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ABSTRACT: Shear moduli are measured by the reflection method for many polymer-toluene 
solutions. The results have good agreement with theoretical values by Rouse and Lamb. 
Longitudinal velocity and absorption are measured for poly(vinylisobuthylether) solution in 
toluene by the interferometric method. Comparing both moduli, it is found that the ratio of the 
dynamic volume viscosity to the dynamic shear one is 20-40. The phenomena are discussed on the 
basis of several theories and found to be well described by the concentration fluctuation theory by 
V. P. Romanov and V. A. Solove'ev. 
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Recently, the relaxation properties of longi
tudinal waves of relatively dilute solutions in 
the 100 MHz region have been studied by 
many scientists, because the rate process for an 
interaction between solution and solvent lie in 
this frequency range. However, data of trans
verse wave have not been reported, owing to 
difficulty of measurement. To avoid difficulty 
in the transverse wave, the reflecting method is 
used, counting as many pulsed echoes as pos
sible. The method is able to measure the real 
part of shear impedance, pv/2 , where p is the 
density of sample and v/ is the real part of the 
complex shear velocity. The measured values 
of pv/2 are compared with Rouse's theory, to 
test its validity at very high frequencies. The 
measurement is conducted on toluene solu
tion of polybutene (HV-1900), poly(vinyl
isobuthylether) (J-30) and polystyrene (PS). 
The longitudinal velocity and absorption are 
also measured for J-30, indicating that the 
ratio of the observed absorption to the clas
sical Stokes-Kirchhoff loss is 20-40. Since 
the classical theory considers only the shear 

viscosity, a total viscous contribution indicat
ing the effects arising from the volume vis
cosity '7, and shear viscosity '1s to ultrasonic 
absorption must be taken into account. In the 
case of structural relaxation, the ratio '1vl'1, is 
essentially temperature independent and rarely 
higher than 10 or less than 0.5. The theory has 
been applied to associated liquids such as 
water and various alcohols. 1 On the other 
hand, in the case of nonassociated liquids, the 
ratio '7vl'7s is often very high ( > 20). The 
phenomena have been successfully interpreted 
in terms of the thermal relaxation mechanism, 
which is due to the time lag for transition of 
energy from the transitional freedom of mole
cules to the internal freedom, vibration and 
rotation. However, there are some difficulties 
in application of the theory to the present 
results; 1) the incremental specific heat JCP 
derived from the measurement is larger than 
the theoretical value estimated from thermal 
relaxation mechanism; 2) the thermal rela
xation theory is only valid for a pure liquid. 
Bauer2 linearly extrapolated JCP in 5-20% 
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solution into the pure liquid state and com
pared it with Shottky's function. The con
sistency has not appeared in the present data 
obtained by the difference of losses between 
solution and solvent directly; 3) the spectra of 
the absorption per wavelength are broad, in
dicating the presence of the cooperative 
phenomena.4 This type of cooperation is in 
contrast to the thermal relaxation mechanism 
which should show a single relaxation,3 be
cause it arises from the internal freedom of 
rotation independent of the cooperative mo
tion in the relatively dilute state solution. 

Here, a new analysis for the excess absorp
tion is proposed, following concentration 
fluctuation theory predicted by Romanov and 
Solov'ev.5 This approach affords a better 
understanding of the observed phenomena. 

A necessary consequence of the random 
motion of the molecules is that the number of 
molecules per unit volume, in any volume 
element, is not at every instance equal to its 
average value but instead fluctuates about this 
average. The theory of concentration fluc
tuation in a gas was first developed by 
Smoluchowski in 1908 and found to be true by 
the explanation of blue sky with light scatter
ing. It was found that the fluctuation theory 
held also for colloidal suspensions, for which 
Svedberg observed particles directly with a 
microscope in 1912. Yucks and Lisnyanskii 
postulated that sound absorption of solutions, 
like light scattering, is related to concentration 
fluctuations, in 1962. Remanov and Solov'ev 
calculated the acoustic absorption due to fluc
tuations, molar enthalpy Hand molar volume 
V to depend on mean fluctuation. When we 
apply an ultrasonic sound wave to the speci
men, adiabatic compression and expansion 
arise in it. Variation in the pressure p and 
temperature T in the sound wave alters the 
magnitude of fluctuation, and a new distribu
tion is established by diffusion. This phenom
ena is a relaxation process, where the time 
lag accompanied by diffusion causes sound 
absorption of solutions. 
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EXPERIMENT AL 

