NMR Measurement of Identical Polymer Samples by Round Robin Method II. Reliability of Spin-Lattice Relaxation Time and Nuclear Overhauser Enhancement Factor

Riichirô CHÛJÔ, Koichi HATADA,* Ryozo KITAMARU,** Tatsuki KITAYAMA,* Hisaya SATO,*** Yasuyuki TANAKA,*** Fumitaka HORII,** and Yoshio TERAWAKI*

Department of Polymer Chemistry, Tokyo Institute of Technology, Ookayama 2-chome, Meguro-ku, Tokyo 152, Japan *Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan **Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan *** Department of Material Systems Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan

(Received February 1, 1988)

ABSTRACT: ¹H and ¹³C NMR spin-lattice relaxation times (T₁) and ¹³C nuclear Overhauser enhancement (NOE) of radically prepared poly(methyl methacrylate) ($\bar{M}_n = 28500$) in CDCl₃ were measured on 27 NMR spectrometers. Frequency range covered between 60 and 500 MHz for ¹H NMR. Precision of ¹H-T₁'s of α -CH₃ and CH₂ protons was less than 5%. The ¹H-T₁'s of all sorts of protons increased linearly with increasing resonance frequency. The standard deviations for ¹³C-T₁'s were larger than those for ¹H-T₁'s and exceeded 10% in some cases. The T₁'s of all carbons except for the carbonyl carbon increased with frequency. The contribution of chemical shift anisotropy to the relaxation of the carbonyl carbon became significant above 25 MHz. The protons and carbons in the sequence rich in meso dyad showed longer T₁'s than those in the corresponding sequence rich in racemo dyad. The precision of NOE was as good as that of ¹³C-T₁. The NOE's decreased as the observing frequency increased and particularly the NOE for the carbonyl carbon became almost unity at 100 and 125 MHz.

KEY WORDS ¹H NMR / ¹³C NMR / Poly(methyl methacrylate) / Round Robin Method / Spin-Lattice Relaxation Time / Nuclear Overhauser Enhancement / Signal Intensity / Frequency Dependence / Precision / Accuracy /

Nuclear magnetic relaxation parameters give important information on molecular motion and have become more and more familiar to and inevitable for many NMR users after the Fourier transform (FT) method was introduced to NMR technology. The relaxation parameters are also of essential importance in adjusting data acquisition conditions in FT NMR measurement to obtain quantitative data. Research group on NMR, Society of Polymer Science, Japan (SPSJ), collected ¹H and ¹³C NMR spectra of two identical samples, poly(methyl methacrylate) and solanesol, from a number of NMR spectrometers. The results of assessment on the reliability of chemical shift and signal intensity were reported previously.¹ Insufficient agreement in the ¹³C signal intensity urged us to assess the reliability of spin-lattice relaxation time (T_1) and nuclear Overhauser enhancement (NOE) factor which are required for proper setting of conditions of measurements. It is also important to know whether or not the precision of determination of these parameters allows us to treat them as one of the characteristics of a polymer.

In polymer science power spectrum or frequency dependence is very important to elucidate molecular motion. The measurement of frequency dependence is, therefore, quite familiar in dielectric and/or mechanical relaxation studies. Meanwhile, a similar measurement is impossible in NMR study with one NMR instrument. Cooperation of many researchers with different instruments makes it possible to make measurements.

In this series of cooperative project several non-members as well as SPSJ members^{*1} were invited to participate. The data were collected from spectrometers whose observing frequencies ranged from 60 to 500 MHz for ¹H NMR and from 15 to 125 MHz for ¹³C NMR. As a result, frequency dependences of T_1 and NOE were obtained for a very wide range of frequencies. This paper reports the results of the reliability and consistency of T_1 and NOE values for the PMMA sample. A preliminary analysis of the data has been made² and the details will be published in the near future.

EXPERIMENTAL

Poly(methyl methacrylate)

Preparation and characterization of the r

PMMA are described in the previous paper.¹ Mean values for triad tacticities determined by ¹H NMR spectroscopy and their standard deviations, σ , are

$$mm = 4.0\%, \qquad \sigma = 0.9,$$

 $mr = 34.7\%, \qquad \sigma = 1.0,$
 $rr = 61.3\%, \qquad \sigma = 1.5.$

The molecular weights are;

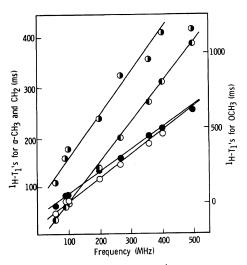
$$\bar{M}_n$$
 (GPC) = 27400,
 \bar{M}_n (VPO) = 28500,
 \bar{M}_w (GPC) = 58000.

Measurement

A $10 \text{ w/v}_{0}^{\circ} \text{CDCl}_{3}$ solution of the PMMA was degassed and sealed under nitrogen into 5 mm o.d. (for ¹H NMR measurements) and 10 mm o.d. (for ¹³C NMR measurements) NMR sample tubes. The test samples were distributed to collaborating test sites. One particular sample (sample No. 1) was circulated to several test sites to obtain data on exactly the same sample from different instruments. In addition, some collaborators made measurements on sample solutions prepared by themselves from the distributed solid PMMA to assess any effects of sample preparation conditions on the data.

