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ABSTRACT: In order to give better and quantitative 
understanding of the pore forming mechanism in the sol vent 
casting method, a theory was presented as an example of the 
application of phase equilibrium. Mechanism of formation of 
critical nucleus from homogeneous polymer solution in the 
metastable region of the phase diagram was investigated in 
accordance with the activation energy of nucleation. The 
growth rate of nucleus by diffusion to the primary particle 
and the time of attainment of phase equilibria of whole 
system were determined under the assumption of local 
equilibrium between nucleus and sorrounding sphere. Formation 
of secondary particle by amalgamation was tried to explain by 
use of the particle Monte-Carlo simulation approach. 
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Among numerous methods proposed hitherto for preparing polymeric 
membrane, the solvent cast method is a method of vast technological 
importance, as it enables us to produce membrane with a wide range of 
mean pore sizes and phase separation plays an important role in the 
formation of the membrane. In this article, more generalized theory as 
an extension of pioneering work of Kami de and Manabe 1 was presented 
especially on the nucleation and the growth of nucleus to primary 
particle. Summary of these works has been published in the book entitled 
"Thermodynamics of Polymer Solutions" by Karnide. 2 

The underlying mechanism of pore formation in the solvent casting 
method is schematically demonstrated in Figure 1. The original form of 
this fi~ure was first presented by Kamide and Manabe 2 in 1985. Depending 
on the initial polymer concentration vp 0 , either the polymer-rich phase 
or the polymer-lean phase separates as the disperse phase from the 
solution. If initial polymer concentration is less than the critical 
solution concentration Vp c, the polymer-rich phase separates as small 
particles suspended in a medium, which is polymer-lean phase, and these 
particles grow by amalgamation. The interstitial space between particles 
gives non-circular pore. 

When vp 0 is larger than Vpc, the polymer-lean phase is separated as 
shown in Figure lb' to k'. The aggregated polymer-lean phase particles 
are themselves circular, smooth pores. Even in this case, stage g' 
should be stable in order to prepare the microporous membrane. These 
steps strongly suggests that circular pores will be found from 
concentrated solution. More quantitative explanation will be presented 
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Coagulation 

Figure 1. Elementary steps in porous membrane 
formation 

in this article especially on generation of critical nuclei and 
growth of pardcle to primary particle. In short, the pore formation 
model is based on the "particle-growth concept", which has its basis on 
the observation of Kamide and Manabe. 1 

THEORETICAL BACKGROUND E 
Critical 
Solution 
Point Cloud 

Point 
Curve 

The generation and growth of polymer 1-

particles by phase separation from T=li 
homogeneous solution is based principally on el--'--"'--'-•-.--=-----~--"lt--l 
the same concepts used to explain the 
condensation of liquid droplets from supper E 
saturated vapours or the formation of ice 
particles from super-cooled liquids. Figure 
2 shows the cloud point curve (full line), 
spinodal curve (broken line) and critical 
solution point (open circle) for 
monodisperse polymer (X-mer; X, molar 
volume ratio of polymer to solvent) / single 
solvent system and Figure 3 shows the 
Gibbs free energy change AGv per unit 
volume at a given temperature TP for X-mer 
/ single sol vent system. Vx < 1 > and Vx < 2 > 
are the polymer volume fractions of the 
polymer-lean and -rich phases in 
equilibrium and Vx < I) sP and Vx 12 > sP are 
spinodal concentrations. In these figures, 
points A and B are two-phase equilibrium 
points and points C and D are spinodal 
points. If the initial polymer 

Vx(l) v~ 

Figure 2. Phase diagram of 
X-mer I solvent system. 

concentration Vx 0 lies at temperature (Tp) v,m v, v,cn 
between A and B1 the two-phase separation 
occurs. When initial polymer concentration Figure 3. Gibbs free 
lies between A and C or between D and B, energy of unit volume. 
the polymer solution can exist as a metastable single phase, from which 
two-phase separation is initiated by formation of nuclei. In other 
words, in homogeneous polymer solutions in the metastable region of the 
phase diagram between cloud point curve and spinodal curve, for example, 
at point G in Figure 2, or point J in Figure 3, critical nuclei are 
formed by "concentration fluctuation" and can grow further in size 
spontaneously. The generation of the precipitated nuclei is always time 
retarded and the nuclei thus formed grow by passing through a potential 
barrier. On the other hand, under the appropriate conditions the 
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J.>recipitation occurs by passing through the critical point is 
instantaneous because of lack in potential barrier. This is spinodal 
decomposition. In this article, the pore formation mechanism is 
explained from the standpoint of nucleation. 