The reflection method is used to determine 
the real part of pv/2 • A shear impedance cell is 
similar to the one constructed by Clark and 
Litovitz.6 A 2-cm-diam. 2-cm-long AC-cut 
crystalline quartz rod was used in frequencies 
of 8.6, 20, 60, and 100 MHz. This method, in 
which real and imaginary part of rigidity can
not be obtained directly, has the advantage of 
easy treatment. Further, it has no loss of 
contact between the transducer and quartz 
rod, so that one can measure over fifty or more 
echos and determine a low value of pv/2 in 
solution state. Following the theory by 
Mason 7 and Piccirelli and Litovitz,4 the value 
pv/2 is expressed by 

pv/2 = (Z// p){tanh[Dw(T)/40 loge]l2 

(I) 

where p is the density of sample, v_' is the real 
part of the complex shear velocity, Zq 
(=8.78x 105 gcm- 2 s- 1) is the shear imped
ance of AC cut quartz and Dw(T) is the 
differences between the losses, expressed in 
decibels per echo, when the quartz is termi
nated in the liquid and then in air at the same 
temperature. The amplitude in db versus num
ber of echo is shown in Figure 1 as an example. 
The least square fit, indicated in the solid line, 
determins Dw( T). 

The usual interferometric technique8 was 
used to measure the longitudinal wave velocity 
and absorption at frequencies of 1, 3, 5, 20, 60, 
100, 140, and 180 MHz. 

Viscosities are measured by a Cannon 
Fenske viscometer. 
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Figure 1. Example of the amplitude in db versus the 
number of echos. 
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Table I. Molecular weights of samples 

Sample MW MwfM. za Mb 
0 

Polybutene 
2350 2.1 42 56 

(HV-1900) 
Poly(vinylisobutylether) 

5700 2.2 57 100 
(J-30) 

Polystyrene 
10000 1.06 95 105 

(P.S.) 

• Z, degree of polymerization; Nq, q=5. 
b M0 , molecular weight of monomer. 

Volume expansion coefficient is measured 
by a picnometer modified by the author. 

The molecular characteristics of the samples 
are listed in Table I. The distribution curves of 
molecular weight of HV-1900 and J-30 are 
obtained by gel permeation chromatograph. 

RESULTS AND ANALYSIS 

a) Shear Moduli 
The values of pv/2 versus frequency are 

shown in Figure 2. For the monodisperse in 
case of PS, the theoretical curve is derived 
from Rouse's theory,9 in which real and imag
inary parts of rigidity are, respectively, repre
sented by 

CRT N (wr )2 
Gi=-- L P )2' 

M p= 1 1 +(wrP. 
(2) 

G _ CRT wrP 
2- M l+(wr )2 +w1J.' 

p-1 p 

(3) 

where C is the concentration (g cm - 3), R is the 
gas constant, Tis the absolute temperature, M 
is the molecular weight, w is the angular 
frequency (radian), Xp is the relaxation time of 
the pth mode of motion, and '1s is the viscosity 
of solvent. The value of 'P is given by 

where p = I, 2, · · ·, N, N is the number of seg
ment, '1 is the static viscosity of solution, and 
'7 - '1s is the contribution of polymer to the 
viscosity of the solution in steady flow. When 
the Rouse mode number N is large, 

6 M(IJ - '1.) 
r =------

P n2p2 CRT 

6 M(1J-1J.) 
r 1 = n2 _C_R_T_. 

(5) 

(6) 

For HV-1900 and J-30 with a most probable 
distribution of molecular weights (M w! M" = 2), 
the following relations10 are used. 

