 37 (40) cm- 1 

b{Jb 
L(Rz) 70 (75) cm- 1 L(Ty) 83 (81) cm- 1 

Bg Modes 

L(Tz) 44 (44) cm- 1 L(TH) 60 (58) cm- 1 

L(Rz) 70 (74) cm- 1 L(Ty) 54(51) cm-l 

I 

Ru Modes 

L(Tz) 45 (30) cm-1 L(TH) 40 (24) cm-l 

L(Rz) 76 (68) cm- 1 

6!ffi 
Tz 

Bu Modes 

o cm- 1 TH 

L(Rz) 65 (63) cm- 1 L(Ty) 56 (52) cm- 1 

g{KB 
Figure 4. Lattice vibrational modes of it-PP crystal 
(P2,1c). Indicated wavenumbers are the observed values 
and those in parentheses are the calculated ones. 

quencies of it-PP crystal are listed in Table II. 
A partial comparison of the calculated 
frequencies with the observed data is made in 
Figure 4 (lattice vibrations) and in Figure 5 
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Figure 5. Polarized far-infrared spectra of it-PP mea
sured at room temperature and at liquid nitrogen 
tempeature. ---, electric vector of incident infrared beam 
is perpendicular to the draw direction; ------, electric vector 
of incident infrared beam is parallel to the draw direction. 
Vertical rods indicate the positions of the calculated 
vibrational modes (refer to in Table II). 
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Figure 6. Polarized Raman spectra of it-PP measured at 
room temperature. The z axis is parallel to the draw 
direction of the sample and the x and y axes are 
perpendicular to it. 

(far-infrared spectra at low temperature). 
Refer to ref 24-27 for comparison in the 
higher frequency region because the calculated 
frequencies are not so different from them. As 
pointed out above, the originally degenerated 
E modes split into two bands due to symmetry 
lowering of the helical chain conformation. In 
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Table II, we can see some pairs of modes which 
seem to originate from E modes of C3 group. 
They are indicated in parentheses in this table. 
The calculated site-group splittings are in the 
range of 0 to 8 cm - 1. In polarized Raman 
spectra of the component (xz) in Figure 6, some 
pairs, e.g., 320 and 325 cm -1, 462 and 
470 cm - 1, etc. are considered to come from 
such a site group splitting because these bands 
are detected as doublets even at room 
temperature. On the other hand, by comparing 
the frequencies of four symmetry species (Ag, 
Bg, etc.) in Table II, we can predict that 
intramolecular vibrational modes should split 
by a magnitude of 0-5 cm -1 due to the 
intermolecular interactions. As reported by 
Fraser et al.,28 however, Davidov splitting is 
actually difficult to be observed even at 5 K. 
Methyl torsional bands r (Me) should also not 
be overlooked here. As shown in Table II, the 
calculated frequencies of r(Me) disperse in a 
relatively wide range of 220 to 260 cm -1 in a 
complicated manner. Originally the calculated 
results should be compared with the spectra 

at low temperature. This is because 
the methyl groups are said to experience rather 
violent rotational motion at room tempera
ture 33 and such a motion is considered to 
reduce the anisotropy in intermolecular inter
actions and thus the band profile should be 
rather simple at room temperature. At low 
temperature, however, the methyl motions are 
suppressed and the spectra should be more 
complicated and composed of several split 
bands as predicted by the lattice modes cal
culation where thermally excited large-ampli
tude motion is not taken into consideration. 
In fact, as shown in far-infrared spectra of 
Figure 5, bands in the 200-300 cm -1 region 
changes drastically as the temperature is 
decreased. An apparently singlet band at room 
temperature split into a complicated profile. 34 

In particular, such a change is enhanced more 
remarkably below -145°C as shown in Figure 
7, where the temperature dependence of the 
spectra in 200--300 cm - 1 region is reproduced. 
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Table II. Vibrational frequencies calculated for it-PP crystala 