Phase equilibrium of polymer/ solvent system 
Before starting an explanation of 

nucleation, the phase equilibria of polymer~ 
/ single solvent system will be presented. s. 
First, the spinodal curve, the binodal~ 
curve, and the critical solution point of'; 
polymer solutions will be briefly explained~ 
for X-mer / single solvent system. -: t 

The mean molar Gibbs free energy of~ 
mixing of the system, AG, is schematically O _ 

plotted in Figure 4 as a function of the ' ~-~-._-----s----~~ 

polymer concentration and temperature T at 
constant pressure P. In the figure the line 
connecting the points of inflection is the 
spinodal curve. In other words, this is the 
line at which the second differential of 
free energy becomes zero. The line connect-
ing the point Of COntaCt Of the double Point Conuilion 

tangent is the binodal curve. The line Figure 4. Gibbs free 
connecting the energy of mixing points at energy of mixing. 
which the third differential of free energy in concave plane between two 
spinodal branches, is often described as the neutral equilibrium 
condition. The point at which the binodal curve coincides with the 
spinodal curve, is the critical point of the solution at a given 
pressure. At the critical solution point, free energy is a minimum and 
of course the neutral equilibrium condition is satisfied. The critical 
point can be determined as the point at which the spinodal condition and 
the neutral equilibrium condition are concurrently satisfied. 

Thermodynamic interaction parameter between polymer and solvent x, 
is given by eq 1 phenomenologically as a power series of the 
concentration. 3 - 6 

n J 
X = X o (1 + 1PJVp ) · 

J= 
(1) 

Here, Vp is overall polymer conc~ntration, PJ (j=l,···,n), concentration 
dependence parameters and x O 1s divided into two part, temperature 
dependent part and molecular weight dependent part, as eq 2, 

k' 
Xo=Xoo(l+X) 

=«+- ip o) + y,i 0 }{1 + ~: (1-: )}, (2) 

where k' (or k0 ) is the molecular weight dependence parameter, 0, Flory 
temperature, ip O , entropy parameter and Xn, the number average degree 
of polymerization. Chemical potentials of the sol vent Aµ 0 and X1 -mer 
Aµx 1 of the multicomponent polymer/ single solvent system are given by 
these equations, respectively.a-s 

- 1 Aµ 0 =RT{ln(l-vp) + (1- Xn)vp+ X Vp 2 }, (3) 

- 1 
Aµ Xi =RT[ln Vx1 - (X1 -1) +xi (1--)Vp 

Xn . 
k' n p J 

+ X 1 ( 1 - VP) 2 X O O [ ( 1 + -){ 1 + L l ~l {q~-O ( q + 1 ) VP q}} 
Xn J= J+ 

+k'(-1---1-){-1-+1 ~cl ~)}]] (i=l,···,m). (4) 
X1 Xn 1-Vp J=l J+ 1 q=O 1-Vp 
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Here, mis the total number of different molar mass components in the 
polymer sample,~. gas constant.mis always order of from 102 to 10 4 • 

Spinodal curve of multicomponent polymer/ single solvent system is 
given by this determinant, spinodal condition, which is the second 
variable of the Gibbs free energy: 3 

AG11 AG12 AG1m 
jAG'j= AG21 AG22 AG2m =0. (5) 

AGm1 AGm2 AGmm 
Critical solution point is determined by solving the simultaneous 
equation of spinodal condition and neutral equilibrium condition. 
Neutral equilibrium condition is the third variable of the Gibbs free 
energy and is given by eq 6: 3 

a I AG' I a I AG' I a) AG' I 

IAG'' I= =0. (6) 

