Dilute Solution Properties of Acrylonitrile/ Vinylidene Chloride Copolymer

Kenji Kamide, Yukio Miyazaki, and Hitoshi Yamazaki
Fundamental Research Laboratory of Fibers and Fiber-Forming Polymers, Asahi Chemical Industry Co., Ltd., 11-7 Hacchonawate, Takatsuki, Osaka 569, Japan

(Received March 17, 1986)

Abstract

A copolymer of acrylonitrile (AN) and vinylidene chloride (VDC) was prepared using azobisisobutylonitrile as an initiator and was separated into 20 fractions by successive solution fractionation, using dimethyl sulfoxide (DMSO) as the solvent and toluene as the precipitant. The fractions had essentially the same chemical composition: 59 weight percent in AN. Light scattering for a fraction in dimethylacetamide (DMAc), γ-butyrolactone (γ-BL) and dimethylformamide (DMF) gave the same weight-average molecular weight M_{w} within an experimental error $\pm 2 \%$, which was evaluated assuming homopolymer. Viscosity and light scattering were measured for 8 fractions in DMAc. The Mark-Houwink-Sakurada (MHS) equations for this polymer at $25^{\circ} \mathrm{C}$ were $[\eta]=0.100 M_{w}^{0.60_{3}}$ in DMAc, $[\eta]=0.102 M_{w}^{0.59{ }_{1}}$ in DMF, $[\eta]=0.112 M_{w}^{0.576}$ in γ-BL, and $[\eta]=0.142 M_{w}^{0.52_{1}}$ in $70 \mathrm{wt} \%$ aq nitric acid. The molecular weight dependence of the radius of gyration $\left\langle S^{2}\right\rangle_{z}^{1 / 2}$ and the second virial coefficient A_{2} in DMAc at $25^{\circ} \mathrm{C}$ were represented by $\left\langle S^{2}\right\rangle_{z}^{1 / 2}=3.84 \times 10^{-9} M_{w}^{0.53}$ and $A_{2}=5.77 \times 10^{-3} M_{w}^{-0.137}$. The unperturbed chain dimension A was determined by Baumann, Stockmayer-Fixman and Kamide-Moore methods. The value of a copolymer of AN and VDC was by ca. 10% smaller than that of polyacrylonitrile.

KEY WORDS Dilute Solution Property / Acrylonitrile-Vinylidene Chloride
Copolymer / Light Scattering / Viscometry / Mark-Houwink-Sakurada Equation / Radius of Gyration / Second Virial Coefficient / Unperturbed Chain Dimension / Conformation Parameter /

As well known, acrylonitrile (AN) reacts readily with other monomers to give various copolymers. In fact, the copolymerization of AN with styrene (St), vinyl acetate (VAc), methyl acrylate (MA), vinyl chloride (VCl), and vinylidene chloride (VDC) has been widely employed for improving physical properties and processability in plastic or fiber-making process of polyacrylonitrile (PAN).
Studies on the molecular characterization of AN-copolymer have been carried out for AN/MA, ${ }^{1}$ AN/St, ${ }^{2,3}$ AN/methyl methacrylate (MMA). ${ }^{4}$ AN/VDC copolymer is an interesting polymer from an industrial point of view, because of its high nonflammability.

Up to now, only sequence distribution of model copolymer was analyzed, ${ }^{5}$ but no systematic study has been made on its dilute solution properties in conection with its molecular characteristics. In this article an attempt is made to investigate the dilute solution properties of AN/VDC copolymer (with 58 weight percent in AN) in various solvents to compare the molecular characteristic of AN/VDC copolymer with those of PAN.

