Proton Spin Lattice Relaxation in Vinylidene Fluoride/ Trifluoroethylene Copolymer I. Vinylidene Fluoride $\mathbf{7 2} \mathbf{~ m o l} \%$ Copolymer

Fumiaki ISHII and Akira Odajima
Department of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

(Received December 19, 1985)

Abstract

The proton spin lattice relaxation times T_{1} of drawn films of a VDF/ TrFE copolymer (VDF $72 \mathrm{~mol} \%$) were measured for various values of γ, which was the angle between the magnetic field and the draw direction of the film, and for different Larmor frequencies ω, over a temperature range from -23 to $130^{\circ} \mathrm{C}$. Three kinds of T_{1} relaxation processes were observed below the Curie temperature (T_{c}), around T_{c}, and at a certain temperature in the paraelectric phase. The curve of $\ln T_{1}$ against reciprocal temperature $1 / T$ was linear for the relaxation process in the paraelectric phase. The T_{1} became larger as the frequency ω and the angle γ increased.

The formulation of T_{1} in the paraelectric phase for the oriented copolymer was derived, using the non-exponential correlation function which describes a one dimensional diffusion motion of conformational defects along the chain. The existence of the 1-D diffusion motion of the conformation defect was confirmed by a reasonable agreement between the theoretical and experimental results.

KEY WORDS Nuclear Spin Lattice Relaxation / Vinylidene Fluoride / Trifluoroethylene Copolymer / Non-Exponential Correlation Function / Long-Time $\tau^{-1 / 2}$ Tails / Paraelectric Phase / 1-D Diffusion Motion / Conformational Defects /

The vinylidene fluoride (VDF) and trifluoroethylene (TrFE) copolymer is a ferroelectric polymer which exhibits the transition from ferro- to paraelectric phase. The Curie temperature, T_{c} and the transition behavior in the copolymer depend greatly on the VDF content. ${ }^{1}$ One of the features of the ferroelectric phase transition in this copolymer is that its mechanism is closely related to the change of the chain conformation from the all-trans form in the ferroelectric phase to the gauche form with the statistical combination of the $\mathrm{TG}^{ \pm}$and $\mathrm{T}_{3} \mathrm{G}^{ \pm}$rotational isomers in the paraelectric phase. ${ }^{1}$ In a previous paper, ${ }^{2}$ the temperature dependence of the NMR second moment in the drawn film of $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$ with VDF ($72 \mathrm{~mol} \%$) was measured for various values of
γ, which is the alignment angle between the draw direction of the film and the static magnetic field, and the motional modes of the chain in both phases were discussed. The second moment, $\left\langle\Delta H^{2}\right\rangle$, decreased in four stages in the temperature region between 23 and $130^{\circ} \mathrm{C}$. The decrement of the second moment, $\delta\left\langle\Delta H^{2}\right\rangle$ in each stage was dependent on the angle γ and gave rise to the concave curve against γ. The concave curve for the transition region was explained by the chain motion accompanying the conformational change from the all-trans form to the gauche from. At a higher temperature in the para-electric phase, the γ-dependence of the NMR line width was interpreted by the local field modulated by a one-dimensional (1-D) diffusion motion of the conformational defects along
the chain, of which the correlation function is dependent on time τ by the "one-half" law. ${ }^{2,3}$ The "long-time $\tau^{-1 / 2}$ tails" means that interchain interactions are extremely weak in comparison with intrachain interactions in the paraelectric phase.

A simple model of a one-dimensional "defect" diffusion has been elaborated by Hunt and Powles. ${ }^{4}$ The non-exponential correlation function in this model explains the concave curve of the spin-lattice relaxation time T_{1} against reciprocal temperature (T^{-1}) and the Bloch decay shape for n-isobutyl bromide, which could not be explained by the earlier analysis ${ }^{5}$ using the exponential correlation function.

Bloembergen ${ }^{6}$ has assumed the exponential correlation functions of the local field and derived the formulas of T_{1} of an isolated dipole pair rotating about a single fixed axis for two simple models: (i) random jumps between three equilibrium positions of the azimuthal angle ψ, and (ii) the statistical oscillation in the angle ψ at time t with the Gaussian distribution $g(\psi, t)$. The theoretical T_{1} for each model is strongly dependent on the angle γ between the axis of rotation and the magnetic field, and the angle β between its axis and the vector \vec{r}_{12} of the dipole pair.

In this paper, we report spin-lattice relaxation studies of the drawn films of $\mathrm{P}\left(\mathrm{VDF}_{72} /\right.$ TrFE 28), by using the pulse NMR technique. The T_{1} measurements of molecular relaxations are compared with the published data of dielectric, ${ }^{7}$ DSC, ${ }^{7}$ and NMR line width ${ }^{2}$ studies. It is shown that the non-exponential correlation function in the "defect" diffusion ${ }^{4}$ is the correlation function applicable for the local field in an isolated spin pair modulated by the 1-D diffusion motion of the conformation defect. A formula for T_{1} in an anisotropic system for the non-exponential correlation function is obtained as a function of the resonance frequency, the angles of γ and β, and the correlation time of the local field, on the basis of Bloembergen's theory.