AGml AGm2 AGmm 
Here, AG1J is the second order differential of the Gibbs free energy 
change of m1x1ng per unit volume AGv with respect to the volume 
fractions of X1-mer and XJ-mer, Vx 1 and Vx.i· AGv and AG1J are expressed 
by following equations, respectively. 3 

m 
AG =V (Alla)+}: V (~) (7) 

v O V0 1=1 Xi X1Vo ' 

AG1J=( a 2AGv >r p (i,j=l,···,m; k*i,j). (8) 
avx1aVxJ , , Vxk 

Here, V0 is the molar volume of the solvent which is assumed to coincide 
with that of repeating unit of the polymer. By substituting the chemical 
potentials (eqs 3 and 4) into eqs 5-8, the following equations are 
finally obtained as spinodal and neutral equilibrium conditions, 
respectively. 3 n 
-X l +-1~ -xoo{l+k'(l+-X1 - XXw)}{2+~1pJ(j+2)vpJ}=0, (9) 

wVp Vp n n J 

l Xz Xoo{l+k'(l+-1-- Xw)}{1 pJj(j+2)VpJ-t}=0. (10) 
(l-vp) 2 (Xwvp) 2 Xn Xn J=l 
When polymer is strictly monodisperse X-mer and molecular weight 
dependence of x -parameter is neglected, both equations easily reduces 
to these equations, respectively, 
- 1-+-1-- X O (2+ 3p1Vx+4p 2Vx 2) =0, (11) 
1-Vx Xvx 

1 1 -X 2 - X o (3p1 +8p2Vp) =0, (12) 
(1-Vx) 2 Vx 
where 1st and 2nd order concentration dependence of x are considered. 
Xo is converted into temperature through use of this relation, 
T= W o O (13) 

Xo+i/Jo-0.5 
The method of determining the cloud point curve of multicomponent 

polymer/ single solvent system have already established in 1984 on the 
basis of the Gibbs two-phase equilibrium conditions, 3 ' 6 

Atto(1J=Aµo<2J, (14) 
Attx1(11=Attx1c21 (i=l,···,m). (15) 

Figure 5 represents some example of calculated cloud point curve 
under the condition of p1 =0.6, p2 =0 and k 0 =0. 3 Molecular weight 
distribution is assumed to follow the Schulz-Zimm type and poly­
molecularity is changed from 1 to 4. Regardless of the polymolecularity 
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of the polymer, cloud poi~t 
curve is highly unsymmetri­
cal with respect to the 
polymer concentration. This 
dissymmetry in cloud point 
curve is well known experi­
mentally and can be theore­
tically explained in terms 
of its large molar volume 
ratio X1 compared to the 
solvent. 

For the strictly mono­
disperse polymer solution 
the cloud point curve should 
be in excellent agreement Figure 5. Cloud point curve of multi-
with binodal curve, in other component polymer/ solvent system. 
words, coexistence curve. The critical point, independently calculated 
by a different procedure from cloud point curve as described and denoted 
by open circle, lies just on the cloud point curve which verifies the 
reliability of the calculation. For the monodisperse polymer, the 
critical point coincides very well with the top of the cloud point 
curve, so called threshould point denoted by closed circle in these 
figures. As the polydispersity of the polymer increases, critical points 
shift to the higher Vp region causing them differ from the threshold 
point significantly. 3 a) 

, Splnodal / 

Generation of critical nuclei (ref. 7) 
1 Curve , 
I ~/ 

Fi8ure 6a and b show the cloud point curve 
(full hne), x O vs. Vx in a and temperature vs. 
Vx in b, spinodal curve (broken line) and 
critical solution point (open circle) for X-mer 
/ single sol vent system. The calculation was 
carried out under the following conditions; 
X=3OOO, p 1 =O.642 and p 2 =O.19O, 0=307.1 and 
1/J O = 0. 27. These parameters were determined for 
polystyrene / cyclohexane system by analyzing 
the critical point data through use of Kamide­
Matsuda method in 1984. 4 The area, surrounded by 
cloud point curve and spinodal curve is the 
metastable region where the critical nuclei are 
formed as previously mentioned. 