EXPERIMENTAL

Polymer Sample

A mixture of acrylonitrile (AN) and vinylidene chloride (VDC) (AN/VDC $=58 / 42$,
weight/weight, total monomer weight 180 g) was polymerized in a 540 ml of dimethylformamide (DMF) by free radical solution polymerization at $50^{\circ} \mathrm{C}$ for 2 h , using azobisisobutylonitrile as an initiator. AN/VDC copolymer was isolated by pouring the DMF solution into approximately 5 liters of methanol. The mixture was stirred for 10 min and the precipitate was filtered, rinsed with methanol, filtered, and then dried at room temperature and in vacuo for 30 h at $50^{\circ} \mathrm{C}$. The polymerization yield was $71 \mathrm{wt} \%$ and a whole sample obtained had the viscosity-average molecular weight M_{v}, determined from the limiting viscosity number [η] using the MHS equation (eq 1) at $25^{\circ} \mathrm{C}$ in dimethylacetamide (DMAc) (Table IV), of 16.3×10^{4} and had a VDC content of $43 \mathrm{wt} \%$ from the ${ }^{13} \mathrm{C}$ NMR method.

Solvent

N-methyl-2-pyrrolidone (n-MP), dimethylacetamide (DMAc), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), $\gamma-$ butyrolactone (γ-BL), and toluene were used in this study. All these solvents were of reagent grade and used as received. A $70 \mathrm{wt} \%$ aq nitric acid was also employed.

Molecular Weight Fractionation

The polymer sample was fractionated by the successive solution fractionation method into 20 fractions: 110 g of the polymer were dissolved in a 2800 ml of DMSO to give a starting concentration of $0.039 \mathrm{~g} \mathrm{ml}^{-1}$ at $30^{\circ} \mathrm{C}$. To the solution 6-9 liters of toluene were gradually added with agitation to bring about a two-liquid phase separation and a polymerlean phase was separated and concentrated by evaporating toluene contained in the phase and the polymer was completely precipitated by addition of methanol to the concentrated solution, washed with a large amount of methanol and dried in vacuo. Eight fractions having the weight-average molecular weight M_{w}, ranging $4.2 \times 10^{4}-50 \times 10^{4}$, were
selected for further study.

Solution Viscosity

Solution viscosity was measured in n-MP, DMAc, DMF, γ-BL, and aqueous nitric acid (nitric acid content $w_{n}=70 \mathrm{wt} \%$) with a modified Ubbelohde suspension type viscometer at $25 \pm 0.01^{\circ} \mathrm{C}$. [η] was determined by Huggins plot.

Light Scattering

Light scattering measurements were made in DMAc, DMF, γ-BL, and aq nitric acid ($w_{n}=70 \mathrm{wt} \%$) at $25^{\circ} \mathrm{C}$ on a FICA photogoniodiffusiometer 42000 . Unpolarized natural light of the wave length $\lambda_{0}=546 \mathrm{~nm}$ was used as an incident light. The specific refractive index increment dn/dC for AN/VDC copolymer was determined to be $0.080 \mathrm{ml}^{-1} \mathrm{~g}$, $0.086 \mathrm{ml}^{-1} \mathrm{~g}$, and $0.086 \mathrm{ml}^{-1} \mathrm{~g}$ for DMF, DMAc, and γ-BL at $25^{\circ} \mathrm{C}$. Calibration of the apparatus was made using benzene (the Rayleigh ratio at scattering angle $\theta=90^{\circ}$, $R_{90}=16.3 \times 10^{-6}$ at $\left.\lambda_{0}=546 \mathrm{~nm}\right){ }^{6}$ The data were analyzed according to Zimm's procedure to evaluate M_{w}, the z-average mean-square radius of gyration $\left\langle S^{2}\right\rangle_{z}^{1 / 2}$ and the second virial coefficient A_{2}. Here, the polymer was assumed homopolymer. In aq nitric acid ($w_{n}=70 \mathrm{wt} \%$) solution, $\left\langle S^{2}\right\rangle_{z}^{1 / 2}$ and A_{2} were evaluated using M_{w} obtained in DMAc. The detailed experimental procedure is the same as that described for PAN previously. ${ }^{7}$

${ }^{13}$ C NMR Measurement

${ }^{13} \mathrm{C}$ NMR measurements on AN/VDC copolymer were made on a FT-NMR JEOL FX200 using a $1 / 2$ (by volume at $25^{\circ} \mathrm{C}$) mixture of DMSO- $d_{6} /$ DMSO: sample weight, 200 mg ; measuring temperature, $80^{\circ} \mathrm{C}$; internal standard, tetramethylsilane (TMS). The monomer sequence distribution and stereoregularity of the polymer were evaluated according to the method of Bailey and Henrichs. ${ }^{5}$