Modesb Species veale/em -1 Modesb Species vealc!em -1 
-- - ---- -- ----

va(CH 3) Ag 2913 2911 2908 2907 2905 2904 t(CH 2 ) Ag 1293 (1266 1262) 
Bg 2913 2910 2910 2908 2907 2905 Bg 1293 (1266 1262) 
Au 2913 2910 2910 2908 2907 2905 Au 1292 (1265 1261) 
Bu 2913 2911 2908 2907 2905 2904 Bu 1292 (1264 1262) 

v(CH) Ag 2895 2892 2889 V,k(CC) Ag (1157 1151) 1145 
Bg 2895 2891 2889 Bg (1157 1151) 1145 
Au 2895 2891 2889 Au (1158 1150) 1145 
Bu 2895 2892 2889 Bu (1158 1151) 1146 

v,(CH 3) Ag 2866 2865 2863 V,k(CC) Ag (1108 1101) 1075 
Bg 2865 2864 2862 +v(CMe) Bg (l108 1101) 1074 
Au 2865 2864 2862 Au (l108 1100) 1075 
Bu 2865 2865 2863 Bu (l108 1101) 1075 

va(CH 2 ) Ag 2862 2859 2857 \'(CMe) Ag (1057 1051) 1026 
Bg 2861 2860 2857 +y(Me) Bg (1057 1051) 1027 
Au 2860 2858 2857 Au (1056 1050) 1025 
Bu 2859 2858 2857 Bu (1056 1050) 1025 

v,(CH 2 ) Ag 2841 2839 2837 y(Me) Ag 943 (921 920) (916 912) 864 
Bg 2841 2839 2836 Bg 942 (921 920) (916 911) 865 
Au 2840 2838 2835 Au 941 (921 920) (916 911) 865 
Bu 2840 2838 2835 Bu 943 (921 920) (916 912) 864 

(ja(CH 3) Ag 1476 y(CH 2 ) Ag 793 (776 774) 
+ (j(CH) Bg 1476 Bg 793 (777 774) 

Au 1474 Au 793 (778 774) 
Bu 1474 Bu 793 (777 774) 

(ja(CH 3) Ag (1461 1460) 1459 (1459 1458) 1456 w(CMe) Ag (500 499) (470 463) 443 374 
Bg (1462 1461) 1459 (1459 1459) 1455 + (j(CMe) Bg (500 497) (470 465) 443 373 
Au (1462 1460) 1459 (1459 1455) 1455 Au (502 497) (468 463) 443 373 
Bu (1460 1460) 1459 (1458 1456) 1455 Bu (502 498) (467 463) 443 375 

(j(CH 2) Ag 1429 (1421 1419) (j(CC) Ag (308 300) 275 
+ (j(CH) Bg 1429 (1420 1419) +w(CMe) Bg (311 300) 272 

Au 1429 (1421 1419) + (j(CMe) Au (313 295) 274 
Bu 1429 (1421 1419) Bu (311 296) 277 

(j(CH) Ag (1418 1413) T(Me) Ag 258 242 220 
+(j(CH 2 ) Bg (1417 1413) Bg 258 244 221 

Au (1417 1413) Au 248 241 221 
Bu (1418 1413) Bu 245 241 220 

(j(CH) + Ag 1383 T(CC) A. 173 169 163 114 106 
(j,(CH 3 ) Bg 1383 +T(Me) Bg 172 168 162 113 106 

Au 1383 Au 171 167 161 106 100 
Bu 1383 Bu 172 168 163 109 100 

(j,(CH 3) Ag (1360 1358) Lattice Ag Ty81 Rz75 Tx40 Tz31 
Bg (1360 1359) Modes Bg Rz74 Tx58 Ty51 Tz44 
Au (1360 1358) Au R z68 Tz30 Tx24 (Ty"O) 
Bu (1359 1358) Bu Rz63 Ty52 (TxOO) (TzOO) 

w(CH 2 ) Ag 1356 (1351 1347) 1328 (1318 1312) 
+w(CH) Bg 1357 (1351 1347) 1328 (1318 1313) 

Au 1357 (1351 1346) 1327 (1319 1312) 
Bu 1356 (1351 1347) 1328 (1318 1312) 

a Vibrational modes of E-characters are enclosed in parentheses. The difference in wavenumber between a pair 
of such E-mode-like bands corresponds to site group splitting due to the lowering of molecular chain symmetry 
in the crystal lattice. The difference in wavenumber between the different symmetry species (vertical direction in 
this table) corresponds to the correlation splitting or Davidov splitting due to the intermolecular interactions. 
Refer to the text. 