0.52: / 
0 I / 

Critical / 

051 \ Solution / 
. to,nt , 

I- C 
10:: 0.04 

~0.08 Nuclei with a radius of ScN are formed by 
thermal fluctuation, which can be regarded as 
concentration fluctuation only and nucleus thus S? 
formed is considered to be in equilibrium with -;::' 
the region immediately surrounded as a sphere •e:= 

. '> 
with a radius of S0 • Consider first the 1so- t') 

thermal process. Evidently, activation energy of 1 
formation of nucleus A¢ is a function of S and '1 
is expressed in the same form as derived for 1 

:tt-r+-)--------~-l 

nucleation from polymer melt, 8 0.3 

A</>(S)= nS 3 Afv+ 4ns 2 u, (l 6) Figure 6. Cloud point 
where Afv is the free energy change of coagu- curve (a,b) and Gibbs 
lation per unit volume, and is defined as the free energy of mixing 
differen~e between the average Gibbs free energy of coexisting phases A 
and B, AG(vx 0 ) and the Gibbs free energy change of mixing per unit 
volume of metastable single phase, AGv(vx 0 ); 

Afv= AG(vx 0 )-AGv (vx 0 ), (17) 
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and a is an interfacial free energy between the nucleus and the 
surrounding space. The coordinates of coexisting phases A and B are 
determined first by applying chemical potentials into the Gibbs two 
phase equilibrium equations, respectively, and average free energy can 
be obtained by use of eq 18 

AG(Vxo) = AGv (Vx<2>) - AGv (Vx < t >) (Vxo-Vx < t >) + AGv(Vx< t >), (18) 
Vx<2> -Vx< t > 

and Afv can be calculated. The radius of critical nuclei ScN is given by 
ScN= - 2a /Afv. When a nucleus formed at a given instant has a radius SN 
larger than ScN, the nucleus will continue to grow spontaneously. By 
substituting ScN into e9 16, the activation energy of formation of 
critical nucleus A¢ cN is written as A¢ cN= (16n /3) ( a 3 /Afv 2). . _ 

Figure 6c and d show AGv and the difference between AGv and AG 
(i.e., -Afv) at the phase separation temperature 297.7K, which was 
converted from x O valu~. AGv vs. Vx curve seems rou~hly linear but the 
difference of AGv and AG has two minimums at coexisting points A and B, 
and two inflection points C and D, called spinodal points. 

RESULTS AND DISCUSSION 

Table I collects the value of Afv, a and ScN which was calculated 
under the condition of polystyrene (X==3OO) / cyclohexane. Sc:N have the 
order of several hundred nm and increase as initial concentration 
increases. Here, interfacial free energy a between polymer-lean and -
rich phases of polystyrene / cyclohexane solution was experimentally 
determined. 

Table I Size of critical 
Vxo Vp(tl Vp(2> 
0.04 0.02 0.2948 
0.055 0.04 0.2443 
0.075 0.06 0.2083 
0.090 0.08 0. 1791 
0.105 0.10 0. 1542 
0. 121 0. 12 0. 1322 

nucleus of 
Afv/J/cm3 

-301 
-66.3 
-26.4 
-4.65 
-0.325 

-6.35xl0- 4 

Figure 7 shows the interfacial free 
energy between air and polystyrene 
solution a O measured by Wilhelmy method 
and plotted against polymer concentra­

polymer/ solvent system. 
a /J/m 2 ScN/nm 
8.O7x1O-s 5.36xlO 2 

5.43x1O-s 1.64xlO3 

3.73x1O-s 2.83xlO 3 

2.42x1O-s 1.O4xlO 4 

1.3Ox1O-s 7.99xlO 4 

2.9ox1O-s 9. 14xlO6 

23 

tion in semi-logarithm scale. 7 From the ~ 22 
initial slope of the plots we can get z 
the experimental equation of a O • If the 'b 
interfacial free energy of the two co- i..,°2l 
existing phase a is assumed to be 0 

approximated by the difference of a 0 
which have the same concentration of co­
existing phases, we can get the 