- CRT N loo (wr1)2 µ4/p4 
G1 .-~ p~I Jo 1 +(wr1)2µ4/p4 exp( - µ)dµ' 

- CRT N loo wr1µ2/p2 
G2--M L 1 ( )2 4/ 4 

p=1 o + wr1 µ p 

(7) 

exp( - µ)dµ + WIJ. , (8) 

where µ=M/Mn and r 1 =31JMn/(n2 CRT). The 
Rouse mode number N is given by the relation 
Nq=Z, where q is the number of monomer 
units in a segment and Z ( = M/ M0 ) is the 
degree of polymerization. The values of GI and 
G2 are estimated from N = 11 and q= 5 in eq 7 
and 8. The value of Nin the eq 2, 3, 7, and 8 is 
estimated as 11, with q = 5 as obtained from 
the results of oligostyrene and oligobutene in 
previous papers. 11 •12 Knowing G1 and G2 , 

pv/2 is calculated by 

·In Figure 2, the solid lines show the composit 
values of eq 2 and 3; the dotted lines indicate 
those of eq 7 and 8. The difference between 
mono and poly disperse systems was found to 

1 M(IJ - '1.) have little effect on the value of pv/2 in this 
r = ] , high frequency region with respect to a dilute 

P sin2 [ pn CRT 1 solution. Regardless of differencies in mo-
2(N + 1) p~l sin2 [pn/2(N + 1)] lecular weights (cf, Figure 2a and 2b), con-
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(4) centration (cf, Figure 2b and 2c), temperature 
(cf, Figures 2b and 2e), and distribution of 
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J-30, toluene 5 g/100 ml 3°C 
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Figure 2, The values of pv,'2 versus frequency of (a) 
HV-1900, toluene (5g/100ml) at 23°C, (b) J-30, toluene 
(5 g/100 ml) at 23°C, (c) J-30, toluene (10 g/100 ml) at" 
23°C, (d) P.S. (10,000), toluene (5 g/l00ml) at 23°C, (e) 
J-30, toluene (5 g/l00ml) at 3°C. The top and bottom of 
error bar show the maximum and minimum of measured 
values. The dots show mean values. 

molecular weight (cf, Figures 2b and 2d), the 
measured values of pv/2 match the theoretical 
values. This consistency enables us to estimate 
the values of G1 and G2 by knowing only 
temperature, concentration and molecular 
weights of the samples. 

b) Longitudinal Moduli 
The complex bulk modulus is written as K = 

K1 + iK2 = K1 + iw(' and the complex shear 
modulus G*=G1 +G2 =G1 +iw17', where(' is 
dynamic volume viscosity and 11', the dynamic 
shear viscosity. If the complex longitudinal 
wave modulus is written as M* = M1 + iM2 , 

the relation among the velocity of longitudinal 

waves v1 , the attenuation of longitudinal waves 
c,: 1 in neper cm - 1 and the modulus can be 

shown as follows 

M - V 2 l-(1X1V1/w)2 
1-P 1 (l+c,:/v//w2)2 

M - v 2 2c,:1vifw 
2-P 1 (l+c,:/v//w2)2 

(10) 

(11) 

Using eq 11, the following equation is ob
tained for c,: 1vifw« 1, 
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0: 1 2n2 
( , 4 ') 

f2 = pv/ ( +3'7 · (12) 

If the differences between solution and solvent 
in absorption of longitudinal waves, dynamic 
volume and shear viscosities are written as 
Ao: 1 , A(', and A11 ', respectively, the following 
equation is obtained; 

Ao: 1 _ 2n2 (Ar' 4 A ') 
f 2 -pv/ +3 11 · 

(13) 

The difference in shear, Ao:s is derived from the 
second term of eq 13 and given by 

Ao:s - A , 
! 2-3 3 '7, 

PV1 
(14) 

where the value of A11' can be determined by 
estimation of the first term in the right side of 
eq 8 which should be wA11'. The values of r 1 

are obtained from eq 6 and shown in Table II. 
The value of Ao:s/f2 can be calculated from eq 
14 in which A11' is replaced by the factor 
(G2 -w11.)/w and the results are shown by the 
solid line in Figure 3 and Table II. Then A(' in 
Table II is calculated from eq 13 and 14. 

