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ABSTRACT. We discuss some recent results about the scaling approacil. to 
polymer adsorption. The various concentration regimes are discussed, as 
well as the concentration profile in the plateau range. These are compared 
with experimental results. We briefly discuss surface imperfections such as 
regular or fractal roughness and chemical impurities. 
KEYWORDS: Adsorption/ Interface /Concentration Profile /Neutron 
Reflection/ Surface Roughness /Random Impurities. 

Polymers have important applications 1 when they are located at interfaces. They are 
used as glues or paints for instance. Their adhesive and elastic properties may then be 
important. They are also used for colloidal stabilization, or separation such as for instance 
water purification. The important property here is the adsorption of the polymer on the 
colloidal particles. But they are also traditionally used as emulsifiers. Then their interfacial 
properties are important and the fact that they eventually decrease the surface tension between 
immiscible fluids. Finally, they may also be grafted on surfaces for protection for instance. 
This short overview is intended to show that already many applications exist in every day 
life. Still, the fundamental properties of the polymers at interfaces are not fully understood. 
In what follows, we would like to review some properties of linear polymers at interfaces. 
More specifically, we will consider the conformation of linear macromolecules at interfaces. 
Polymers are usually either strongly attracted or repelled by surfaces, even though the 
interaction of each monomer may be weak. This is of course related to the fact that several 
units are interacting with the surface. We will focus our attention on the attractive case, that is 
on polymer adsorption. We will first consider the case of a single chain at the surface of a 
good solvent. Then the (bulk) concentration effects will be discussed. The surface is 
assumed to be regular and flat. Then, we will discuss briefly the effects of surface roughness 
and impurities. We stress that only the scaling approach is used below, even though other 
h . . 23 

t eones were given . 

1. ADSORPTION OF A LINEAR CHAIN 

1.1. Ideal chain. 

Consider a linear polymer made of N monomers in a good solvent. We assume that 

every unit has an attractive interaction with the free interface, assumed to be flat. Let o be the 
(dimensionless) free energy gain per monomer on the surface. We assume it to be small. We 

4 
first consider the case of an ideal chain, with one end grafted on the surface. It was shown 
that when the conformation is isotropic, the chain has N8 monomers on the surface, with 
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The energy gain Fg is 

Fg _ o N112 
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(1) 

(2) 

and tends to localize the chain on the surface. This competes with an entropy loss if this 
localization occurs. A slightly different expression will be used below for the excluded 
volume case. The ideal chain case may be solved exactly by considering the Schrodinger 

type of equation introduced by Edwards5 some years ago. We have then to solve the 
following equation 

(3) 

with y the eigenfunction, z the direction normal to the interface, V(z) the attractive potential, 
and e the lowest eigenvalue. When N is very large, the ground state dominates, and the local 

concentration C is directly related to '1'· De Gennes4 showed some years ago that it is 
equivalent to solve the problem in the absence of potential, but with a boundary condition on 
the surface: 

(4) 

where D is the adsorption length and gives the width of the region where the chain is 
confined. Ifwe assume that the potential is localized, V(z) = -kT o(z), D varies as 

-1 
D_o a (5) 

and the concentration falls off exponentially from the wall with a characteristic length D. 

1.2. Good solvent. 

Let us now consider a polymer at the interface of a good solvent. The number Ns of 

monomers on the surface 6 when the polymer is not adsorbed is, generalizing relation (1): 

( 1 ') 

The value of the cross-over exponent <I> depends on the exact problem one is considering: As 

a matter of fact, two different versions 7 may be considered, depending on the nature of the 
surface. The latter may be either impenetrable, which is the case for instance for a solid 
surface, or penetrable, which is the case for instance for the interface between two 
immiscible good solvents. In the latter case, it was shown by Bray and Moore that the cross-

over exponent 8 is related to the excluded volume exponent v 

<I> = 1-v (surface of defects) (6') 
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In the former case, <I> is, in principle, independent of v, although for the three dimensional 
case that we will consider exclusively, the numerical values of both exponents happen to be 
very close to each other: 

