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ABSTRACT: The Lattice Fluid theory of polymer solutions, as reformulated recently, is now 

extended to polydisperse polymer-solvent systems. Analytical expressions are given for all basic 

thermodynamic quantities of the mixture as well as for the spinodals and the critical points. The 

theory is tested against experimental data on volumes of mixing, Flory-Huggins x interaction 

parameters, spinodal curves and critical points for a number of mixtures of well characterized 

polydisperse polystyrene samples with cyclohexane. Comparison has also been made with 

experimental critical behavior of polydisperse polymer-monodisperse polymer mixtures. The 

agreement between theory and experiment is satisfactory. Advantages and limitations of the theory 
are discussed. 
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The effect of polydispersity on the thermo­
dynamic behavior of polymer solutions have 
long been the subject of extensive investi­
gations.1 - 4 In fact any complete thermody­
namic theory of polymer systems cannot neg­
lect the molecular weight heterogeneity of the 
polymer samples especially when applied to 
the phase behavior of these systems. In recent 
years the thermodynamic properties of poly­
mer solutions are commonly interpreted with 
the so-called equation-of-state theories such as 
the new Flory theory5 and the Lattice-Fluid 
(LF) theory of Sanchez and Lacombe.6 Both 
of these theories have been proved quite suc­
cessful in explaining many facets of the ther­
modynamic behavior of polymer solutions in 
terms of their "free-volume" properties or 
"equation-of-state" properties, and the facets 
of which the original well known Flory­
Huggins theory1 failed to explain. Although 

* To whom correspondence should be addressed. 

the LF theory of Sanchez and Lacombe6 is less 
quantitative compared to the new Flory 
theory5 it has one significant advantage over 
the latter,5 namely, it can be applied to the 
vapor-liquid transition. 

In a recent paper7 we reformulated the LF 
theory while maintaining essentially its orig­
inal simplicity. The reformulated LF theory has 
been proved equally, if not more, successful 
than the new Flory theory. It became, thus, the 
frame for further extensions and applications 
to polymer-gas systems,8 random copolymer 
mixtures9 ·10 , glass transitions of polymer mix­
tures, 11 associated solutions12 and to ther­
modynamics of contributions of functional 
groups. 13 

The present paper is the first in a series of 
paper in which the LF theory7 is extended to 
systems containing polydisperse polymers. It 
specifically deals with polydisperse polymer-
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solvent and polydisperse polymer-monodis­
perse polymer systems and presents the com­
plete formalism for investigations of the ther­
modynamic behavior of these systems. It is 
subsequently applied to a typical polydis­
perse polymer-solvent system and a typical 
polydisperse polymer-monodisperse polymer 
system. 

THEORY 

In this section we will present the essentials 
of the Lattice-Fluid formalism pertinent to the 
case of polydisperse polymer-solvent systems. 
The development will follow closely the cor­
responding development of monodisperse 
polymer-solvent systems. 7 Consider, then, a 
mixture of n1 molecules of a solvent, each 
consisting of r 1 segments, with N 2 molecules 
of a polydisperse polymer at temperature T 
and external pressure P. The polydisperse 
polymer sample consists of n2 molecules of a 
r2-mer, n3 molecules of a r3-mer, · · ·, nc mol­
ecules of a re-mer such that 

N2=n2+n3+ ... +nc (1) 

All these molecules are arranged on a quasi­
lattice of N, sites, n0 of which are empty. The 
LF partition function in the pressure ensemble 
and in its maximum term approximation may 
be written as 

Z(T, P)=(_!_)"o [I (Wm)"m exp[-(E+PV)] 
fo m=l fm kT 

(2) 

where the site fractions J; are defined by 

f;=':i 
r 

(3) 

wm in eq 2 is the number of configurations 
available to an rm-mer in the close-packed pure 
state. 