DISCUSSION 

It is seen in Figure 3 and Table II that the 
experimental values of longitudinal excess ab
sorption Ao:1 are much larger than those of 
shear absorption Ao:, with a ratio of 
A('/ A11 > 20. At first sight, the phenomena with 
high value of A('/ A11 seem to be due to a 
thermal relaxation mechanism. However, 
there are three reasons why this mechanism is 
not adequate to explain the results; First, 
thermal relaxation theory13 proposes that bCP 
as referring to one mole can be written as 

bC = 2Aµmax ~, (15) 
P n y-1 

where Aµmax is the maximum value of absorp
tion per wave length Aµ ( = Ao:A), }' is CP/Cv 
and CP and Cv are specific heats at constant 
pressure and volume, respectively. Using the 
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Figure 3. Values of /),.ry_ 1//2 and !),.ry_,ff2 versus fre
quency. The dots and triangles are measured values. The 
solid line and circles are theoretical values by Lamb's 
theory. 

values of V1, Cp, µmax, and Coefficient of expan
sion 8, bCP is obtained as shown in Table III, 
where }' - l is calculated from the relation 
v/ =(}·- 1)JCP/(J2T,14 where 1=4.187 J cal- 1 . 

On the other hand Shottky introduced the 
contribution to specific heat due to a doubly 
excited energy state above a nondegenerated 
ground state, giving 

[ AH 0 ] 2 2exp(-AH 0/RT) 
bCP=R RT [1+2exp(-AH 0/RT)] 2 ' 

(16) 
where AH0 is the difference in enthalpy be
tween ground and excited states. The form of 
eq 16 versus AH0 / RT has been given by 
Litovitz,6 showing that the maximum value 
of bCP occurring at AH=2.4RT is 1.52 
cal mo1- 1 0c- 1 • Comparing the results in Table 
III, it is clear that the difference between them 
is far beyond experimental error. Next, the 
validity of eq 16 is only for the case of 
unimolecular reaction. 13 Its application to the 
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Table II. Acoustical quantities of J-30, toluene mixture 

Temp Frequency 

oc MHz 

3 p=0.8825 (gcm- 3) 

v1 = 1.402 x 105 (cm s- 1 ) 3 
r1 = 1.59 x 10-s (1/s) 5 
r, = 1.291 x 10- 2 (poise) 7 
r,, = 7.77 x 10- 3 (poise) 9 
G/CRT=2.0I X 105 20 
N=ll 60 

100 
140 
180 

23 p=0.8630 (gcm- 3) 1 
v, = 1.313 x 105 (cms- 1) 3 
r1 = 1.06 x 10-s (1/s) 5 
r,=9.73 x 10- 3 (poise) 7 

r,,=6.02 x 10- 3 (poise) 9 
G/CRT=2.16x 105 20 
N=ll 60 

100 
140 
180 

Table III. Estimation of i5CP derived from 
experimental values 

Temp cp i5Cp 
y- 1· 8µmax 

oc ergg- 1 cal mol- 1 

3 J.63 X 107 0.374 1.7x 10- 3 2.13 

23 J.68 X 107 0.341 J.9 X 10- 3 2.34 

a y-1 was calculated from the relation v/=(y- l)JCof 
(/2T14, where 0= 1.06 x 10- 3 _ 

solution is doubtful. The third weak point is 
the fact that the thermal relaxation has diffi
culty in explaining the broadness of the spec
trum of Aµ. Figure 4 shows the curve of Aµ 
versus frequency where the dots and triangles 
are experimental values and the solid line is a 
single relaxation curve characteristic of the 
thermal relaxation and clearly deviates from 
the experimentals. Thus neither structural re-
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l1rx,/f2 11rxif/2 11(' 

s2 cm -i s2 cm- 1 gcm- 1 s- 1 11(' I 11rf' 