b Approximate expressions of normal modes. Va (CH3), CH3 anti symmetric stretching; v(CH), CH stretching; V, 
(CH3), CH 3 symmetric stretching; Va (CH 2), CH2 antisymmetric stretching; v,(CH 2), CH2 symmetric stretching; 
(j (CH3): CH3 bending; (j (CH 2 ), CH2 bending; (j (CH), CH bending; w (CH2): CH2 wagging, w (CH), CH 
wagging; t (CH 2), CH2 twisting; V,k (CC), skeletal CC stretching; V (CMe), C-CH3 stretching; y(Me), CH 3 rocking; 
y (CH 2), CH2 rocking; w (CMe), C-CH3 wagging; (j (CMe), C-CH3 bending; (j (CC), skeletal CC bending; T (Me), 
methyl torsion; T (CC), skeletal CC torsion. In regard to the lattice modes, refer to Figure 4. 
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These modes are also easily affected by the 
change in intermolecular interactions. For 
example, Figure 8 shows variation of the 
vibrational frequencies calculated for the 
different unit cell parameters and/or the 
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Figure 7. Temperature dependence of far-infrared spec
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torsional angles of methyl groups. Among the 
various vibrational modes only the methyl 
torsional modes are affected sensitively by the 
change in these parameters or the change 
in the intermolecular interactions. The change 
in orderness of crystal structure is also 
predicted to affect this vibrational mode. For 
example, Figure 9 shows a comparison of 
far-infrared spectra measured for the samples 
prepared under different conditions. The 
sample annealed at 120°C corresponds to the 
disordered state according to ref23. The sample 
annealed at 160°C corresponds to the ordered 
state. At liquid nitrogen temperature, the 
160°C-annealed sample shows sharp bands in 
the region of r(CH3) and skeletal CC torsional 
modes. Especially the r(CH3) bands change 
their profile drastically; the change is more 
remarkable in the 160°C-annealed sample than 
in the 120°C-annealed sample. Melt-quenched 
sample shows much broader spectral profile 
even at liquid nitrogen temperature. Therefore 
we may consider that the sharp but complicated 
pattern of r(Me) bands is characteristic of the 
ordered crystalline phase at low temperature 
and that the band profile is simpler for the less 
ordered crystal, reflecting the statistically 
disordered orientation of methyl groups. 

skeletal torsion lattice modes 

II I II. II II 
II , I I I , I , 
'I I I , , 
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Figure 8. Variation of the vibrational frequencies depending on the unit cell parameters and torsional 
angles, of methyl groups. (A) a=6.65A; b=20.73A; c=6.50A; {3=98.7°; ,=71°. (8) a=6.65A; 
b=20.73A; c=6.50A; {3=98.7°; ,=60°. (C) a=6.67 A; b=20.8A; c=6.50A; {3=98.7°; ,=75°. 

Polym. J., Vol. 24, No.9, 1992 907 



K. TASHIRO, M. KOBAYASHI, and H. TADOKORO 

Corresponding to it, the bands oflattice modes 
are broader and weaker at room temperature 
and sharpened at liquid nitrogen temperature. 
The calculated vibrational frequencies of the 
external modes are in good agreement with the 
observed ones as seen in Figure 4. 
-_ .. _._---

7.78 3.91 3.72 0.00 

3.91 11.55 3.99 0.00 

3.72 3.99 42.44 0.00 
c= 

0.00 0.00 0.00 4.02 

0.90 -0.36 -0.57 0.00 

0.00 0.00 0.00 -0.12 

B. Three-Dimensional Elastic Constants of 
it-PP Crystal 
Three-dimensional elastic constant tensor c 

and compliance tensor s are calculated as 
shown below for the ordered structure. 

0.90 0.00 

-0.36 0.00 

-0.57 0.00 
GPa (5) 

0.00 -0.12 

3.10 0.00 

0.00 2.99 

16.77 -5.50 -1.03 0.00 -5.69 0.00 

-5.50 10.78 -0.50 0.00 2.77 0.00 

-1.03 -0.50 2.50 0.00 0.70 0.00 
s= x 1O- 2 GPa- 1 

0.00 0.00 0.00 24.91 0.00 1.03 
(6) 

-5.69 2.77 0.70 0.00 34.41 0.00 

0.00 0.00 0.00 1.03 0.00 33.53 

Here the Cartesian coordinates are defined as 
follows: the x (1) axis = a sin f3, the y (2) axis = b 
and the z (3) axis = c. Young's modulus along 
the chain axis and anisotropy of Young's 
modulus and linear compressibility in the plane 
perpendicular to the chain axis are discussed 
in the following on the basis of eq 5 and 6. 

Young's Modulus and Linear Compressibility 
along the Chain Axis 

Young's modulus Ec and linear compres
sibility f3c along the chain axis are given, 
respectively, by eq 7 and 8. 