A requested method of T_1 determination was the inversion-recovery method with a pulse sequence of $(180^{\circ}-\tau-90^{\circ}-t)_n$. The time delays, τ and t, executed had the following ranges:

^{*1} S. Amiya (Kuraray Central Research Laboratory), T. Asakura (Tokyo University of Agriculture and Technology), K. Chikaishi (Sumitomo Chemical Co. Ltd.), Y. Goto (University of Tokyo), K. Hikichi (Hokkaido University), Y. Hirakida (Showa Denko K.K.), S. Hosoda (Sumitomo Chemical Co., Ltd.), M. Imanari (JEOL Ltd.), S. Itoh (Kyoto University), M. Kamachi (Osaka University), T. Kawamura (University of Tokyo), S. Kohjiya (Kyoto Institute of Technology), K. Lee (Osaka University), I. Nagoya (Asahi Chemical Industry Co.), Y. Oka (Mitsui Toatsu Chemicals, Inc.), T. Okada (Tosoh Corporation), M. Okumura (Toa Nenryo Kogyo Kabushikigaisha), T. Saito (Nippon Oil Company, Ltd.), T. Sei (Daicel Chemical Industries, Ltd.), T. Seimiya (Idemitsu Kosan Co.), T. Shiibashi (Japan Synthetic Rubber Co.), T. Shimamura (Nitto Technical Information Center Co., Ltd.), M. Shimoda (Nippon Zeon Co., Ltd.), Y. Takai (Osaka University), T. Usami (Mitsubishi Petrochemical Co.), K. Ute (Osaka University), T. Yonemitsu (Kyushu Sangyo University).


	τ	t
$^{1}\text{H-}T_{1}$	0.001—10 s	4—20 s
¹³ C- T_1 of α -CH ₃ and CH ₂	0.005—10 s	1—20 s
$^{13}C-T_1$ of other carbons	0.010—15 s	10—20 s

NOE was determined from the intensity ratio of each carbon signal in the completely decoupled spectrum and gated decoupled spectrum without NOE. The executed conditions for the ¹³C NOE determination were as follows:

pulse repetition time,	20—25 s
number of scans,	1000-2048

RESULTS AND DISCUSSION

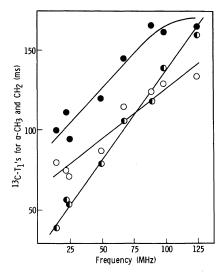

¹H Spin-Lattice Relaxation Times of PMMA ¹H- T_1 's of the PMMA in CDCl₃ were determined from the spectra measured on 27 spectrometers, whose resonance frequencies ranged from 60 to 500 MHz. Individual T_1 data for α -CH₃ protons in rr and mr triads, CH₂ and OCH₃ protons are listed in Table I in

Figure 1. Frequency dependence of ¹H- T_1 's of PMMA measured in CDCl₃ at 55°C: \bigcirc , α -CH₃ (*rr*); \bigoplus , α -CH₃ (*mr*); \bigoplus , CH₂ (*rrr*); \bigoplus , OCH₃.

Polymer J., Vol. 20, No. 8, 1988

the order of increasing resonance frequency. ¹H- T_1 values increased with increasing magnetic field strength. The values obtained at any fixed frequency scatter only slightly with few exceptions. Table II summarizes the mean values and standard deviations of ${}^{1}H-T_{1}$'s determined at each resonance frequency. The precisions for ¹H- T_1 's of α -CH₃ and CH₂ protons are as good as 5%. These T_1 values can be regarded as characteristic data for the polymer as long as obtained under the specified conditions. ${}^{1}H-T_{1}$ data for OCH₃ protons showed a little larger standard deviations, partly due to the long T_1 values. α -Methyl protons in mr triad showed longer ${}^{1}H-T_{1}$ than those in rr triad at each resonance frequency. The results clearly confirm similar observations by several investigators. $^{3-9}$ In Figure 1, the mean values of ¹H- T_1 's are plotted against the resonance frequency for the respective protons. As is clearly seen in this figure, the T_1 values linearly increase with increasing resonance frequency for each proton but the slope of the straight line is considerably small for the α -CH₃ protons compared to the others. As a result, the α -CH₃ protons exhibit shorter ¹H- T_1 's than CH₂ protons at frequencies high-

Figure 2. Frequency dependence of ${}^{13}\text{C-}T_1$'s for α -CH₃ and CH₂ carbons of PMMA measured in CDCl₃ at 55°C: \bigcirc , α -CH₃ (*rr*); \bigoplus , α -CH₃ (*mr*); \bigoplus , CH₂.