X 10-17 X 10-17 X 10- 3 

7.6 148 183 24.6 
5.3 131 155 31.6 
3.9 114 136 37.8 
3.4 105 125 39.8 
2.9 92.0 110 41.0 
1.5 57.6 68.4 34.4 
0.99 16.7 19.8 21.2 
0.67 7.62 8.56 13.8 
0.50 4.11 4.45 9.63 
0.41 2.82 2.97 7.84 

7.5 128 120 21.4 
5.4 111 105 26.1 
4.3 97.1 91.8 28.7 
3.8 89.4 84.7 30.0 

3.5 83.8 79.5 30.7 
2.3 59.5 56.7 33.3 
1.2 21.8 20.5 23.8 
0.80 10.8 9.90 16.7 
0.61 6.52 5.85 12.9 
0.50 4.27 3.73 10.0 

laxation nor thermalrelaxation can account for 
the excess absorption data. 

The most probable interpretation should be 
a concentration fluctuation mechanism pre
dicted by Romanov and Solov'ev,5 because the 
present system is a mixture. They attribute the 
excess absorption to fluctuation which is treat
ed as regions of variable concentration in the 
volume devided into elements d V, and assume 
that the resorption of the fluctuation proceeds 
according to the diffusion equation ax/at= 
DV2 x, where x is the concentration in the 
volume d V and D is diffusion constant. The 
amplitudes involved in expansion into the 
Fourier spectrum of concentration fluctuation 
Br vary according to the equation, 

asr 1 _ ar= -~(Br-Br), (17) 

where Br is the average value of Br for given p 

and T, f is the wave number of the Fourier 
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-2 
J-30, toluene 5 g/l00ml 
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Figure 4. Curve of LIµ(= Llo:A) versus frequency. The dots and triangles are measured values. The solid 
line is the theoretical value of a single relaxation and its maximum frequency is plotted in the same manner 
as that of the measured curve on 23"C. 

spectral expansion, and Tr is relaxation time 
and defined as 

Tr= l/Df2 . (18) 

The excess volume viscosity coefficient ii(' 
should be presented by the following equa-
tions, 

(19) 

(20) 

(21) 

where K 00 is the instantaneous adiabatic 
modulus, V is molar volume, k is Boltzman 
constant, 1/J = o2 <Po/ oc2 where <Po is the molar 
thermodynamic potential in the absence of 
fluctuation, v = 82 V0 / oc2 where V0 is the molar 
volume in the absence of fluctuation, a(£ is 
instantaneous molar heat capacity, CP 00 is 
instantaneous molar heat capacity, h = 
82 H0 /oc2 where H0 is molar enthalpy in the 
absence of fluctuation, and fm is the maximum 
wave number of Fourier spectral expansion of 
fluctuation. The value of A involves a large 

Polymer J., Vol. 21, No. 11, 1989 

amount of uncertainty,15 so an explicit calcu
lation was not given. This term can be con
sidered a constant with temperature.5 Taking 
into account the smallness of G1 and the 
difference between Kc;,, and K0 which is the 
equilibrium modulus, the temperature depen
dence of K 00 should be indentified with M 1 . 

In dilute solutions of linear polymer, the 
molecular motions are non-cooperative and 
hence segments can freely rotate. An indi
vidual molecule forms a random coil, the most 
probable shape on the basis of statistical 
theory. The mean square end-to-end distance 
of molecule L2 is represented by 

(22) 

where N is the total number of segments, and a 
is the length of a segment. When isolated 
polymer molecules move through the sur
rounding fluid unperturbed by the movement 
of other polymer molecules, D is represented 
by the Einstein relation, 16 

D=kT/Nf', (23) 

wheref' is a submolecule friction constant and 
Nf', a molar friction constant. 