<I> "' 3/5 (impenetrable; d=3) (6) 

In all the following, we will consider exclusively the latter case. Studies of the surface of 
defect case implies the change from (6) to (6') in the cross- over exponent. The value of <I> in 

the two dimensional case was calculated by computer simulations by Ishinabe9 and by 

Kreme/0. It is possible to-make a scaling assumption c0nceming the characteristic distance 

L by noting that the scaled energy for a chain is 8N<I> and has to be compared to unity. If it is 

less than unity, the chain is not adsorbed. In the opposite case, it is. Thus we have 11, for the 
impenetrable case in three dimensions: 

(7) 

where the unknown function f(x) has known limits: for x<< 1, f(x)_ 1, and f(x>>l) _ xa 
where the exponent a is determined by the condition that the chain adopts a pancake shape 
with width D independent of N. One finds 

-1 
D_8 a (8) 

Note that we may define surface blobs, made of gs monomers, that are on the verge of being 

adsorbed: 0gs 315 _ 1. The size of such blobs is D. The chain is a two dimensional 

arrangement of surface blobs. Using the Flory value v2 for the excluded volume exponent in 
two dimensions, we find for the radius Rn of the pancake 

2.1. The profile. 

Rn _(N l 14 n 
gs 

2. CONCENTRATION EFFECTS 

(9) 

When the bulk concentration is increased, the surface concentration rs also increases. 

Different regimes 10 are then met. The dilute regime that we discussed above is valid as long 

as the various polymers do not overlap each other. This is realized as long as rs<< rs* , 
with 

r * N-1/2 ~1/2 
s - 2 - u 

RIID 
(10) 

For rs>> rs*, the characteristic distances may be obtained by scaling arguments. Assuming 

(10a) 
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and 

we find 

and 
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R1_ _ D g(r g/r8*) 

R N l/2 r -112 
II - s 

~II - r-3/2 o-1/2 

R1__N3/5 < nol/3)6/5 

(10b) 

(1 la) 

(llb) 

(1 lc) 

The N dependence in (1 lc) is related to the progressive appearance of loops. These are 
related to the squeezing of the polymers and to the existence of the excluded volume 
interaction, so that the profile extends to distances larger than D. Note that these loops do not 
exist in the ideal chain case: Because there is no interactions, the surface concentration may 
become very high. 

For still higher bulk concentrations, r >> o l/3, a plateau regime is reached, where the 
surface concentration basically remains constant. Note that the surface may be saturated 
while the bulk is still in a dilute regime: One can show that the partitioning of the chains is 

D 5/3 . 
roughly described by a Boltzmann factor, with rs _ a Cb exp(- No ) . Extendmg 

relations (11) into the plateau regime, we find 

(12a) 

(12b) 

(12c) 

Thus the two dimensional blob reaches the size of the surface blob, relation (8), and the 
profile extends to distances of the order of the radius of a chain in the bulk. This is directly 

related to the special loop structure that was introduced by de Gennes 13. The resulting phase 

diagram is rather complicated11-33. In what follows, we will be interested only in the latter 
plateau regime. Because of the Boltzmann weights, the first regimes correspond to very 
dilute bulk concentrations. Note that this regime extends to the semi dilute bulk range without 
changes in the parallel dimensions. The orthogonal extension R1_ becomes then the blob size 

_ Cb-3!4 . We consider now the concentration profile <I>(z) from the surface. Because the 

surface is saturated with blobs of size D, the surface concentration <I>s is 

2 
<I>s - gsfD - O (13) 

Three different regimes were discussed by de Gennes and Pincus 14 and Eisenriegler 15. 
Far from the surface, in the distal range, for z>> R (or~). the profile falls off exponentially. 