R. CHÛJÔ et al.

	-		-	α-C	CH ₃ ^b	CH ₂ ^b	0.011
Runª	Frequency (MHz)	Instrument	Temp (°C)	rr (0.87)	mr (1.03)	<i>rrr</i> (1.82)	OCH ₃ ⁶ (3.60)
A (1)	60	FX-60	55	50	60	40	140
B(1)	 90	FX-90Q	55	75	89	67	281
X(1)	90	FX-90Q	55	68	79	62	306
Y (1)	90	FX-90Q	55	72	85	66	333
D(1)	100	FX-100	55	75	86	71	393
E(1)	100	FX-100	55	73	88	71	336
E(11)	100	FX-100	55	73	86	67	418
F(9)	100	FX-100	55	70	80	140	300
C(1)	100	FX-100	24	55	63	72	358
D(13)	100	FX-100	27	60	69	62	350
H(1)	200	FX-200	55	108	124	139	553
I(1)	200	XL-200	55	121	145	137	590
J(5)	200	XL-200	55	110	130	140	620
T(1)	200	FX-200	55	113	131	138	537
U(1)	200	XL-200	55	113	128	136	499
G(1)	200	FX-200	24	104	106	167	681
H(1)	200	FX-200	24	104	110	168	643
K(1)	270	GX-270	55	143	174	209	851
L(7)	270	GX-270	55	140	150	190	440
W(1)	360	AM-360	55	188	205	275	963
M(1)	400	GX-400	55	212	223	313	1367
M(1)	400	GX-400	55	207	221	316	1046
N(1)	400	GX-400	55	205	215	315	1130
O(8)	400	GX-400	55	205	224	320	1128
P (1)	400	GX-400	55	210	230	320	1130
Q(6)	400	GX-400	55	210	220	320	980
V(1)	400	GX-400	55	210	210	320	1150
R(1)	500	GX-500	55	257	253	392	730
R (1)	500	GX-500	55	249	253	339	1191
AA(1)	500	GX-500	55	266	265	410	1440
BB (1)	500	GX-500	55	264	269	414	1303

Table I. Measurements of ${}^{1}\text{H-}T_{1}$ (ms) for PMMA in CDCl₃ at 55°C by various spectrometers at different frequencies

^a Figures in parentheses denote sample numbers.

^b Figures in parentheses denote chemical shifts measured at 55°C in CDCl₃.

er than 100 MHz, although the former has more nearest-neighbor protons than CH_2 protons. However, it seems very complicated to analyze these frequency dependencies in terms of simple models for the proton magnetic relaxation, because the previous ¹H NMR studies^{3,5} revealed that cross relaxation significantly occurs among these protons.

Sample No. 1 was circulated to a number of test sites. No meaningful differences were ob-

Freq.	а	α-Cl	H ₃ ^b	CH ₂ ^b	OCI I
(MHz)	n ^a -	rr	mr	rrr	OCH ₃ ^b
60	1	50 ()	60 ()	40 ()	140 ()
90	3	72 (4.0)	84 (4.9)	65 (3.3)	307 (6.9)
100	3	74 (1.3) ^d	87 (1.1) ^d	70 (2.7) ^d	382 (9.0)
100°	2	58 (4.3)	66 (4.5)	67 (7.5)	354 (1.1)
200	5	113 (3.9)	132 (5.4)	138 (1.0)	560 (7.5)
200°	2	104 (0)	108 (1.8)	168 (0.3)	662 (0.3)
270	2	142 (0.1)	162 (7.4)	200 (4.7)	851 ()
360	1	188 ()	205 ()	275 (—)	963 (—)
400	7	208 (1.3)	220 (2.7)	318 (0.9)	1133 (9.8)
500	4	259 (2.3)	260 (2.5)	389 (6.9)	1166 (20.5)

Table II. ¹H- T_1 's (ms) of PMMA measured in CDCl₃ at 55°C at different frequencies

^a Number of determinations.

^b Figures in parentheses represent precision (%).

 $^{\rm c}\,$ Measurements were done at room temperature (24 and 27 $^{\circ}{\rm C}).$

^d The data F(9) were deleted.

^e T_1 value of L(7) for OCH₃ was deleted.

Table III. Measurements of ${}^{1}\text{H-}T_{1}$ (ms) at 55°C on the solution of PMMA in CDCl₃ prepared by each investigator

	Frequency	α-C	CH ₃	CH ₂	OCH ₃
	(MHz)	rr	mr	rrr	0013
D	100	74	87	70	398
Ε	100	76	91	72	286
U	200	111	125	136	443
Н	200	109	129	128	553
Μ	400	204	218	321	1007

served in ${}^{1}\text{H-}T_{1}$ values for different samples (Table I).

The data were also collected for sample solutions prepared at several test sites by each collaborator. The results obtained are shown in Table III and are in good agreement with the data shown in Table I. Therefore, as long as the preparation conditions of sample solution are specified, the T_1 data should not be altered substantially.

Possibly higher static magnetic fields are preferable for obtaining spectra with higher signal-to-noise (S/N) ratios. However, Figure 2

suggests that the increase in ${}^{1}\text{H-}T_{1}$ at higher magnetic field strength requires setting a longer time as a repetition time between single rf pulses for the measurements. This would result in a decrease in practical S/N ratio obtainable within a limited period of time.