One may deduce a relation between D and 
IJ - I],. According to De bye, 17 the value of 
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IJ -11, is given by 

nL2Nf' 
IJ -1]s 

36 
(24) 

where n is the number of molecules per unit 
volume of solution. Eliminating NJ' from eq 
23 and 24, one obtains 

D( _ )= kTnL2 
IJ IJs 36 

(25) 

Puttingn=0.05(gcm- 3)6.03 x 1023 /5700(g)= 
5.29 x 1018 x I cm- 3 , a=4 x 1.5 x 10-s x 5cm 
and the values of IJ, IJs, and N given in Table 
II into eq 22 and 25, one obtains the value of 
D given in Table IV. 

First, the volume viscosities il(' are plotted 
versus frequency. Comparing the plots with the 
theoretical value of L(w/Dfm2 ) versus fre
quency Jm can be determined from w/ DJ;,. 2 = I 
on the horizontal axis. The results are shown in 
Table IV which indicates that fm is constant 
with temperature. Secondly, the values of il(' / 
(K/Tj;,./D) versus w/Dfm2 are plotted as 
shown in Figure 5, where the values of 
L(w/Dfm2 ) are also plotted against w/Dfm2 . 

The value of A is determined as the value of 
the vertical axis of il('/(K,/ Tf ml D) which cor
responds to the unit value of L(w/DJ;,.2 ). The 
values of il(' reduced by K,/ TJ;,./ D fit very 
well with the values of L(w/ Dfm2 ) at both 3"C 
and 23uc. 

The value of fm defines the limit of applica
bility of the model proposed by Romanov and 
Solov'ev and the validity of fm- 107 cm- 1 is 
supported by them. If a molecule in a solvent 
is like a rod, it should be assumed that f m -

I/ L. Putting the value of N = I I and 
a=4xl.5xl0- 8 x5cm into eq 22, 1/L is 
estimated as 1.01 x I 06 cm - 1 • The mean 
length between molecules r is related to 
l/r-(NA/V) 113 , where NA is Avogadro's 
number. Since NA= 6.02 x 1023 , V = 100. 
(cm3) x 5700/5, 1/r is nearly equal to 1.74 x 
106 cm - 1 • These values give the relation f m > 
1/r> 1/L, which suggests the shape of mole
cule in a solvent to be more like a sphere 
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Table IV. Values of D and fm 

Temp D 'rm 

'C cm- 1 

3 8.09 X 10- 7 1.91 X 107 3.38 X 10- 9 4.70 

23 1.20 X 10- 6 1.90 X 107 2.31 X 10- 9 4.59 

J-30, toluene 5g/100ml 

-ii- 3 •c 
_._ 23•c 

10' 

102 

I 0-39 L_ __ .J..._ __ _j__ __ __. 

10-2 10-I 10° 10' 
W/(Dfm2 ) 

Figure 5. Plots of tJ('j(K, 2 Tf',,,/D) and L(w/Df',,,2 ) ve

rsus w/ Df',,, 2 . The dots and triangles are measured values. 
The solid line is the theoretical value of L(w/DJ',,,2 ). 

than a rod. 
The relaxation time of concentration fluc

tuation, Tr can be estimated by eq 18 and the 
value of fm, as shown in Table IV. Comparing 
Tr with the relaxation time of Rouse mode 
motion T1, the ratios of T1/Tr are 4. 70 and 4.59 
for 3°C and 23°C, respectively. On the basis of 
eq 5 and 6, this means that the minimum 
relaxation time of fluctuation corresponds to 
the second mode motion of the Rouse mode. 
Considering T I has the order of time necessary 
for movement of whole one molecule in shear 
deformation, about half the length of one 
molecule is the minimum size of fluctuation, 
where there is one or no molecule. This is very 
reasonable for all points of the fluctuation 
theory. 
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CONCLUSIONS 

Shear moduli were measured for some poly
mer toluene solutions, and the results had 
good agreements with those expected from 
Rouse's and Lamb's theory. It was found 
that the concentration fluctuation theory by 
Romanov-Solovev explains the acoustic ex
cess absorption of poly(vinylisobutylether) so
lution in toluene very well. 

Acknowledgment. The author wishes to 
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the measurements of molecular weight distri
bution of HV-1900 and J-30 using GPC. 
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