According to the LF theory each pure ri-mer 
is characterized by three scaling constants Tt, 
Pt ,Pi for the temperature, pressure and de­
nsity respectively. If M; is the molar mass, the 
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hard core volume per segment, vt, and the 
specific hard core volume v;p.i are related by 

M. 
r.v:l'=-'=M.v* . 

l l * , sp,t 
P; 

(4) 

If s; is the average number of external inter­
molecular contacts of each segment of the r;­
mer an interaction energy per segment, £{, 
can be defined as 

S· 
r,*=__.!._£.=P*v*=k·T* (5) , 2 , i i 1 

£; being the interaction energy for the i-i 
contact. 

The average close-packed volume per seg­
ment in the mixture is assumed to be given by7 

v* =LL <fJ/PiV0 (6) 
i j 

(7) 

(;i being a binary volume parameter (equal to 
one for hard spheres). The segment fraction, 
<p;, is defined by 

r-n- r-n-
<p ·=-'-'---'-' 

' " -LJini rN 
(8) 

N being the total number of molecules in the 
system (N = Lin), while the surface fraction, 
9;, is given by 

(9) 

The total volume, V, of the system is given by 

V = N,v* = rNvv* 

where ii is the reduced volume 

_ V l p* 
V=-=-=-

v* j5 P 

( 10) 

(11) 

v being the volume per segment and p the 
density of the system. The potential energy, E, 
of the system is given by 7 
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-E=rNps* (12) 

where 

s*= '[_cp;st- '[_ '[_ cp;9iTX;i (13) 
i i j>i 

and 

kT 
(14) 

(15) 

(;i being a binary interaction parameter ( equal 
to one when Berthelot's rule holds). 

Scaling constants for the mixture can be 
defined in an entirely analogous manner to 
that of pure components, or 

s*=P*v*=kT* 

and the reduced quantities by 

- p 
P=­

P* 
(16) 

With the above definitions the LF equation of 
state is given by6 ·7 

Pv [ ln(l - p) p ] 
rT=l-r 1+ p + f (17) 

and the chemical potential of component m in 
the mixture is given by 

µm = In cpm + 1-.!__I!!__+ ln L+ r m(v-1) ln(l - p) 
kT r Wm 

(18) 

The corresponding expression for the 
chemical potential of pure component mis 
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(19) 

On the basis of eq 10 the volume of mixing, 
dVM, is given by 

Using eq 12 the heat of mixing is given by 

= rN [ 2: cp;(J;Sf- ps* ]+ P LI VM (21) 

All the above equations are quite general 
and are applicable to any multicomponent 
mixture. They will now be applied to the spe­
cial case of our polydisperse polymer-solvent 
system. A number of simplifications are pos­
sible in this case. Let us, first, define two over­
all fractions for the polydisperse polymer, the 
overall segment fraction, <P2 , and the overall 
surface fraction, 0 2 , given by 

(22) 
i> 1 i> 1 

In order to keep manageable the complexity of 
the formalism we further assume that all 
polymer molecules, regardless of their size, are 
characterized by the same scaling constants 
vf ,sf, Tf ,Pf ,Pi, v:P,2 and the same number of 
external contacts per segment, s2 . In the po­
lymer sample we may define a number average, 
a weight-average and a z-average number of 
segments given respectively by 

'[_ niri 
MlN j> 1 

Nz PiVi 
(23) 

'[_ nirJ I. cph Mzw j> 1 j>1 

'[_ niri <P2 Pi'Vi' 
(24) 

j> 1 
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(25) 

The Flory-Huggins x interaction param­
eter1·2·5 can be defined in our case by 

µ1-µ~=l +(1- r11Ji)(J +xrr2 
kT n rr 1 _ v * 2 2 

r2N 2 
(26) 

(29) 

where 

[ a ( a9 ) ] gj;= a. a. 
<{JJ <(}, T,P,q,k; t,i T.P,o/m; t,J 

(30) 

where the volume fractions rr; are given by and 

<pl IJj 
(27) 

Using eq 18 and 19 and the above simplifi­
cations we obtain 

(28) 