¹³C Spin-Lattice Relaxation Times of PMMA

 $^{13}C-T_1$'s for the PMMA in CDCl₃ were measured at 55°C on 27 instruments, whose resonance frequency ranged from 15.0 to 125 MHz. The individual data are collected in Table IV. In Table V are summarized mean values and standard deviations at each resonance frequency. The deviations for ${}^{13}C-T_1$'s are larger than those for ${}^{1}H-T_{1}$'s and exceed 10% in some cases. Scattering of the data does not seem to be noticeably different with regard to types of carbon, though the deviation for OCH₃ is slightly larger than those of others similarly to the case of ${}^{1}\text{H-}T_{1}$ for OCH₃. ${}^{13}\text{C-}$ T_1 values of α -methyl, quaternary and carbonyl carbons were determined for split signals due to tacticity. Carbons in the sequence rich in meso dyad generally showed larger ¹³C-

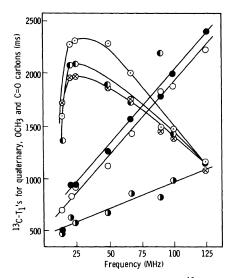


Figure 3. Frequency dependence of ${}^{13}\text{C-}T_1$'s for quaternary, OCH₃ and carbonyl carbons of PMMA measured in CDCl₃ at 55°C: O, OCH₃; \bigcirc , quaternary (*rr*); O, quaternary (*mr*); O, carbonyl (*rrrm*); \bigcirc , carbonyl (*mmr* + *rmr*); \bigotimes , carbonyl (*rrrr*).

		Table IV.	Measuremer	its of 13 C- T_1	(ms) for PM	MA in CDCl ₃	, at 55°C usi	ing various s	pectrometers	Table IV. Measurements of 13 C- T_1 (ms) for PMMA in CDCl ₃ at 55°C using various spectrometers at different frequencies	encies	
	ſ		E	a-C	α-CH ₃ ^b	Qua	Quat. C ^b		CH ₂ ^b		C=0 ^b	
Run ^ª	Freq. (MHz)	Inst.	lemp - (°C)	rr (16.90)	mr (19.03)	rr (44.81)	mr (45.12)	оСН ₃ ^ъ (51.67)	rrr (54.25)	<i>mmrr</i> + <i>rmrr</i> (176.83)	<i>rrr</i> (177.65)	<i>rrm</i> (177.92)
A(1)	15	FX-60	55	80	100	700	460	460	40	1600	1720	840
B(1)	22.5	 FX-90Q		85	109	870		550	57	2270	0661	2110
S(1)	22.5	FX-90Q	55	70	94	796	932	645	56	2311	1983	2019
X(1)	22.5	FX-90Q	55	62	113	759	890	634	58	2144	1892	1884
Y(1)	22.5	FX-90Q	55	63	127	826	938	661	51	2368	1888	2187
D(1)		FX-100	55			810	907	570		2085	1649	2218
E(1)	25	FX-100	55	61	75	809	923	561	49	2548	2012	1989
E(11)	25	FX-100	55	76	104	917	<i>L</i> 66	635	56	2590	2273	2213
F(9)	25	FX-100	55	70	100	1090	820	650	50	1990	1870	1850
C(1)	25	FX-100	24	32	35	500	230	210	30	1130	970	910
H(1)	50	FX-200		- 06	114	1179	1296	683	77	2221	1957	2012
I(1)	50	XL-200	55	85	129	908	927	524	85	1737	1751	1690
J(5)	50	XL-200	55	86	120	1150	1260	800	77	2160	1970	1860

Polymer J., Vol. 20, No. 8, 1988

R. CHÛJÔ et al.

NMR Relaxation Parameters of PMMA

				I		1 1							1				1
2173	1663	1710	1553	1713	1090	2200	1549	1400	1275	1480	1470	1260	1154	1083	1318	1102	
2037	1607	1680	1646	1740	1130	1450	1386	1260	1222	1400	1380	1290	1121	948	1129	1101	
2306	2944	1850	1755	2001	1040	1450	1488	1330	1372	1580	1530	1420	1148	1093	1276	1156	
81	77	71	72	105	40	118	141	130	144	140	140	140	167	146	167	146	
801	498	532	602	861	670	793	956	1435	930	880	950	1150	1116	1071	1470	016	
1347	1360	1040	1333	1554	1030	1790	2116	1940	1874	2040	2020	1940	2441	2241	2450	2317	n CDCl ₃ (b).
1225	1216	1020	1055	1409	940	1820	1896	1795	1831	1900	1940	1860	2253	2149	2400	2145	nple numbers (a) and chemical shifts at 55° C in CDCl ₃ (b)
127	108	93	83	145	60	165	165	140	168	170	180	140	165	157	183	158	nd chemical sl
96	<i>LT</i>	56	65	115	70	123	139	110	135	140	140	120	137	127	144	128	mbers (a) ai
55	55	24	24	<u></u> 55	55	55	55	55	55	55	55	55	55	55	55	55	e sample nu
FX-200	XL-200	FX-200	FX-200	GX-270	GX-270	AM-360	GX-400	GX-400	GX-400	GX-400	GC-400	GX-400	GX-500	GX-500	GX-500	GX-500	^{a,b} Figures in parentheses denote sar
50	50	50	50	67.5	67.5	90.6	100	100	100	100	100	100	125	125	125	125	res in pare
T(l)	(I)N	G(1)	H(1)	K(1)	r (i)	W(1)	M(1)	N(I)N	0(8)	P(1)	Q(6)	V(I)	R(1)	R(1)	(I) AA(I)	BB(1)	^{a,b} Figur