RESULTS AND DISCUSSION

The monomer reactivity ratio of acrylonitrile and vinylidene chloride, r_{N} and r_{v}, in AN/ VDC/DMF system were determined by Guyot et al. ${ }^{8}$ to be 0.8 and 0.6 , respectively. Putting these values of r_{N} and r_{v} and experimental initial monomer feed composition $f_{\mathrm{N}}(=0.716)$ and $f_{\mathrm{V}}=\left(1-f_{\mathrm{N}}\right)$ into Mayo-Lewis equation, ${ }^{9}$ we can calculate the AN content of the polymer F_{N} to be 0.712 corresponding to $f_{\mathrm{N}}=$
0.716 . The estimated F_{N} value is very near the experimental value (0.708), determined by ${ }^{13} \mathrm{C}$ NMR method. The above experimental fact of $F_{\mathrm{N}} \cong f_{\mathrm{N}}$ means that the monomer compositions of AN and VDC, employed in this study, are fortunately a close to an azeotrope composition.
Figure 1 shows ${ }^{13} \mathrm{C}$ NMR spectrum of sample cord AV-1-3. Assignment of these peaks by Bailey and Henrichs ${ }^{5}$ is shown on the spectrum. The relative mole fractions of

Figure 1. ${ }^{13} \mathrm{C}$ NMR spectrum of a AN/VDC copolymer fraction AV-1-3.

Table I. The relative mole fractions of V-centered triads and N -centered triads and
VDC content for the AN/VDC copolymer fractions determined by ${ }^{13} \mathrm{C}$ NMR

Sample	$M_{w} \times 10^{-4}$	V-Centered triads			N -Centered triads			$\frac{\text { VDC content }}{\mathrm{wt} \%}$
		VVV	NVV	NVN	NNN	NNV	VNV	
AV-1-3	27.0	0.04	0.26	0.70	0.50	0.39	0.11	38
AV-1-6	9.0	0.05	0.27	0.67	0.48	0.40	0.12	40
AV-1-8	4.2	0.04	0.31	0.65	0.49	0.40	0.11	41
Assignment of peaks/ppm		84.3	88.1	91.1	26.5	25.5	24.8	
					l	?		
					28.0	26.5		

V-centered triads of VVV, VVN, and NVN, and N-centered triads of NNN, NNV, and VNN were estimated from the peaks of the dichloro-substituted carbons of VDC and methine carbon of AN, respectively. Here, V means VDC and N is AN monomer.

Table I lists the relative mole fraction of VVV, VVN, and NVN, and NNN, NNV, and VNV, determined thus, and the VDC content for some fractions. The VDC content of the fractions only slightly decreased with an increase in M_{w} and was smaller than that (0.43) of the whole copolymer. This is consistent with the experimental fact that the first fraction with an extremely low molecular weight has a high VDC content. The relative mole fractions of V - and N -centered triads remain almost constant, except for NVV, over a wide M_{w} range of the fractions, although NVV triad content increased gradually with decreasing M_{w}. VVV triad content is only a few percent and VVVV tetrad content is too low to de-
tect by ${ }^{13} \mathrm{C}$ NMR method. ${ }^{10}$ Therefore, we can conclude that the distribution of monomer composition in AN-VDC copolymer, employed here, may be sufficiently narrow.

The isotactic, heterotactic and syndiotactic triad probabilities of NNN sequence were analyzed from methine carbon peaks (2428 ppm) and found to be 28,47 , and $25 \mathrm{~mol} \%$, respectively. These values are in good agreement with those of the PAN polymerized with redox catalyst. ${ }^{7}$ Therefore, this polymer can be regarded as a random AN/VDC copolymer.