If an entropic correction q12 term7 need be 
used, the fourth term in the previous equation 
should read r1 (pX12 +q12 )B/. If we further 
assume that the reduced densities pi for the 
pi.Ire constituents of the polymer sample are 

the same (or, equivalently rr-+oo for all}> 1), 
eq 20 and 21 as well as the equation for 
the heat of mixing at infinite dilution, ,1,,Hif', 

reduce to the corresponding expressions for 
the case of solvent-monodisperse polymer 
system. 7 

Phase Stability 
The condition for the spinodal4 in our sys­

tem may be written as 
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(31) 

G being the Gibbs free energy of the system 
( G = - k TinZ). By using the simplifying as­
sumptions reported previously eq 29 reduces 
to 

where 

Q2 =/3P*Tt/12 (33) 

.,, -, Pv 1 
'l'2=PA2+kTD2+--;; (34) 

(35) 

(36) 

and 

/JP* - ( 1 1) Tv -_~+~ -2 
v-1 r 

(37) 

At the critical point the following condition 
should be satisfied in addition to eq 29 
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Y= 932 (38) 

9c2 

With the previous simplifying assumptions 
eq 38 reduces to 

1 f2Z 6 ,91 01 {(82 ,91) 
cpfr1 <PirL + cp1 <P~ <P2 cp1 

X (PX12+qd- p2Q2X 12} 

+ p2Qi {(-;--~)-4pA2 
r2N r1 

( 2p2 1 )} 
-Qz T-(v-1)2 

-2 :~2 {3(vf + vf-2vf2)- pQ2D2 } =0 

(39) 

APPLICATIONS 

In this section we will apply the above 
formalism, first, to a typical example of a 
polydisperse polymer-solvent system, namely, 
the polystyrene---cyclohexane mixture. This 
particular system became the subject of nu­
merous intensive investigations over many 
years3 ·14 - 21 resulting in-abundantly confirmed 
extensive experimental data. Scholte20 has re­
ported spinodal data for polystyrene in cyclo­
hexane from light scattering measurements 
and for three well characterized polydisperse 
polymer samples. Koningsveld et al. 19 on the 
other hand have reported experimental data 
on critical temperatures and critical compo­
sitions for a number of mixtures of cyclo­
hexane with polystyrene samples of a wide va­
riety of molecular weight distributions all pro­
duced by mixing proprietary sharp fractions of 
polystyrene. In what follows the present theory 
will be applied to these two sets of data. 
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In order to apply the theory to the system of 
Cyclohexane (l )-Polystyrene (2) we need first 
the LF scaling constants for the pure com­
ponents. The LF constants have been obtained 
from the volumetric properties of pure com­
pounds at 25°C reported by Hocker et al. 18 ·22 

and are: Tt =502K, Pt =417MPa, Pi =886 
kgm- 3 ; Tf=632K, Pf=466MPa and pf= 
1139kgm- 3 • Following Saeki et al.21 the val­
ue 1.68 was assigned to the ratio si/s2 • The 
two adjustable binary parameters ( 12 and q12 

of the theory have been determined from a 
least-square fit of the above two sets of 
data. 19 •20 The values of the binary parameters 
so obtained are: ( 12 = 1.0349 and q12 = -0.058 
both dimensionless. In Table I are shown the 
experimental 19 and the calculated critical tem­
peratures and critical compositions with both 
the present theory and the five-parameter 
theory of Kennedy et al. 3 As observed the 
performance of the present theory is gratify­
ing. In Figure 1 are shown experimental20 and 
calculated spinodals for three systems of dif­
ferent molecular weight and molecular weight 
distribution polystyrenes. Again the perfor­
mance of the theory is quite satisfactory. In the 
same Figure are shown experimental27 and 
calculated spinodals (dashed curves a and 
b) for two heterodisperse Polystyrene-Cyclo­
hexane systems. Molecular weight averages 
of the two Polystyrene samples are as fol­
lowing: curve a: Mn= 54000, M w = 110000, 
Mz= 173000; curve b: M"=45000, Mw= 
165000, Mz=432000. The experimental data 
are reproduced rather satisfactorily with the 
above set of binary parameters. 