(7) 

f3c=S3l +S32 +S33 =0.97 X 10- 2 GPa -1 (8) 

Ec is in excellent agreement with the values 
observed by the X-ray diffraction method (35 
GPa 7 and 40-43 GPa ll ) and by the Raman 

908 

LAM mode (37 GPa). 35 The calculated f3c is 
also in good agreement with the observed X-ray 
data, about 0.4 x 1O-2GPa-l.38.39 

Figure 10 shows the calculated distribution 
of strain energy among the intramolecular 
internal coordinates under application of 
tensile stress,8 where the percentage for only 
one monomeric unit is shown for simplicity. 
In spite of the helical structure, a relatively large 
percentage of strain energy (ca. 55% in total) 
concentrates on the skeletal bond stretching 
and bond-angle deformation. Distribution of 
the energy to the skeletal torsional mode is 
about 30%. Such an energy distribution may 
come from the situation that the modulus was 
calculated for the polymer chain existing in the 
crystal lattice where the translational symmetry 
must be reserved even under deformation as 
long as an infinitesimally small external stress 
is considered. This constraint reduces the 
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Figure 9. Far-infared spectra of unoriented it-PP com
pared among samples heat-treated under various condi
tions. Measurement temperatures are (a) room temperature 
and (b) liquid nitrogen temperature. 

Figure 10. Calculated distribution of strain energy 
among various internal coordinates of it-PP chain under 
an application of tensile stress. For simplicity, the 
percentage for only one monomeric unit is shown here. 

Polym. J., Vol. 24, No.9, 1992 

contribution of the torsional modes to some 
extent. 19.20.36 Another possibility is the char
acteristic conformation of it-PP chain. One 
of the skeletal CC bonds in the monomeric unit 
is almost parallel to the chain axis (CCaxial)' 
This CCaxial bond and associated bond angle 
play an effective role in stretching the polymer 
chain, which reflects on the large energy 
distribution. The strain energy distribution 
among the intermolecular interactions is very 
small, an order of 0.01 % at most. This may 
originate from the situation that most of the 
intermolecular interactions are between the 
methyl groups, which spread out of the skeletal 
chains just as likely as branches of trees, and 
so do not affect very much the deformation of 
skeletal main chain. In fact the Ec value 
calculated without any intermolecular interac
tions is 37.5 GPa, which is not much different 
from the Ec calculated with all the interactions 
included. 

Anisotropy of Elastic Constants and Linear 
Compressibility in the Plane Perpendicular to 
the Chain Axis 
Young's modulus E(8) and linear compressi

bility [3(8) in the plane perpendicular to the chain 
axis are calculated by the following equations 
for the direction of angle 8 from the x axis. 

1/ E(8) = Sll cos4 8 + S22 sin4 8 

+ (2s 12 +s66)sin28cos28 (9) 

[3(8)=(Sll +S12 +SI3)cos28 
+(S21 +S22 +s23)sin28 (10) 

Figures ll(a) and 12(a) show, respectively, the 
calculated anisotropic curves of E(8) and [3(8) 
in comparison with the data observed by the 
X-ray diffraction method. 37.38 The distance 
between the original point (center of the unit 
cell) and point on the curve represents the 
magnitude of E or [3 along this direction. As 
to the Young's modulus E, the calculated 
values are consistent in order with, but larger 
as a whole than, the observed values. 37 Of 
course, we need to consider the temperature 
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Figure It. Anisotropic curve of Young's modulus in the 
plane perpendicular to the chain axis of it-PP crystal. (a) 
Calculated results using harmonic compliance constants 
in eq 6. (b) Calculated results using compliance constants 
modified by taking an anharmonic effect into account (refer 
to the text). The solid circles are X-ray observed values. 37 

effect since the calculated values correspond to 
the moduli at low temperature while the 
observed values are at room temperature (the 
details will be discussed later). We must also 
consider the experimental problem of stress 
distribution in the bulk sample. In contrast to 
the case of the c axis (draw direction), the 
crystallite modulus in the lateral direction is 
not so different from the amorphous modulus 
and then an assumption of mechanical series 
model (equal stress working homogeneously on 
both the crystalline and amorphous phases) is 
difficult to apply. In other words, the crystallite 
modulus in the lateral direction may be 
dependent on the morphology of the sample 
more sensitively than the case along the chain 
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I , 

,,' ----. --1- - -.- ------
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I 

Figure 12. Anisotropic curve of linear compressibility in 
the plane perpendicular to the chain axis of it-PP crystal. 
(a) Solid curve and solid circles are observed data 38 : ------, 

calculated for the ordered crystal model (P2dc, eq 6); 
----, calculated for the disordered crystal model (e2/c, 
refer to the text). (b) Comparison between the observed 
data (e) and the curve (------) calculated by adjusting the 
mode Griineisen constants Yt and Y2 (refer to the text). 

axis. The X-ray method may thus contain some 
significant problems when quantitative com
parison is made between the calculated and 
observed moduli in the lateral direction. 