20 

equation. 10- 10- lCJ" 
a=6.9x1Q- 5 log10VP< 2>. (19) Vp 

Vpct> Figure 7. Surface free energy 
In the calculation of the size of of polystyrene/ cyclohexane. 
critical nuclei this equation was employed. In the previous paper, 7 ScN 
was overestimated because a O of surface-activity system consisting of 
cellulose acetate and water was employed. By use of a 0 of polystyrene/ 
cyclohexane system ScN approaches to the reasonable value, which is 
about 1/2,....,1/3 smaller than the present value. 

It should be emphasized that in this case, although the phase 
equilibrium has not yet been attained over the whole system, phase 
volume ratio of polymer-lean phase to polymer-rich phase, R for the 
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local equilibrium region surrounding each nucleus, i.e., 
R=So 3 -ScN3 So(ti) 3 -SN(ti) 3 (20) 

ScN 3 SN(t1) 3 

is considered to coincide with R for the whole system, defined by: 

R=~= Vx < 2 > -Vx 0
• 

Vc2> Vx 0 -Vxc1l 
(21) 

Here, V c 1 > and V < 2 > are volume of polymer-lean and -rich phases, 
respectively, Vpc 11 and Vpc 21 , the polymer volume fraction of polymer­
lean and polymer-rich phases, respectively and v p O , initial polymer 
volume fraction. 

a)vp121 

Growth of Primary Particle by Diffusion (ref.7) 
The profile of polymer concentration around a 

critical nucleus is demonstrated in Figure 8a. 
Immediately after the generation of nucleus, the 
polymer molecules in the outer phase, based on the b}vp121 

concentration difference Vp 0 -vp c 11 , diffuse into 
the sphere (hatcher area). The number of the 
polymer molecules diffusing through the unit area 
of the sphere surface from the outer phase per 
unit time is given by solving the general equation 
of diffusion. c)vP<2> 

avp =D°'J2v 
at p 

(22) 

Here, D is the diffusion coefficient and t, the 
growing time of nucleus by diffusion and initial 
condition is given as follows: 
vP 0 (S,0)=vP<t> for SN(t 1 )<S<S 0 (t.) (23a) 
vP 0 (S,0)=vP 0 for S>S 0 (ti) (23b) 

We define t=O as the instant of appearance 
of a critical nucleus and the concentration 