Using the above binary parameters ((12 and 
q12) we have calculated the predictions of the 
theory for the x interaction parameter at 25°C. 
In Figure 2 are shown the experimental and 
predicted x interaction parameters. As observ­
ed experiment and theory are in very good 
agreement. Volumes of mixing over extended 
ranges of composition can be reproduced eas­
ily by the LF model7 by slightly adjusting the 
volume parameter , 12 . In the present case the 
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Table I. Critical temperatures and critical compositions for the system cyclohexane(I )-polystyrene(2) 

Experimental Calculated 

Kennedy et al. 3 This work 
M. x 10- 3 Mwx 10- 3 M=x 10- 3 T)K Mc, 

Tc/K we, Tc/K we, 

27 35.4 45.5 284.6 0.179 287.9 0.196 

49 51 55 288.9 0.146 286.5 0.216 290.3 0.153 

55 61.5 70.5 290.5 0.143 289.0 0.159 291.4 0.143 

91 93 96 293.7 0.117 290.3 0.169 293.8 0.110 

154 166 181 296.6 0.099 293.1 0.125 296.5 0.083 

200 286 438 298.7 0.095 296.4 0.119 298.5 0.073 

210 346 550 300.2 0.092 297.8 0.174 299.2 0.068 

375 394 423 300.7 0.070 299.6 0.090 299.8 0.052 

490 527 593 301.2 0.064 300.3 0.089 300.7 0.046 
1250 1500 1700 303.2 0.042 302.0 0.065 303.2 0.027 

300 

280~----'-----,....----'------1 
OD Q2 W 0.4 

2 

Figure 1. Experimental20 and calculated spinodals (sol­
id curves) for the system cyclohexane(l)-polystyrene(2) 
vs. the weight fraction of polystyrene. Circles are for 
M.=49000; squares for M.= 154000 and triangles for 
M. = 435000. Filled circles and rectangles are experimen­

tal data of Derham et al. 27 Corresponding dashed curves 
a and b are calculated as explained in the text. 

volumes of mixing reported by Hocker et al. 18 

are reproduced to within experimental error by 
setting ~12 = 1.0049. 

The critical points reported by Koningsveld 
et al. 19 and used in this work are of the UCST 
type (upper critical solution temperature). In 
addition to UCST behavior the cyclohexane­
polystyrene system exhibits also the common 
LCST behavior (lower critical solution tem­
perature). Critical temperatures of this latter 
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1. 5 

. 

1.0 ., 
• 

10 

Figure 2. The reduced residual chemical potential x for 
the system cyclohexane(I )-polystyrene(2). The solid 
curve is predicted by the present theory. Open circles 
are from osmotic pressure measurements of Palmen23 at 
26"C. Filled circles represent vapor pressure measure­
ments of Schmoll and Jenckel24 at 25°C. Triangles show 
vapor pressure results of Krigbaum and Geymer25 at 
24°C and squares indicate values of Scholte26 obtained 
by equilibrium ultracentrifugation at 30°C. a2 is the hard 
core volume fraction of polystyrene.7 

type ranging from 180°C to 220°c have been 
reported in the literature. 14 - 17 · 28 The present 
model does predict a LCST for our system. It 
is not, however, expected that the pure com­
ponent parameters and the binary parameters 
which have been determined at about 300 K to 
be appropriate at 500 K. On the basis of the 
volumetric properties reported by Hocker et 

al. 18 the following pure component LF pa-
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Table II. LCST's for the system cyclohexane(l)­
polystyrene(2) 

Experimental 17, 28 Calculated 

M.,x 10-4 T"/K T"/K 

3.70 510.9 508.3 

9.72 502.1 500.5 
20.0 496.9 496.6 
40.0 494.7 493.9 
67.0 491.7 492.4 

270 488.6 489.9 

333 488.2 489.7 

220 

180 

140 

100 
op 0,5 1.0 

Figure 3. Influence of polydispersity on the phase be­
havior in the system PVME(l)-polydisperse poly­
styrene(2). Circles are experimental cloud points29 of a 
mixture 50 wt% in polystyrene. Solid curve is the cor­
responding calculated spinodal. w; is the weight frac­
tion of constituent a in the polydisperse polystyrene 
sample. 