Polymer J., Vol. 20, No. 8, 1988

R. Chûjô et al.

Frequency	n ^a -	α-C	H ₃ ^b	Qua	t. C⁵		CH ₂ ^b	($C = O^b$	
(MHz)	n	rr	mr	rr	mr	OCH ₃ ^b	rrr	mmrr + rmrr	rrrr	rrrm
15	1	80	100	700	460	460	40	1600	1720	840
22.5	4	74	111	813	938	623	56	2273	1938	2050
		(11.4)	(10.6)	(5.0)	(3.8)	(6.9)	(4.8)	(3.6)	(2.5)	(5.5)
25	4	71	94	907	912	604	54	2303	1951	2068
		(9.3)	(12.0)	(12.6)	(6.9)	(6.5)	(7.7)	(11.7)	(11.6)	(7.5)
50	5	87	120	1136	1238	661	79	2274	1864	1880
		(7.2)	(6.6)	(10.3)	(12.9)	(19.7)	(4.1)	(17.8)	(8.6)	(9.2)
50°	2	61	88	1038	1242	567	72	1803	1663	1632
		(7.4)	(5.7)	(1.7)	(16.3)	(6.2)	(0.7)	(2.6)	(1.0)	(4.8)
67.5 ^d	1	115	145	1409	1554	861	105	2001	1740	1713
90.6	1	123	165	1820	1790	793	118	1450	1450	2200
100	6	129	161	1870	1988	973	139	1453	1323	1406
		(8.5)	(9.5)	(2.6)	(4.0)	(9.7)	(3.2)	(6.0)	(5.2)	(7.6)
125	4	134	165	2237	2362	1157	156	1168	1075	1164
		(5.2)	(6.3)	(4.6)	(3.7)	(16.3)	(6.7)	(5.7)	(6.9)	(7.9)

Table V. ¹³C- T_1 (ms) of PMMA measured in CDCl₃ at 55°C at different frequencies

^a Number of determinations.

^b Figures in parentheses represent precision (%).

^c Measurement was made at room temperature (24°C).

^d The data L(7) were deleted.

 T_1 's than the corresponding carbons in the sequence rich in racemo dyad, as observed for ¹H- T_1 of α -CH₃ protons. Similar results on the ¹³C- T_1 of PMMA have been reported by several investigators.^{5,10-15} Figures 2 and 3 illustrate resonance frequency dependences of the mean values of ${}^{13}C-T_1$. ${}^{13}C-T_1$'s for all carbons except for carbonyl carbon increase linearly with increasing resonance frequencies. The α - CH_3 carbon in rr triad shows longer T_1 than the CH₂ carbon in rrr tetrad at the lower frequencies but shorter T_1 at the higher frequencies, and the inversion in the order of magnitudes of ${}^{13}C-T_1$ for α -CH₃ and CH₂ carbons occurs at the frequency between 67.5 and 90.6 MHz. Preliminary analyses have already shown that these frequency dependences of α -CH₃, CH₂, and OCH₃ carbons can be interpreted by molecular motional models in which the motion of the C-H internuclear vector is described in terms of three independent superposed motions with different correlation times.² The details of the explanation of difference in the frequency dependencies of the carbons will be published in this Journal.

 $^{13}\text{C-}T_1$'s for the carbonyl carbon decrease with increasing resonance frequencies above 25 MHz. The relaxation induced by chemical shift anisotropy is possible for the carbons in π -bond. The relaxation by this mechanism becomes important at higher magnetic field, since the contribution of chemical shift anisotropy to the relaxation rate is proportional to the square of the static magnetic field strength if the molecular tumbling rate is much larger than the resonance frequency.¹⁶ The relaxation of the acetylenic carbons in 1,4-diphenylbutadiyne is a typical example of this case.¹⁷ The great decrease in ${}^{13}C-T_1$ of the carbonyl carbon in PMMA with increasing magnetic field indicates increasing contribution of the chemical shift anisotropy to the spin-lattice relaxation. To our knowledge, this is the first example of polymer system where the contribution of the chemical shift anisotropy to the relaxation was proved. Though the frequency dependency of ¹³C relaxation was reported recently on poly(butyl methacrylate), the au-

NMR Relaxation Parameters of PMMA

	Frequency	Instrument -	α-0	CH ₃	Qua	it. C	OCH ₃	CH ₂		C=0	
	(MHz)	mstrument	rr	mr	rr	mr	00113	rrr	mmrr + rmrr	rrrr	rrrm
Е	25	FX-100	64	84	1011	888	564	51	2844	2186	2797
Н	50	FX-200	80	115	1780	1290	680	79	2240	1970	2030
U	50	XL-200	90	112	1161	1356	667	82	1979	2031	1953