From such a point of view, the linear 
compressibility measured under hydrostatic 
pressure seems more reliable. But agreement in 
the anisotropy between the observed38 and 
calculated compressibilities is not so good; the 
values along the x axis are almost equal 
whereas the values along the y axis are very 
different. In order to clarify the origin of this 
discrepancy, we calculated again the elastic 
constant tensors for the following several cases. 
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Figure 13. Variation of anisotropic curve of linear 
compressibility calculated for the various structural 
parameters, where only the harmonic terms are considered 
in the calculation of compliance tensors. A: a = 6.65 A; 
b=20.73A; c=6.50A; {3=98.7°; T=60°. B: a=6.65A; 
b=20.73A; c=6.50A; {3=98.7°; T=71°. C: a=6.67A; 
h=20.8A; c=6.50A; {3=98.7"; T=75°. D: a=6.65A; 
h=20.73A; c=6.50A; #=98.7°; T=71° but some of the 
intermolecular force constants are damped consciously 
(refer to the text). 

(I) Unit cell parameters used in the 
calculation (a=6.65A and b=20.73A) are 
different from those of the samples actually 
used in the measurements: a = 6.66 A and b = 
20.85 A (Tt0 38) or a = 6.67 A and b = 20.81 A 
(Nakafuku39). The latter are rather close to the 
parameters of the disordered phase (a = 6.67 A 
and b=20.8 A).23 The elastic constants were 
calculated for the disordered structure with an 
equal probability of upward and downward 
chains. The calculated anisotropic curve of 
linear compressibility is reproduced in Figure 
12 (a). Anisotropy is not well modified by such 
a change. That is, the disorder in chain packing 
dose not affect very much the mechanical 
anisotropy in the lateral direction. Linear 
compressibility was calculated also for the 
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ordered structure with various cell parameters 
as shown in Figure 13. But a slight change in 
the cell parameters gives only negligibly small 
effect on the anisotropy. 

(2) Torsional angles of methyl groups were 
changed from r = 71 0 to 60° as a trial where 
the angle 60° is an energetically plausible value 
as frequently encounted in a gauche conforma
tion. As seen in Figure 13, however, this 
modification is also negligible. 

(3) In the calculation, some intermolecular 
H· .. H distances are appreciably short and 
give unreasonably large intermolecular force 
constant of ca. 0.03 mdyn A-I, an order of 
intramolecular torsional force constant. These 
large values were consciously modified to more 
reasonable values such as 0.01 mdyn A-I, for 
example. But even such a modification results 
in the anisotropic curve almost the same as the 
above calculated one, though compressibility 
itself increases to some extent. 

(4) In the previous section, we pointed out 
the influence of thermally activated methyl 
rotation on the vibrational spectral feature. 
Such thermal fluctuation may make the force 
field of the crystal diffuse and decrease the 
intermolecular force constants. But as dis
cussed above [( 1 )-(3)J, change in the 
intermolecular interactions within an allowed 
range of modification did not lead to an 
essential revise of the elastic anisotropy as long 
as only the so-called harmonic effect was 
treated. The methyl groups rotating with large 
amplitude are speculated to lead to anharmonic 
behavior of the mechanical properties. This 
may be supported from the calculated result 
that application of hydrostatic pressure causes 
a strain energy distribution mainly on the 
H· .. H intermolecular interactions of the 
adjacent methyl groups (Figure 14). In general, 
elastic constants correspond to the initial slopes 
of acoustic phonon curves of the crystal. 
Lattice vibrational modes are considered to 
easily couple with acoustic phonons and so the 
anharmonic effects of lattice vibrational modes 
may be important in evaluating the abnormal 