The AN/VDC copolymer dissolves in all solvents (n-MP, $70 \mathrm{wt} \% \mathrm{HNO}_{3}$, DMAc, DMF, DMSO, and γ-BL) for PAN. Figure 2 shows some typical Zimm plots of a fraction AV-1-4 in DMAc, DMF, and γ-BL. All plots have diamond shape.
Table II illustrates $M_{w},\left\langle S^{2}\right\rangle_{z}^{1 / 2}$ and A_{2} of a AN/VDC copolymer fraction AV-1-4 in DMF, γ-BL, $70 \mathrm{wt} \%$ aq nitric acid and DMAc

Figure 2. Zimm plots for a AN/VDC copolymer fraction AV-1-4 at $25^{\circ} \mathrm{C}$: a) in DMAc; b) in DMF; c) in γ-butyrolactone.

Table II. Light scattering data for a AN/VDC copolymer fraction (AV-1-4) in various solvents at $25^{\circ} \mathrm{C}$

Solvent	$M_{w} \times 10^{-4}$	$\left\langle S^{2}\right\rangle_{z}^{1 / 2} \times 10^{8 \mathrm{a}}$	$A_{2} \times 10^{3 \mathrm{~b}}$	Dielectric constant
Dimethylformamide	19.6	248	1.37	36.7
γ-Butyrolactone	20.0	232	1.19	39.0
$70 \mathrm{wt} \% \mathrm{HNO}_{3}$	-	211	0.075	-
DMAc	20.4	248	1.15	37.8

[^0]Table III. Results of light scattering and intrinsic viscosity numbers for AN/VDC fractions in various solvents at $25^{\circ} \mathrm{C}$

Sample	$M_{w} \times 10^{-4}$	$\left\langle S^{2}\right\rangle_{z}^{1 / 2} \times 10^{8 \mathrm{a}}$	$A_{2} \times 10^{3 \mathrm{~b}}$	$[\eta] / \mathrm{cm}^{3} \mathrm{~g}^{-1}$				
		DMAc		DMAc	DMF	γ-BL	n-MP	$70 \mathrm{wt} \% \mathrm{HNO}_{3}$
AV-1-1	50.0	405	0.90	270	239	213	280	132
AV-1-2	34.8	335	0.95	223	195	174	230	111
AV-1-3	27.0	283	1.10	188	169	153	196	96
AV-1-4	20.4	248	1.15	156	140	124	162	82
AV-1-5	14.0	205	1.20	126	112	104	129	67
AV-1-6	9.0	163	1.20	97	88	80	102	54
AV-1-7	6.2	133	1.21	76	69	63	81	44
AV-1-8	4.2	108	1.32	62	56	52	65	37

${ }^{\mathrm{a}} \mathrm{cm} . \quad{ }^{\mathrm{b}} \mathrm{cm}^{3} \mathrm{~mol} \cdot \mathrm{~g}^{-2}$.
at $25^{\circ} \mathrm{C} . M_{w}$ was constant in various solvents and $(20 \pm 0.4) \times 10^{4}$ was obtained as M_{w} for the fraction. This means that at least in this case the light scattering data can be, to the first approximation, analyzed assuming AN/VDC copolymer as homopolymer. Note that dielectric constants ε of the solvents used here lie in the narrow range (36.7-39.0) and the solvents having different ε were not available for light scattering measurements.

Table III collects $M_{w},\left\langle S^{2}\right\rangle_{z}^{1 / 2}$, and A_{2}, all evaluated from Zimm. plots, and $[\eta]$ for 8 fractions in various solvents at $25^{\circ} \mathrm{C}$.

The MHS equation between $[\eta]$ and M_{w} can be expressed by

$$
\begin{equation*}
[\eta]=K_{m} M_{w}^{a} \tag{1}
\end{equation*}
$$

where K_{m} and a are constants characteristic of a combination of polymer and solvent at a given temperature.
Figure 3 shows the log-log plots of $[\eta]$ and $M_{w} . K_{m}$ and a in eq 1 were calculated using the least-squares method and the results are summarized in Table IV. In the table, the data for PAN^{7} were compiled for comparison. The magnitude of $[\eta]$ for a given fraction decreases in the following order: DMAc \cong n-MP $>\mathrm{DMF}>\gamma$-BL $>70 \mathrm{wt} \%$ aq nitric acid. Change in the exponent a with solvent is almost in parallel to that of $[\eta]$. DMAc can be regarded as the best solvent for AN/VDC co-