Table VI. Measurements of ${}^{13}C-T_1$ (ms) at 55°C on solutions of PMMA in CDCl₃ prepared by the investigators

Table VII. Measurements of ¹³C NOE for PMMA in CDCl₃ at 55°C by various spectrometers at different frequencies

Runª	Frequency	Instrument	Temp	α-C	CH3	Qua	ıt. C	OCH ₃	CH ₂	С	=0	
Run"	(MHz)	Instrument	(°C)	rr	mr	rr	mr	OCH ₃	rrr	mmrr + rmrr	rrrr	rrrm
A(1)	15	FX-60	55	2.50	2.40	2.60	2.10	2.70	2.80	2.60	2.70	2.20
B(1)	22.5	FX-90Q	55	2.86	2.97	2.69	2.55	2.44	2.64	1.87	2.07	1.89
X(1)	22.5	FX-90Q	55	2.80	2.80	2.60	2.30	2.50	2.50	2.40	2.30	1.90
Y(1)	22.5	FX-90Q	55	2.26	2.11	2.42	2.22	2.23	1.92	2.03	2.20	1.69
D(1)	25	FX-100	55	2.73	2.67	2.50	2.63	2.53	2.61	2.32	2.07	2.14
E(1)	25	FX-100	55	2.77	2.85	2.45	2.62	2.44	2.74	2.01	2.26	2.07
E(11)	25	FX-100	55	2.65	2.76	2.49	2.58	2.68	3.11	2.63	2.43	2.39
F(9)	25	FX-100	55	2.73	2.52	2.43	2.36	2.42	2.42	2.24	2.18	2.25
C(1)	25	FX-100	24	2.75	2.75	1.95	1.95	1.89	2.09	1.62	1.62	1.62
H(1)	50	FX-200	55	2.75	2.73	2.34	2.18	2.18	2.57	1.97	1.72	1.66
I(1)	50	XL-200	55	2.57	2.72	2.04	2.24	2.17	2.05	1.68	1.61	1.92
J(5)	50	XL-200	55	2.52	2.39	1.86	2.04	1.91	1.88	1.45	1.44	1.36
T(1)	50	FX-200	55	2.60	2.64	2.13	2.12	2.11	2.08	1.83	1.72	1.66
U(1)	50	XL-200	55	2.80	2.76	2.20	2.26	2.21	2.05	1.72	1.60	1.47
G(1)	50	FX-200	24	2.18	2.33	1.67	1.89	1.87	1.74	1.41	1.36	1.39
H(1)	50	FX-200	24	2.24	2.38	1.83	1.82	1.75	1.85	1.45	1.42	1.38
––– K(1)	67.5	GX-270	55	2.51	2.48	2.04	1.95	2.01	1.97	1.49	1.37	1.27
L(7)	67.5	GX-270	55	2.10	2.35	1.72	1.72	1.74	1.69	1.21	1.20	1.18
W (1)	90.6	AM-360	55	2.07	2.03	1.98	1.97	1.66	1.71	1.59	1.33	1.33
M(1)	100	GX-400	55	2.44	2.32	1.77	1.82	1.73	1.77	1.19	1.17	1.18
N(1)	100	GX-400	55	2.03	2.28	1.62	1.69	1.62	1.59	1.06	1.01	1.04
P(1)	100	GX-400	55	1.80	1.90	1.60	1.60	1.50	1.50	1.10	1.00	1.00
Q(6)	100	GX-400	55	2.20	2.24	1.76	1.76	1.70	1.71	0.99	1.07	1.07
V(1)	100	GX-400	55	2.24	2.26	1.66	1.87	1.68	1.59	1.13	1.09	1.23
R(1)	125	GX-500	55	2.20	2.30	1.80	1.80	1.70	1.80	1.30	1.10	1.30
R(1)	125	GX-500	55	2.01	2.02	1.51	1.51	1.38	1.42	1.00	1.00	1.01
AA(1		GX-500	55	2.20	2.40	1.70	1.30	1.60	1.70	1.10	1.10	1.10
BB (1)	,	GX-500	55	2.23	2.49	1.69	1.63	1.60	1.63	1.04	1.07	1.06

^a Figures in parentheses denote sample numbers.