911 



K. TASHIRO, M. KOBAYASHI, and H. TADOKORO 

\\ 

I r--\iI i 

Figure 14. Calculated strain energy dsitrbution for it-PP 
crystal subjected to hydrostatic pressure. Thin solid lines 
connecting two hydrogen atoms of neighboring methyl 
groups indicate atomic pairs with relatively high percentage 
of strain energy (1-7%). In this figure, only pairs related 
to one asymmetric uint are given. 

mechanical behavior of a crystal. But, as 
can be seen in the case of orthorhombic 
polyethylene crystal, the temperature effect of 
lattice vibrational modes is not so large in 
general and the anisotropic features of linear 
compressibility, e.g., are not influenced by such 
an anharmonic effect of lattice vibrations 
except for some special cases: In other words, 
the mechanical anisotropy is almost deter
mined by the structural features of the crystal. 
An extremely large discrepancy in the elastic 
anisotropy of linear compressibility (and 
Young's modulus) ofit-PP crystal between the 
observed and calculated results may originate 
from another type of vibrational mode: the 
methyl torsional modes in the present case as 
discussed above. Therefore we may have an 
image such that the methyl torsinal modes 
couple with the acoustic modes and affect 
remarkably the slopes of acoustic dispersion 
curves through anharmonic effects. In the 
following, we estimate the contribution of such 
anharmonic effects of methyl modes coupled 
with acoustic phonons. 

A Helmholtz free energy A of a crystal with 
a unit volume is expressed as a sum of static 
potential energy Vand vibrational energy Avib; 
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A= V +Avib= V +(1/2) Lhvi 
I 

+ Lln[l-exp( -hvzlkT)J (11) 
I 

where VI is vibrational frequency of the lth 
mode, k is Boltzmann constant, h is Planck 
constant, and T is absolute temperature. The 
Vand AVib are assumed as functions of strain s; 

V= Vo+(1/2)LLcijoSiSj 
i j 

+ (1/6) L LLcijk °SiS h + ... 
i j k 

AVib = Ao + L(oAvib/OSaOSi 
i 

Here 

+ (1/2) LL( 02 AVib/ OSiOS j )oSiS j + ... 
i j 

=Ao- LLEI/'iISi 
i I 

+ (1/2)LLL [YilYjl(EI- TCvl ) 
i j I 

-E/OYil/OSj)Js/j+" . 

EI = (1/2)hvl + hvzl[exp(hvzlkT) -IJ 

Cvl = k(hvzlkT)2 exp(hvzlkT)/ 

[exp(hvzlkT) - IJ2 

Yil= -(ovdosJo/vl 

(12) 

(13) 

(14) 

(15) 

(16) 

EI is a vibrational internal energy, Cvl is a 
vibrational heat capacity, and Yil is a mode 
Griineisen constant for the lth mode under the 
strain Si' An isothermal elastic constant c/ 
may be given as follows in a quasiharmonic 
approximation. 

c/ = (0 2 A/OSiOs)T 

:::::0 Ci/ + L [YilYjz(EI- CvlT) - E/(OYil/OSj)J 
/ 

(17) 
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In general the vibrational frequency VI changes 
almost linearly with increase of external strain 
8i;20 

(18) 

Therefore (OYil/08) in eq 17 may be approx
imated as 

(19) 

In a high temperature approximation, EI kT 
and Cvl k, and then eq 17 becomes as below. 

C;/ (20) 
I 

As stated above, the methyl torsional modes 
coupled with acoustic (or elastic) phonons are 
considered to contribute greatly to the 
temperature dependence of elastic constants. 
Therefore we assume here that only these 
modes are involved in eq 20. The last equation 
in eq 20 represents this approximation and 
subscript I is omitted where N is the number 
of methyl torsional modes involved in the unit 
volume of crystal. The compliance tensor ST is 
obtained as an inverse of elastic constant tensor 
CT. As shown below, elastic contant tensors can 
be classified into two symmetry species Ag and 
Bg in the present case. 

Cll C12 C13 0 CIS 0 

C2l C2Z CZ3 0 CZ S 0 

C3l C32 C33 0 C3S 0 
cAg = 

0 0 0 0 0 0 

CSI CS2 CS3 0 CSS 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
(21) 

cBg = 
0 0 0 C44 0 C46 

0 0 0 0 0 0 

0 0 0 C64 0 C66 
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In the calculation of E(G) and P(G) in eq 9 and 
10, we may focus on the c Ag matrix alone. An 
analytical derivation of sAg as (cAg) -1 is difficult 
to carry out. In order to conduct the calculation 
as simply as possible without any loss of 
essential feature, we neglect here the compo
nents CiS in the cAg matrix and calculate the 
inverse matrix of the (Ci)A g matrix with i and 
) = 1 to 3. Final expressions for s;/ may be 
given as follows assuming that the higher terms 
of y4 etc. may be neglected because of their 
small magnitude. 