rameters have been obtained at 200°C: 
Tf=592K, Pf =384MPa, pf=815kgm- 3 ; 

Tf=806K, Pf=412MPa, pf=l08lkgm- 3 • 

With these pure component parameters and 
the same set of binary parameters we calcu­
lated the LCST's for our system. Comparison 
with experiment17 •28 is made in Table II. As 
observed the performance of the model 1s 
again quite satisfactory. 

The formalism presented in this work is 
equally valid to the case of monodisperse 
polymer( I )-polydisperse polymer(2) systems. 
It is worth comparing, then, our model with 
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experimental data pertinent to this type of 
systems. Nishi and Kwei29 have reported ex­
perimental cloudpoints for mixtures of mono­
disperse Poly(vinyl methyl ether) (PVME) 
(1)-polydisperse Polystyrene (2) 50% wt. in 
Polystyrene. Polystyrene samples were ob­
tained by mixing two monodisperse samples a 
(M = 10000) and b (M = I 10000). In Figure 3 
are compared the experimental data with the 
calculated spinodals for mixtures 50 %wt in 
Polystyrene. Pure component parameters and 
binary parameters for this system have been 
obtained from our previous work. 7 The trend 
of LCST with the polydispersity of the 
Polystyrene sample is well reproduced by the 
present model. 

DISCUSSION AND CONCLUSIONS 

Inspite the satisfactory performances report­
ed in the previous section the LF model has 
inherent limitations as any other similar free­
volume model for polymer solutions. The 
oversimplistic approach of the present work 
(pj the same for all pure constituents of the 
polydisperse polymer or rr-> oo for all j > 1) is 
not expected to hold for highly polydisperse 
polymer-solvent systems. Derham et al. 27 and 
Scholte30 have conducted a series of carefull 
experimental pulse induced critical scattering 
measurements for highly polydisperse Poly­
styrene-Cyclohexane systems. Scholte's Poly­
styrene samples were characterized by the 
same Mw (100000) but with an Mn ranging 
from 21600 to 70000. In a temperature vs. 
composition diagram the experimental spino­
dal curves are departing from each other. In 
the studied composition range the spinodals 
for the two extreme Mn values have shown a 
maximum deviation of ca. 1. 7 degrees centi­
grade. The present model, when using the pure 
component and binary parameters of the pre­
vious section, calculates a maximum deviation 
of only 0.3 degrees centigrade in the same 
composition range. Agreement between theory 
and experiment can be reached by slightly 
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changing the binary parameter ( 12 as follow­
ing: For the samples with Mn equal to 70000, 
38000 and 21600, ( 12 must be equal to 1.03487, 
1.03500 and 1.03505 respectively. These 
changes in ( 12 correspond to small changes 
in X12 which can easily by obtained by changes 
in TT· of pure polymer by a few degrees centi­
grade or equivalently by a small change in the 
thermal expansion coefficient of the poly­
mer. 31 Unfortunately the volumetric proper­
ties of the different polydisperse Polystyrene 
samples, from which one could get their char­
acteristic LF constants, are not available. 

The change of (12 (or X12) with Mn, al­
though successful, is essentially a rather empir­
ical approach. Other more fundamental ap­
proaches such as the group-contribution ap­
proach 13 may be applied to polydisperse sys­
tems and may lead to a formalism with 
manageable complexity. Such an approach, 
however, can be useful only after the establish­
ment of a rich database with the characteristic 
group and intergroup parameters. 

In any case, and because of its simplicity, the 
present model may form the basis for more 
refined treatments of the phase behavior 
(UCST, LCST, liquid-vapor transition) of 
polymer solutions. 
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