R. Chûjô et al.

Quat. C^b CH₂^b $C = O^b$ α-CH₃^b Frequency OCH₃^b nª (MHz) rr mr rr mr rrr mmrr + rmrr rrrr rrrm 2.70 2.70 2.22 15 1 2.80 2.40 2.60 2.10 2.80 2.60 22.5 3 2.64 2.63 2.57 2.36 2.39 2.35 2.10 2.19 1.83 (14.3)(4.5) (5.9) (4.8)(13.2)(10.5)(4.5)(5.4) (10.2)25 4 2.47 2.52 2.30 2.24 2.21 2.72 2.70 2.55 2.72 (5.5) (9.2) (5.8)(1.6) (4.5) (1.1)(4.4) (4.1)(9.8) 25° 1.95 1.95 1.62 1.62 1.62 1 2.75 2.75 1.89 2.09 5 1.73 50 2.65 2.65 2.11 2.17 2.12 2.13 1.62 1.61 (4.1) (5.1) (7.6)(3.7)(5.1)(10.9)(9.8) (6.6)(11.7)50° 2 2.21 2.36 1.75 1.86 1.80 1.80 1.43 1.39 1.39 (1.3)(1.2)(4.4)(1.9) (3.1)(3.1) (1.5)(2.0)(1.0)67.5 2 2.31 2.42 1.88 1.84 1.88 1.83 1.35 1.29 1.23 (7.2)(10.2)(6.6)(3.5) (2.6) (8.3) (6.2) (7.7) (6.3) 90.6 2.07 2.03 1.98 1.97 1.66 1.71 1.59 1.33 1.33 1 100 5 2.20 1.75 1.09 1.07 1:10 2.14 1.68 1.63 1.63 (5.9)(8.1) (6.9) (5.6) (4.9) (6.0) (6.6) (10.0)(4.3)125 1.07 1.12 Δ 2.16 2.30 1.68 1.56 1.57 1.63 1.11 (4.0) (7.7) (6.2) (11.7)(7.5) (8.5) (10.4)(3.8)(9.9)

Table VIII. ¹³C NOE of PMMA measured in CDCl₃ at 55°C at different frequencies

^a Number of determinations.

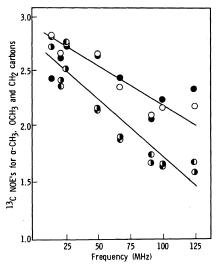
^b Figures in parentheses represent precision (%).

^c Measurement was made at room temperature (24°C).

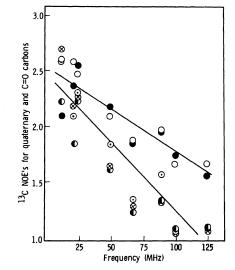
thors excluded the data on the carbonyl carbon.¹⁸

Table VI summarizes the ${}^{13}C-T_1$ data obtained from the NMR samples prepared at several test sites by each collaborator. Similarly to the corresponding ${}^{1}H-T_1$ data, there is no substantial difference between the corresponding data in Tables IV and VI.

Longer T_1 's in ¹³C NMR at higher resonance frequencies may cause the great disadvantage of requiring longer delay time between rf pulses, resulting in decreased practical S/N ratio obtainable in a limited period of time, because ¹³C NMR measurement usually needs more iterative accumulation than ¹H NMR measurement.


¹³C Nuclear Overhauser Enhancement for PMMA

¹³C NOE directly affects the signal intensities in ¹³C NMR spectrum so that the assessment of the NOE data and its precision is desired for quantitative analysis. The NOE can also afford information on segmental motion of polymer chains together with T_1 data. Here NOE is defined as follows:


$NOE = I/I_0$

where I and I_0 are observed signal intensities with and without proton irradiation. The theoretically expected maximum value for NOE is 2.988 if the ¹³C nuclear megnetization relaxes through dipolar interaction with ¹H nucleus. I_0 was determined from the spectrum obtained under gated decoupling without NOE.

In Tables VII and VIII are summarized the individual data and mean values of NOE, respectively. Precision of NOE is as good as that of ${}^{13}C-T_1$. NOE's obtained at or below 25 MHz are about 2.5–2.8 and close to their theoretically expected maxima for all but carbonyl carbons. NOE values decrease with increasing magnetic field strength as seen in Figures 4 and 5. This is another disadvantage for measuring the spectrum of high S/N ratios

Figure 4. Frequency dependence of ¹³C NOE's for α -CH₃, OCH₃, and CH₂ carbons of PMMA measured in CDCl₃ at 55°C: \bigcirc , α -CH₃ (*rr*); \bigoplus , α -CH₃ (*mr*); \bigoplus , CH₂; \bigoplus , OCH₃.

Figure 5. Frequency dependence of ¹³C NOE's for quaternary and carbonyl carbons of PMMA measured in CDCl₃ at 55°C: \bigcirc , quaternary (*rr*); \bigcirc , quaternary (*mr*); \bigcirc , carbonyl (*rrrm*); \oslash , carbonyl (*mmrr*+*rmrr*); \otimes , carbonyl (*rrrr*).