(20) 

where i and} range from 1 to 3. The coefficients 
Pij and q are expressed as below using the 
harmonic elastic components Cit 

Pll =W(C220C330-CZ30C230) 

- q(C33 °Yz 2 + CZZ °Y3 Z - 2cZ3 °YzY3) 

pzz = W(C II °C33 ° - c13 °C13 0) 

- q(C33 °Y1 2 + Cll °Y3 2 - 2C13 °Yl Y3) 

P33 = W(C II °Czzo - C12 °C l /) 

-q(czz °Y1 2 + Cll °Yz 2 - 2C12 °Yl yz) 

PZ3 = W(C IZ °C13 ° -Cll °C23 0) 

- q( C IZ °Y I Y 3 + C 13 °Y I Y Z 

- Cll °YZY3 - CZ3 °YI2) 

P13 = W(C 12 °C33 ° - C13 °C2Z 0) 

- q(C23 °Yl Yz + C 12 °YZY3 

- C2Z °Y1Y3 - C13 °Y/) 

PIZ = W(C 13 °CZ3 ° - C1Z °C33 0) 

- q(c 13 °YZY3 + C23 °Yl Y3 

- C33 °Y1YZ - C12 °Y3 Z) 

q= Cil °Czz °C33° + 2C120C23 °C13 ° 

- CZZ °C13 °C13 ° -Cll °CZ3 °CZ3 ° 

-C13°C12oC12° 

W=(CZ3 °C330-CZ302)Y1Z +(C II °C33° 

- C13 oZ)y/ + (C ll 0CZZ ° - CIZ oZ)y/ 

+ 2(c 13 °CZ3 ° - 2C33 °c lZ O)Yl Yz + (2c lZ °C13 ° 
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- 2CIIOC230)Y21'3 + (2C120C23° 

- 2c2 /c 13 0)Yt'Y3 (21) 

Thus the linear compressibilty at a temparature 
T may be expressed as follows. 

f3I T =SllT +SI/ +S13T 

f31 ° + (kTN/q2)(UIIYI2 + U I2Y/ + u 13Y/ 

+ U 14Y2"h + U I5 YIY3 + U I6YIY2) 

f3/ =S2I T +S22T +S2/ 

f32 ° + (kTN/q2)(U 2IYI2 + U22Y2 2 + U23Y3 2 

+ U24Y2Y3 + U25Yt Y3 + U26YI Y2) 

where 

f31 ° =SII 0+SI2° +S13° 

f32 ° = S21 ° +S22 ° +S23 ° 

U II =gl(C220C330-C2302) 

U I2 = gl (c ll °C 33 ° - C I3 02) -q(C33 ° - C13 0) 

U I3 = gl (C II °C 22 ° - C I2 02) - q(C22 ° - C I 2 0) 

U I4 = g I (2c 12°C 13 ° - 2c II °C23 0) 

- q(C13 ° + C12 ° - 2C23 0) 

U I5 = g I (2C 12 °C 2 3 ° - 2C22 °C130) 

- q(C23 ° - C22 0) 

U I6 = gl (2c 13 °C 2 3 ° - 2C33 °c 120) 

- q(C23 ° - C33 0) 

U21 = g2(C 22 °C 33 ° - C23 02) -q(C33 ° - C23 0) 

U22 = g2(C II °C 33 ° - C I3 02) 

U23 = g2(C 11 °C22 ° - C I2 02) - q(Cll ° - C12 0) 

U24 = gi2c12 °C 13 ° - 2C II °C23 0) 

- q( C I 3 ° - C II 0) 

U25 = g2(2c 12 °C23 ° - 2C22 °C13 0) 

- q(C23 ° + C 12° - 2c 13 0) 

U26 = g2(2c 13 °C 23 ° - 2C33 °C12 0) 

- q( C 13 ° - C 33°) 

gl = C22 °C33 ° + C13oC 2 3 ° + C12 °C 23 ° - C23 02 

- C I2 °C 33 ° - C13 °C 22 ° 

(22) 

g2 = C13 °C 23 ° + CII °C 33 ° + C 12 °C13 ° - C I2 °C 33 ° 

(23) 