Closer to the surface, in the central region, for D<< z << R (or~). the profile is self similar. 
Moreover, in this distance range, the local concentration is in the semi-dilute range. Thus 

There is locally a screening length ~(z) _ <I>(z)-314. Because there should be only one length, 
the latter has to be identified to the the distance z to the surface. Thus we find 

<I>(z) - ( a/z )4/3 (central) (14) 
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Close to the surface, in the proximal region, for a << z << D, the profile decreases as a 
power law 

m 
<l>(x) - <l>s ( a/z ) 

The exponent mis found by continuity of relations (14) and (15) for z = D: 

1/3 
<l>(x) - <l>s ( a/z ) 

Adsorption of polymer mixtures is discussed by Lipatov, in this conference. 

(15') 

(15) 

Although there is a continuing effort to find a monomer-solvent pair such as o is small, 
this parameter is usually large for most of the systems. Thus in what follows, we will neglect 
the proximal region and consider only profiles essentially made of the the central, self-similar 
region, relation (14). 

2.2. Experimental tests. 

It has to be realized that the experimental determination of the preceding profiles, in the 
presence of a bulk phase, is experimentally difficult. It has been attempted by several 
techniques, including ellipsometry, hydrodynamical widths, and radiation scattering and 
reflectometry.The first two techniques measure moments, while the last ones provide the 
Fourier transform of the profile <l>(z). 

Ellipsometric measurements were performed by Kawaguchi, Takahashi and 

coworker/6-18 and found that in a good solvent, the ellipsometric width Le varies as 

(16) 

this is directly interpreted as the first moment of the profile: 

Rp 2/3 
Le - J z <l>(z)dz _ Rp (17) 

where Rp _ N315 is the Flory radius of a chain in the bulk. 

Hydrodynamic thickness eh was also measured19 by these authors, with reasonable 
agreement. 

Neutron small angle scattering was performed by Auvray et al.20 on polymer adsorbed 
on a porous medium. The scattered intensity is related to the Fourier transform of the profile, 
and was found to be in agreement with the above discussion. Note however that these results 

are challenged by Cosgrove et aI.21 who did similar experiments on polyoxyethylene on 
polystyrene latex spheres and could not fit their results by any power law. Thus there does 
not seem to exist a general consensus about the results at the present time. 
Neutron reflectometry was also used, and we discuss briefly the results obtained by Farnoux 

and coworkers 22'23 on polydimethylsiloxane adsorbed at the free surface of a solution in 
toluene. The variation with incidence angle (or wavelength) of the reflected intensity close to 
total reflection is related to the concentration profile. Various profiles were assumed for the 
data treatment, for instance a decomposition into several step profiles. These were ruled out 

very recently by Guiselin 24 using a series of measurements with several molecular weights, 
and it seems thatthe reflectivity results are in good agreement with the scaling predictions. 
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3. SURFACE IMPERFECTION 

So far, we considered only flat ideal surfaces. Clearly, those are very difficult to get 
experimentally. Natural imperfections appear as soon as one deals with real surfaces. One 
may think at least about two different types of imperfections, namely surface roughness and 
chemical impurities. 

3.1. Surface roughness. 

Two types of roughness were considered , either regular or fractal, which we discuss 
briefly now. 

3.1.1. Regular. 

Hone, Ji and Pincus 25 considered the adsorption of an ideal chain on a penetrable 
surface when the height z of the latter is modulated in one dimension, that is if 

z(x0 ,y) = const. 

z(x,Yo)= Zo cos(2mc/l) 

with x0 ,Yo being constants, and 1 the wavelength of the modulation. Their result is that the 
length D is merely decreased except when the wavelength is very short: for 1 << Zo << DR, 
the adsorption length DR is 

(18a) 

where D is the length for a flat surface, relation (8). In the opposite case of very large 
amplitudes, 1 << DR << Zo, they find 

(18b) 