Figure 3. Log-log plots of limiting viscosity number [η] versus weight-average molecular weight M_{w} for AN/VDC copolymer at $25^{\circ} \mathrm{C}: \bigcirc$, in DMAc; \square, in DMF; - in γ-butyrolactone; $\quad 70 \mathrm{wt} \%$ aq nitric acid; full line, PAN in DMAc; broken line, PAN in DMF.
polymer and $70 \mathrm{wt} \%$ nitric acid is expected to be near to a Flory's theta solvent (see, also Table III). In Figure 3 the relations for PAN/DMAc and PAN/DMF are shown as full and broken lines, respectively. In the same solvent PAN has $50-70 \%$ larger $[\eta]$ than that of AN/VDC copolymer, if these polymers have the same M_{w}. The exponent a for PAN is some 15% larger than for AN/VDC copolymer.

Figure 4 shows the log-log plots of $\left\langle S^{2}\right\rangle_{z}^{1 / 2}$ and M_{w} for AN/VDC copolymer in DMAc at $25^{\circ} \mathrm{C}$. The plots are linear and semiempirically expressed as

Table IV. K_{m} and a in the Mark-Houwink-Sakurada equations (eq 1), K_{γ} and γ in the relation between $\left\langle S^{2}\right\rangle_{z}^{1 / 2}$ and M_{w} (eq 2) and K_{β} and β in the relation between A_{2} and M_{w} (eq 3) for AN/VDC copolymer and PAN in various solvents at $25^{\circ} \mathrm{C}$

Polymer	Solvent	K_{m}	a	$K_{\gamma} \times 10^{8}$	γ	$K_{\beta} \times 10^{3}$	β
AN/VDC copolymer	DMAc	0.0999	0.603	0.384	0.530	5.77	-0.137
	DMF	0.102	0.591	-	-	-	-
	γ-BL	0.112	0.576	-	-	-	-
	n-M-P	0.114	0.595	-	-	-	-
R-PAN	$70 \mathrm{wt} \% \mathrm{HNO}_{3}$	0.142	0.521	-	-	-	-
	DMAc $^{\text {DMA }}$	0.0636	0.674	-	-	-	-
	DMF $^{\mathrm{a}}$	0.0520	0.690	0.317	0.551	16.8	-0.17
	DMSO $^{\mathrm{b}}$	0.153	0.600	0.337	0.54	-	-

${ }^{\text {a }}$ Reference 7. ${ }^{\text {b }}$ Reference 15.

Figure 4. Plots of the radius of gyration $\left\langle S^{2}\right\rangle_{z}^{1 / 2}$ as a function of weight-average molecular weight M_{w} for AN/VDC copolymer at $25^{\circ} \mathrm{C}$: \bigcirc, in DMAc; \square, in DMF; \triangle, in γ-butyrolactone; $\bullet, 70 \mathrm{wt} \%$ aq nitric acid.

$$
\begin{equation*}
\left\langle S^{2}\right\rangle_{z}^{1 / 2}=K_{\gamma} M_{w}^{\gamma} \tag{2}
\end{equation*}
$$

K_{γ} and γ are constants for a given combination of polymer and solvent at constant temperature and summarized in the 5th and 6th columns of Table IV. The figure also includes $\left\langle S^{2}\right\rangle_{z}^{1 / 2}$ data for a fraction AV-1-4 in other solvents. $\left\langle S^{2}\right\rangle_{z}^{1 / 2}$ decreases in the order: $\mathrm{DMAc}>\mathrm{DMF}>\gamma-\mathrm{BL}>70 \mathrm{wt} \%$ aq nitric acid. This is the same order as $[\eta] . \gamma$ can be indirectly evaluated from a, using the relation $\gamma=(1+$ a) $/ 3$ and $\gamma=0.534$ was calculated from $a=$ 0.603 for DMAc and this agrees well with the experimental value (0.530).