t=O 

t=t1(=L>t} 
: ~vp(S, t 1) vp 

s 

s 

s 

s 

J?rofile around the nucleus at t = t I is illustrated Figure 8. Concent-
1n Figure 8b. If we can also assume that the ration profile of 
thermodynamic equilibrium holds even at t = t I growing particle 
between the nucleus and the surrounding sphere, the diffusion of polymer 
molecules from the outer phase into sphere will instantly result in an 
increase in the radius of the nucleus yielding SN(t 1 ) (shadowed area). 
This can be understood as nucleus a) 

~~~nrbrium Wht~twee~he the 1-.. -1.: .-.1. :_.- ___ 1_: .-: -f ::·:·:I 
its surrounding sphere holds even at · · · · · · · · · · · : • ·. • •. 
t = t 2 and the radius of the nucleus · · · · · · · · • · · · • • ·. 
increases from SN(t 1) to SN(t 2). 1• 11 t•t2 t•t3 t•t, t•tp 

Growth rate of nucleus is given by 
following equation, bl 

So(t) (S ) 
as N < t) 1 S <av p , t > 5 2 ds, { 

at vp c2,sN(t) 2 sCN at c24> I 
where SN(t) is the radius of growing .s 
particle at time t. In deriving eq 24, 21 
mass valance equation is used . ., ;'o 

Figure 9 presents the scheme of -c 

nucleation and growth of nuclei by 
diffusion of the whole system. At time 
t 1 some critical nuclei are generated 

t•t1(••1) 

M2(•2•t) 

t•t3(•3•t) 

l•t,(•i•I 

I 12 3 11 
I (sec) 

\•Ip 

NcN(oo) "E 

l 
z 

in the system. As the nucleus grows in 
this manner, the surrounding polymer­
lean phase sphere with a radius of S0 

Figure 9. Scheme of nuclea­
tion and growth of particles. 
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also continues to become bigger. During the growth of the nucleus, the 
outer homogeneous phase will disappear completely due to consumption by 
expansion of the polymer-lean phase sphere and generation of critical 
nuclei. In other words, growing polymer-rich particles with various size 
including critical nuclei are distributed in polymer-lean phase space at 
time tr. All the nuclei at this instant are conventionally defrned as 
primary particles. Moreover, nucleation will stop at tr because the 
phase equilibrium of total system is realized. 

We assume that nucleation is always absolutely sporadic and 
spinodal decomposition is never predominant, then the rate of production 
of critical nuclei per unit volume is given by eq 25, 
dNcN(t) k exp(-~) (25) 

dt CN k8 T ' 
where 
k =k' {1 _NCN(t) }. (26) 

CN CN NcN(oo) 
Here, NcN(t) and NcN(oo) is the number of critical nuclei per unit 
volume at time t and infinite time, k' cN is the rate constant, kn, 
Boltzmann constant. The total volume of S0 spheres including growing 
particles at t, V0 (t) is expressed by eq 27, 7 

Vo (t) =st dNcN ( 'C ) • 4 7l So (t- 'C ) 3d 'C • NCN(w)a2,1018 N(N(oo)a2,1018 b) lO 
o d.: 3 (27) """""'irn' ,,"0 s@17 ,., o.s 

06 2x10 27 

At the instant when the phase · 0-6 

equilibrium is attained, V0 (t) = 1 1,1021 0 4 

holds. In other words, in order to ;::~! 0.2 

estimate tr, this integral , 1'~; o 
equation should be solved. Since kCN= 2x1ois o.e 
dNcN/dt can be evaluated from /;~~~',, o.6 f 
NcN(oo), k'cN, A</JcN and T, S0 /2,1017 04'3: 
together with SN can be calculated /n°:110)6 ;,s 020" 
and after all tr can be , 2,1 , x O & 
determined. Here 7 NcN (oo) should NcNlw)e2, 10 ' 0 f) z 

k(N=Sx10 29 0.8 
be below the number of polymer 11,10" 0_6 
molecules per unit volume. 7 s,10" 

Figure 10 shows dNcN (t) /dt 1 1,10" 0·4 

(in a, c, e) and size distribution _ rt11
o21 2,10" 0·2 

of the primary particles at tr, o 50 100 150 200 o 50 100 150 200 250 
Npp(S,tr) (in b, d, f), normalized t(nsec) S1(nrn) 

by NcN(oo). The mean particle size Figure 10. Nucleation rate and 
shifts to smaller S1 side with an size distribution of primary 
increase in NcN(oo). Extremely particle. 
sharp distribution of the primary particles is obtained for larger k'cN, 
in other words, the primary particles are uniform in size. 

Growth of secondary particle by amalgamation (ref. 9) 
Likewise, we can consider that there are at the initial stage two 

elementary steps. The nucleation and growth of nuclei by diffusion, 
which occur concurrently until t=tr. We define the particles at that 
instant tr as primary particle. 

The primary particles collide with each other to yield larger 
particles which are nominated as growing particles. The growth of the 
~rimary particle to the secondary particle can be theoretically 
rnvestigated by using a particle Monte-Carlo simulation methods to 
describe the following three steps. This is the particle simulation 
approach. 

In first step, the primary particles is generated at random 
positions in a hypothetical space. This moment is defined as t=O. t is 
the time of growth of growing particle by amalgamation. Assume that the 
primary particle has the same radius S1 • The total number of particles 
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NPP are determined from the phase volume ratio R and SI written as, 