Frequency	Con	nplete de	coupling	,b	Co	rrected b	y NOE⁵			nplete de without		g
MHz	A	В	С	n°	Α	В	С	n°	Α	В	С	n°
22.5	0.86	1.93	1.00	3	1.11	2.15	1.07	3	1.12	2.21	1.19	2
25	0.86	2.00	1.00	3	1.04	2.07	1.08	3	0.97	2.00	1.03	1
50	0.54	1.45	0.92	3	0.87	1.80	1.14	3	0.89	2.00	1.03	1
67.5	0.55	1.52	0.75	1	1.01	1.94	0.96	1	0.99	1.95	1.02	2
90.6	0.43	1.33	0.70	1ª :	0.62	1.61	0.72	1ª		-		
100	0.33	1.54	0.67	1 ^d	0.66	2.05	0.84	1ª)	1.00	0.04	1.00	•
100	0.46	1.33	0.69	le	0.92	1.67	0.92	1° }	1.00	2.06	1.08	2
125	0.48	1.58	0.83	1°	0.97	2.20	1.14	1°	0.94	2.10	1.18	3

Table IX. Relative intensities of ¹³C NMR signals of PMMA in CDCl₃ at 55°C^a

^a $A = C = O/\alpha$ -CH₃, $B = (CH_2 + OCH_3)/\alpha$ -CH₃, $C = C-4/\alpha$ -CH₃.

^b Data except for e were taken from the previous paper.¹

° Number of determinations.

^{d,e} Pulse repetition times were ca. 1 s and 10 s, respectively.

by higher magnetic field instruments.

It is worth noting that the quaternary carbon, which has no directly attached hydrogens, shows similar NOE values to those for other carbons having directly attached hydrogens as CH_2 and CH_3 carbons. ¹³C spinlattice relaxation of the quaternary carbon seems to be governed mainly by dipole-dipole interaction with its neighboring protons in methyl and methylene groups. The carbonyl carbon shows distinctively lower NOE values than other carbons and the value comes close to unity at higher observing frequencies of 100 and 125 MHz. Compared at each frequency, NOE for each carbon decreases in the order of α -CH₃>quaternary carbon \simeq OCH₃ \simeq CH₂>carbonyl carbon. The differences between NOE values of these carbons increase with increasing resonance frequency as seen in Figures 4 and 5, leading to inaccurate intensity ratios in completely decoupled spectra obtained at higher observing frequencies.

In the previous paper,¹ intensity ratios in ¹³C NMR signals of the PMMA measured at 90.6 MHz and higher observing frequencies were reported to deviate from their theoretical values even after corrected by NOE values. The deviation was ascribed to the shorter repetition time of rf pulse (ca. 1s). The intensity measurements were repeated at 100 and 125 MHz with a pulse repetition time of 10s to avoid saturation of signals which would arise from longer ${}^{13}C-T_1$ at higher magnetic fields. The data obtained are shown in Table IX along with the previously reported data. Through correction by the NOE values, the intensity ratios measured at 100 and 125 MHz with the repetition time of 10 s agreed well with the theoretically expected values. The average values of the intensity ratios determined from the spectra taken under the gated decoupling without NOE are also listed in the table and exhibit a good agreement with the theoretically expected values.

Acknowledgement. The authors are grateful to Mrs. F. Yano of Osaka University for her clerical assistance in preparing this manuscript.

REFERENCES

- R. Chûjô, K. Hatada, R. Kitamaru, T Kitayama, H. Sato, and Y. Tanaka, *Polym. J.*, 19, 413 (1987).
- F. Horii, M. Nakagawa, R. Kitamaru, and members of NMR Research Group, SPSJ, *Polym. Prepr., Jpn.*, 36, 3151 (1987).
- 3. K. Hatada, Y. Okamoto, K. Ohta, and H. Yuki, J. Polym. Sci., Polym. Lett. Ed., 14, 51 (1976).
- K. Hatada, H. Ishikawa, T. Kitayama, and H. Yuki, Makromol. Chem., 178, 2753 (1977).
- K. Hatada, T. Kitayama, Y. Okamoto, K. Ohta, Y. Umemura, and H. Yuki, *Makromol. Chem.*, 179, 485 (1978).
- 6. F. Heatley and M. K. Cox, Polymer, 21, 381 (1980).
- 7. F. Heatley and M. K. Cox, Polymer, 22, 190 (1981).
- J. Zajicek, H. Pivcová, and B. Schneider, *Makromol. Chem.*, **182**, 3169 (1981).
- J. Zajicek, H. Pivcová, and B. Schneider, *Makromol. Chem.*, **182**, 3177 (1981).
- J. R. Lyerla Jr., and T. T. Horikawa, J. Polym. Sci., Polym. Lett. Ed., 14, 641 (1976).
- 11. J. R. Lyerla, Jr., T. T. Horikawa, and D. E. Johnson, J. Am. Chem. Soc., 99, 2463 (1977).
- Y. Inoue, T. Konno, R. Chûjô, and A. Nishioka, Makromol. Chem., 178, 2131 (1977).
- 13. Y. Inoue and T. Konno, *Makromol. Chem.*, **179**, 1311 (1978).
- 14. J. Spevácek and B. Schneider, Polymer, 19, 63 (1978).
- 15. G. C. Levy and D. Wang, *Macromolecules*, **19**, 1013 (1986).
- A. Abragam, "The Principles of Nuclear Magnetism," Oxford University Press, London and New York, 1961, Chapter 8.
- G. C. Levy, J. P. Cargioli, and F. A. L. Anet, J. Am. Chem. Soc., 95, 1527 (1973).
- 18. G. C. Levy and D. Wang, *Macromolecules*, **19**, 1013 (1986).