Figure 5 shows the molecular weight dependence of A_{2} by the light scattering for $\mathrm{AN} / \mathrm{VDC}$ copolymer in DMAc at $25^{\circ} \mathrm{C} . A_{2}$ is related to M_{w} through the relation,

$$
\begin{equation*}
A_{2}=K_{\beta} M_{w}^{\beta} \tag{3}
\end{equation*}
$$

Figure 5. Molecular weight dependence of the second virial coefficient A_{2} for AN/VDC copolymer in DMAc at $25^{\circ} \mathrm{C}$; broken line, PAN/DMF at $25^{\circ} \mathrm{C}$.

In Figure 5 the relation for $\mathrm{PAN} / \mathrm{DMF}^{7}$ is shown as a broken line. A_{2} of AN/VDC copolymer in DMAc is almost half that of PAN in DMF. This can be explained by the lower thermodynamic interaction of VDC component with DMAc or DMF, as estimated from lower solubility of poly(vinylidene chloride) in these solvents.
The unperturbed chain dimension A was evaluated using the following methods:

Method 2C (Baumann plot) ${ }^{11}$

$$
\begin{equation*}
\left(\left\langle S^{2}\right\rangle / M\right)^{3 / 2}=A^{3} / 6^{3 / 2}+1 /\left(4 \pi^{3 / 2}\right) B M^{1 / 2} \tag{4}
\end{equation*}
$$

where B is the long-range interaction parameter.

Method 2E (Stockmayer-Fixman plot) ${ }^{12}$

$$
\begin{equation*}
[\eta] / M^{1 / 2}=K+2(3 / 2 \pi)^{3 / 2} \Phi_{\mathrm{o}}(\infty) B M^{1 / 2} \tag{5}
\end{equation*}
$$

with

Table V. Unperturbed chain dimension A, long-range interaction parameter B, conformation parameter σ and characteristic ratio C_{∞} of AN/VDC copolymer and PAN in various solvents at $25^{\circ} \mathrm{C}$

Polymer	Solvent	$A \times 10^{8} / \mathrm{cm}$				$B \times 10^{27} / \mathrm{cm}^{3}$		σ	C_{∞}
		2C	2E	2F	Most probable	2C	2E		
AN/VDC copolymer	DMAc	1.11	0.98	0.98	0.98	1.36	0.88	2.57	14.4
	DMF	-	0.95	0.95	0.95	-	0.67	2.49	13.5
	γ-BL	-	0.94	0.94	0.94	-	0.49	2.46	13.2
	n-MP	-	1.00	1.00	1.00	-	0.90	2.62	15.0
	$70 \mathrm{wt} \% \mathrm{HNO}_{3}$	-	0.88	0.85	0.86	-	0.085	2.31	10.8
R-PAN	DMAc	-	1.05	1.05	1.05	-	2.23	2.49	12.3
	$\mathrm{DMF}^{\text {a }}$	1.09	1.05	1.05	1.06	2.33	2.32	2.51	12.6
	DMSO ${ }^{\text {b }}$	1.12	1.09	1.10	1.10	1.51	1.19	2.61	13.5

${ }^{\mathrm{a}}$ Reference 7. ${ }^{\mathrm{b}}$ Reference 15.

$$
\begin{equation*}
K=\Phi_{\mathrm{o}}(\infty) A^{3} \tag{6}
\end{equation*}
$$

Method $2 F$ (Kamide-Moore plot) ${ }^{13}$

$$
\begin{gather*}
-\log K_{m}+\log \left[1+2\left\{(a-0.5)^{-1}-2\right\}^{-1}\right] \\
=-\log K+(a-0.5) \log M_{0} \tag{7}
\end{gather*}
$$

where M_{o} can be approximated with a geometrical average of the upper and lower limits of molecular weights, in which the MHS equation applies.
Figure 6 shows Baumann and StockmayerFixman plots of AN/VDC copolymer and PAN in various solvents. Data for PAN were cited from literature. ${ }^{7}$

Table V summarizes A and B for $\mathrm{AN} /$ VDC copolymer, estimated by methods 2 C , 2 E , and 2 F . A value estimated by method 2 C is by $c a .10 \%$ larger than that by methods 2 E and 2 F . This small difference might be due to the homopolymer approximation employed in the light scattering measurement. A decreases in the following order: n-MP $>$ DMAc $>\mathrm{DMF}>\gamma$-BL $>70 \mathrm{wt} \%$ aq nitric acid. A increases gradually with B, but the solvent dependence is much more remarkable in B than in A. It is clear that $70 \mathrm{wt} \%$ aq nitric acid is near to a theta solvent, in which $B \cong 0$. In DMAc, B value of AN/VDC copolymer is about $1 / 3$ of that of PAN, sug-