By the numerical values of ci/ and Si/ in eq 5, 
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T=300K and N= 12/vc (12 is a number of 
methyl torsional modes involved in the unit 
cell with a volume vJ, we may get the following 
equations under assumption of Y3 = O. (This 
assumption is not unreasonable because the 
shift in vibrational frequency caused by a 
tensile strain along the chain axis is considered 
very small for the torsional modes of methyl 
side groups). 

f31 T = 10.24 + 0.061 YI 2 -0.020y/ 

+0.02IYtY2 (x 10- 2 GPa -I) 

f32 T =4.78 -0.029y/ +0.020Y2 2 

+0.041YIY2 (x 10- 2 GPa- l ) (24) 

By adjusting the Griineisen constants YI and 
Y2' we may fit the observed anisotropic curve 
of linear compressibility shown in Figure 12(b) 
on the basis of eq 10. The obtained YI and Y2 are 

YI =4.65 

Y2 = 15.91 (25) 

Tn other words, a larger value of Y2 than YI 

is required to reproduce the mechanical aniso
tropy of it-PP crystal at room temperature. 
Using these Gruneisen constants, we can 
estimate SII T, SI2 T, and S22 T in eq 9 as SilT = 
14.02x 10-2GPa- l , SI2 T=-5.07x 10- 2 

GPa- l , and s22T =18.70x 1O- 2GPa- l . The 
anisotropic curve of Young's modulus E(8) can 
be calculated by eq 9 where S66 T is assumed to 
be equal to S660. The result is shown in Figure 
II(b). The calculated curve is closer to the 
observed one when compared with the origi
nally calculated curve. 

The Gruneisen constants YI and Y2 calculat
ed for methyl torsional mode are not unrea
sonable judging from the large frequency shift 
induced by a slight change in the unit cell pa
rameters a and b as shown in Figure 8. From 
this figure, the Griineisen constant is roughly 
estimated as 6-11, this being close to the above 
determined values. 

By these Griineisen constants, we may also 
evaluate the linear thermal expansion coeffi.-
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cients IX1 and IX2 along the x and y axes, 
respectively. From eqs II and 12, IX; may be 
expressed approximately as follows. 

IX;=LS;/CIcv1Yjl)=kNLS;/Yj (26) 
I j 

Using the above s;/ and Yj' we have 

IX1 = -0.29 X 10- 4 K- 1 

IX 2 =5.12x 1O- 4 K- 1 (27) 

The reported experimental data are IX1 = 
0.5-1.0x 1O- 4 K- 1 and IX 2 =1.6-2.3x 10- 4 

K - 1.39.40 The calculated values of IX 1 and IX2 

and their relative amplitudes are of the same 
order as those observed but the ageeement is 
not so good. This difference in IX; between the 
observed and calculated values might come 
from a neglection of other types of lattice 
vibrational modes in eq 26. 

CONCLUSION 

In this paper, we calculated the vibrational 
frequencies and three-dimensional elastic con
stants of it-PP crystal using the lattice 
dynamical technique. The calculated vibra
tional frequencies agree well with the spectra 
observed at low temperature. The far-infrared 
bands of methyl torsional modes change their 
spectral pattern drastically as the temperature 
varies below and above ca. - 145°C where the 
methyl rotational motion begins to occur. The 
methyl torsional mode is considered to couple 
with acoustic phonons through the anharmonic 
effect and affect the anisotropy in the 
mechanical property of it-PP crystal, particu
larly of the anisotropy in the lateral direction. 
By taking such an effect into account, we have 
derived an approximate estimation of isother
mal elastic constants and compliance tensors 
on the basis of an idea of mode Griineisen 
constant. As can be seen from a discrepancy 
in the thermal expansibility between the 
observed and calculated values, we should 
consider the anharmonic contribution of all 

Polym. J., Vol. 24, No.9, 1992 

internal and external vibrational modes when 
estimating mechanical anisotropy. But, as long 
as we are concerned with the mechanical 
anisotropy in the lateral direction, the methyl 
torsional modes coupled with acoustic phonons 
are reasonably considered to make an essen
tially important contribution. One of the most 
direct experimental methods to check the above 
discussion may be measurement of anisotropic 
elastic constants at low temperature where the 
large amplitude of methyl rotation is sup
pressed and so the harmonically-predicted 
original anisotropy in E( tJ) and p( tJ) [Figures II 
and 12J should be observed. 
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