Npp=1/{(4/3)nS, 3 (R+1)}. Here, we consider only the case where the 
primary particles are the polymer-rich phase. 

In second step, a value for the velocity displacement of the 
particle is given in advance and the positions of all particles is 
determined randomly, after unit period of time. 

In third step, the distance between the particles are measured. In 
the. case_ when the dis~ance ?etween the center of gravity of the two 
arbitrarily chosen particles is less than the summation of the radius of 
each particle, these two particles are considered to have collided, 
yielding a single particle by amalgamation.a 

. The ~o~ing velocity of the particles can be_ estimated by (1) energy 
equi -partition law or (2) the mean square displacement of brownian 
movement. In case (1) the growth rate seems too large and displacement 
of brownian movement seems appropriate.a 5,----------------, 

The effects of the initial polymer 
concentration v p O and of the two phase 
volume ratio R on the growth rate of 
particles created in phase separation 
process is discussed (Figure 11a). The 
growth particles occurs in the metastable 
region. The ratio of the mean radius of 

4 

3 

2 

the ~rowing particles S to that of primary <fl oi----~---""7----1 

particles S1 , S/S 1 for a series of solu-
,lfl 

tions are evaluated at points a 0 , b0 , c0 

and d0 • In this case all points are 
located in vicinity to the cloud point 
curve, corresponding to R= 100. Inspection 

10 

5 of Figure 1 la indicates that the growth 
rate of the particles is larger for 
smaller initial polymer concentration vp 0 • 

That is, when R is the same, the particle o 2 4 

50 

6 

growth rate is determined by vr <, > and is tx10 2(sec) 

larger as Vp<t> is smaller. This can be Figure 11. Average growing 
reasonably explained in the following rate of particles. 
manner. The mean square displacement of the particles with the same 
radius is inversely proportional to viscosity of polymer-lean phase TJ 
and the mean square displacement is larger, accordingly, the frequency 
of collision is larger in less viscous media. In addition, the 
difference in the mean particle size generated at points from a 0 to d0 

becomes less remarkable, approaching to an asymptotic value. The 
viscosity of the solution influences the particle growth rate, 
especially at the initial stage and the time necessary to attain an 
asymptotic value, which does not depend on TJ • 

Figure 1 lb shows particle growth rate of the solutions having 
various Rand constant Vp<t>· The particle grows faster for smaller R. 
When R is smaller, the portion of volumes occupied by the primary 
particles is larger, resulting in a rapid increase of the frequency of 
particle-particle collision. 

In the practical membrane casting process, much more complicated 
systems such as polymer and ternary solvents mixture system are often 
employed. It should be noted that for four component system the critical 
point is not a single point. Critical point becomes critical point curve 
and spinodal curve and cloud point curve become spinodal surface and 
cloud point surface, respectively, in the theoretical point of view. 2 

Figure 12 shows the critical solution I!.Qint curve of cuprammonium 
cellulose/ a4.:_acetone system. Here, BC is the acetone axis, cD, 
ammonia axis, DB, water axis and DA is the axis of cellulose plus 
copper. The distance of cloud point from the phase separation point can 
be assumed to be equal with each other. The surface enclosed by the 
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full line is a deduced cloud 
point curve surface and the 
surface enclosed by the 
broken line is a deduced 
spinodal curve surface. The 
chain line is a critical 
point curve. Figure 12 shows 
the existence of two two­
phase separation regions, 
resulting in cosolvency. 

In conclusion, ( 1) 

S. MATSUDA 

Cloud 
Point 
Curve 
Surface 

Nucleation and growth of 
particle by diffusion were 
systematically studied on 
the basis of the thermo­
dynamics of phase separation 
and the time of formation of 
primary particle tp was 
determined. (2) Formation of 
secondary particle by 
cellulose/ aq. acetone 
solution. amalgamation was Figure 12. Phase diagram of cuprammonium 
tried to explain by use of cellulose/ aq. acetone solution. 
the particle Monte-Carlo simulation approach. (3) Critical point of 
casting solution was determined. 

The particle growth concepts involves the studies of the 
theoretical and computer experimental pore size distribution of the 
membrane using the lattice model of secondary particle, which were not 
presented in this paper. Summary of pore size distribution has also been 
published in the book previously mentioned. 2 
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