Figure 6. a) Baumann plot for AN/VDC copolymer in DMAc. b) Stockmayer-Fixman plots: O, for AN/VDC copolymer in DMAc; \square, in DMF; \boldsymbol{O}, in γ-butyrolactone; \quad, in $70 \mathrm{wt} \%$ aq nitric acid; \triangle, for PAN in DMAc; Δ, in DMF.
gesting that an introduction of VDC monomer into PAN diminishes the solubility of the polymer in solvent suitable for PAN.

The conformation parameter σ and characteristic ratio C_{∞} were calculated from A by using the relation,

$$
\begin{equation*}
\sigma=A / A_{\mathrm{f}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\infty}=A^{2} M_{\mathrm{b}} / l^{2} \tag{9}
\end{equation*}
$$

A_{f} is A of a hypothetical chain with free internal rotation, l, the length of a repeating unit, and M_{b}, its molecular weight ($=35.5$). A_{f} $\left(0.381 \times 10^{-8} \mathrm{~cm}\right)$ is given by ${ }^{1,14}$

$$
\begin{equation*}
A_{\mathrm{f}}^{2}=w_{\mathrm{a}} A_{\mathrm{a}, \mathrm{f}}^{2}+\left(1-w_{\mathrm{a}}\right) A_{\mathrm{c}, \mathrm{f}}^{2} \tag{10}
\end{equation*}
$$

w_{a} is the weight fraction of AN (0.58), $A_{\mathrm{a}, \mathrm{f}}, A_{\mathrm{f}}$ of PAN ($=0.422 \times 10^{-8} \mathrm{~cm}$) and $A_{\mathrm{c}, \mathrm{f}}, A_{\mathrm{f}}$ of poly(vinylidene chloride) $\left(=0.313 \times 10^{-8} \mathrm{~cm}\right)$. The values of σ and C_{∞} appear in the 9th and 10th columns of Table V . These values are similar to those of PAN.

REFERENCES

1. K. Kamide, Y. Miyazaki, and H. Kobayashi, Polym. J., 14, 591 (1982).
2. Y. Shimura, J. Polym.Sci., A-2, 4, 423 (1966).
3. C. Ramireddy and V. Kalpagam, J. Polym. Sci., Polym. Phys. Ed., 14, 749 (1976).
4. Y. Shimura, Bull. Chem. Soc. Jpn., 40, 273 (1967).
5. D. B. Bailey and P. M. Henrichs, J. Polym. Sci., Polym. Chem. Ed., 16, 3185 (1978):
6. C. I. Carr and B. H. Zimm, J. Chem. Phys., 18, 1616 (1950).
7. K. Kamide, Y. Miyazaki, and H. Kobayashi, Polym. J., 17, 609 (1985).
8. A. Guyot, M. Dumont, Ch. Graillat, J. Guillot, and C. Pichot, J. Macromol. Sci., Chem., 9, 483 (1975).
9. F. R. Mayo and F. M. Lewis, J. Am. Chem. Soc., 66, 1594 (1944).
10. K. Kamide and H, Yamazaki, unpublished results.
11. H. Baumann, J. Polym. Sci., B, 3, 1069 (1965).
12.. W. H. Stockmayer and M. Fixman, J. Polym. Sci., C, 1, 137 (1963).
12. K. Kamide and W. R. Moore, J. Polym. Sci., B, 2, 1029 (1964).
13. P. J. Flory, "Statistical Mechanics of Chain Molecules," John Wiley \& Sons, New York, N. Y., 1969.
14. K. Kamide, H. Yamazaki, and Y. Miyazaki, Polym. $J .$, in press.

[^0]: ${ }^{\mathrm{a}} \mathrm{cm} . \quad{ }^{\mathrm{b}} \mathrm{cm}^{3} \mathrm{~mol} \cdot \mathrm{~g}^{-2}$.