More generally, the ratio DRID is proportional to the ratio of the actual adsorbing surface 
inside of a sphere of radius DR to that of the sphere. This is found by writing down the 
following dimensionless Flory free energy: 

lL 2 a A 
F=(-5!.) +oN- --

DR DR DR2 
(19) 

where the first term is the entropy loss because of confinement, and the second one the 
energy gain by the monomers on the surface. For a flat surface, the last fraction would be 
absent. Its presence corresponds to the increased surface area available to the monomers in 
the rough case with respect to the planar one. Minimizing relation (19) with respect to D 
leads 

(20) 

The reader may check easily that A_ Zo D2 /1 for l<< 2o<< D, and A_ D3 /1 for l<< DR 
<< Zo- These results are easily generalized by incorporating the excluded volume interaction 
term in the above relation for the good solvent case. Let us stress that the above results are 
valid only for a penetrable surface that is not folded. This is the case for a self affine fractal 
surface, as opposed to a fractal surface, to be discussed below, that has multiple overhangs. 
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3.1.2. Fractal. 

We consider now a fractal surface, that has many overhangs and is self similar on a 

linear scale a<< r<< L. This case was considered recently 26-28 for an impenetrable surface. 
The latter is defined by a fractal dimension Ds with value between 2 and 3 such that its 
measure on scale r is 

Ds 2 
~r) _ (Ur) r (21) 

The number dn of monomers in the volume dQ (r) "" drL(r) within a distance dr from the 

surface is, using relation (14), valid on the plateau for strong adsorption, i.e. for o"" 1 

dn _ <l>(r)dQ(r) _ ( ~) 413 ( ps / dr 
r r 

Integrating, we get the total number ntot of adsorbed monomers: 
Ds 

ntot - ( L/a ) 

(22) 

(23) 

The latter relation shows that the polymer adopts a flat configuration, of width a, that is the 
size of a monomer on the rough surface.These geometrical effects are discussed by 

Kawaguchi and Arai in this conference 29. 

3.2. Surface impurities. 

Another source of surface imperfection is the fact that impurities may be located on the 
surface, preventing monomers to be adsorbed on the corresponding sites.Their average effect 
is to decrease the energy gain per monomer on the surface. For small values of d, if we 
assume that adsorbing sites are present only with probability p, and thus that a fraction (1-p) 
of the sites are forbidden and correspond to impurities, the average energy gain per site is pd 
and is smaller than for a "clean" surface. Thus the effect of the impurities in this case is to 
delocalize the polymer and to make adsorption more difficult. On the other hand, for large 
energy gains, d_ 1, the effect is not clear: competing with the previous effect, there is a 
change in the quality of the solvent, as discussed recently by Edwards\ Muthukumar, and 

coworkers30-32 in the bulk. This may be discussed in the following way: Because of the 
presence of loops, the structure of the polymer in the adsorbing plane without impurities may 

-1-cr 
be considered as a Levy flight with distribution of step sizes P(l) _ 1 . One may write 
down a Flory free energy for such flight. 

cr l/(cr-1) cr 1/(cr-1) 2 2 
F = {R /N} + {N/R } + w N /R - v N Ln R (24) 

where we used d=2 for the adsorption plane, and where w is the excluded volume parameter 
on the plane, v is the pseudo-potential for the impurities, and takes into account their 

concentration, and cr = 2. When v is large, minimization leads to 

-1/2 
R_v (25) 

Thus the size of the polymer becomes independent of its mass. It is not clear however 
whether this corresponds to a collapse of the chain or to a local adsorption of part of it, with 
a hairpin structure of the remaining part. Such hairpin would then have a somewhat 
elongated structure in the direction orthogonal to the adsorbing plane. 
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We conclude by mentioning that the case of poor solvents was considered very recently 

by Johner and Joann/4, who showed that wetting may occurr in these systems. Finally 
copolymer systems were also studied, both in the melt to see the influence of surfaces on the 
ordering transition, and in dilute solutions in selective solvents, that are good for one of the 
blocks and bad for the other one. In this case, there is an interesting competition between 
micellization and adsorption. When the attraction by the surface is sufficiently strong, 

structures similar to grafted polymers are obtained. This is discussed by Wu35 in this 
conference. 
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