Furthermore, we verify the existence of the 1-D diffusion motion in the paraelectric phase by showing a reasonable agreement between the theory and the experimental results.

THEORY

.Nuclear Spin-Lattice Relaxation Due to a OneDimensional Diffusion Motion of the Conformational Defect
 Correlation Function

Let us apply Hunt and Powles's theory ${ }^{4}$ to a 1-D diffusion motion of the conformational defect along a chain in the paraelectric phase described in the previous paper. ${ }^{2}$ We assume that the conformational defect distributes randomly in the chain and that the nearest defect is at a distance l from an isolated spin pair in the chain at a time $\tau=0$. If $P(\tau)$ is the probability that the conformational defect reaches the isolated spin pair in the time τ, the correlation function of the local field in an isolated spin pair modulated by the 1-D diffusion motion of the conformational defect equals the probability of the defect not having arrived after time τ, that is, $\varphi_{\mathrm{D}}(\tau)=1-$ $P(\tau)$. Hunt and Powles ${ }^{4}$ obtained the correlation function $\varphi_{\mathrm{D}}(\tau)$ as

$$
\begin{equation*}
\varphi_{\mathbf{D}}(\tau)=\exp \left(\frac{\tau}{\tau_{\mathbf{D}}}\right)\left\{1-\operatorname{erf}\left(\left(\frac{\tau}{\tau_{\mathrm{D}}}\right)^{1 / 2}\right)\right\} \tag{1}
\end{equation*}
$$

Figure 1. Relation between the laboratory coordinate (x, y, z) and the crystal coordinate (a, b, c).
where $\operatorname{erf}\left(\tau / \tau_{\mathrm{D}}\right)$ is the error function. τ_{D} is the correlation time and is defined as $\tau_{\mathrm{D}}=l_{\mathrm{d}}{ }^{2} / D$, where $2 \cdot l_{\mathrm{d}}$ is the mean distance between conformational defects and D is the diffusion coefficient.
For $\tau_{\mathrm{D}} \ll \tau$, eq 1 is approximated by*

$$
\begin{equation*}
\varphi_{\mathrm{D}}(\tau)=\frac{1}{2} \tau_{\mathrm{D}}^{1 / 2} \tau^{-1 / 2} \tag{2}
\end{equation*}
$$

Equation 2 is equivalent to the correlation function of the local magnetic field described in the previous paper. ${ }^{2,3}$

Anisotropy

Since the c-axis orientation coefficient for the drawn film of $\mathrm{P}\left(\mathrm{VDF}_{72} / \operatorname{TrFE}_{28}\right)$ is $0.98,{ }^{2}$ the c-axis may be preferentially oriented to the draw direction, M-axis. Figure 1 shows the relationship between the laboratory coordinate (x, y, z) and the crystalline coordinate (a, b, c), in which the c-axis is parallel to M-axis, and the angles β and $\psi(t)$ are, respectively, the polar and azimuthal angles of the vector $\vec{r}_{12}(t)$ in an isolated spin pair. In general, Hamiltonian of the nuclear magnetic dipole-dipole interaction, $H_{\mathrm{d}}(t)$, in the two spin (1 and 2) system under the static magnetic field H_{0} is represented by

$$
\begin{equation*}
H_{d}(t)=\sum_{p=-2}^{2} F_{12}^{(-p)}(t) A_{12}^{(p)} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& F_{12}^{(0)}(t)=1 / 2 K\left(1-3 \cos ^{2} \theta_{12}\right) \equiv P_{0}^{(2)}\left(\theta_{12}\right) \\
& F_{12}^{(\pm 1)}(t)=-3 / 2 K \sin ^{2} \theta_{12} \cos \theta_{12} \exp \left(\pm i \phi_{12}\right) \\
& \equiv P_{ \pm 1}^{(2)}\left(\theta_{12}, \phi_{12}\right) \\
& F_{12}^{(\pm 2)}(t)=-3 / 4 K \sin ^{2} \theta_{12} \exp \left(\pm 2 i \phi_{12}\right) \\
& \equiv P_{ \pm 2}^{(2)}\left(\theta_{12}, \phi_{12}\right) \tag{4a}\\
& \quad K=\gamma_{1} \gamma_{2} n^{2} r_{12}^{-3}
\end{align*}
$$

and

$$
\begin{align*}
A_{12}^{(0)} & =I_{1} I_{2}-3 I_{1}^{z} I_{2}^{z} \\
A_{12}^{(\pm 1)} & =I_{1}^{2} I_{2}^{ \pm}+I_{1}^{ \pm} I_{2}^{z} \tag{4b}\\
A_{12}^{(\pm 2)} & =I_{1}^{ \pm} I_{2}^{ \pm}
\end{align*}
$$

where $\theta_{12}(t)$ and $\phi_{12}(t)$ are, respectively, the polar and azimuthal angles of $\vec{r}_{12}(t)$ in the (x, y, z) coordinate. The T_{1} in the two-spin system obtained by Bloembergen ${ }^{6}$ is given by

$$
\begin{equation*}
\frac{1}{T_{1}}=2\left(W^{(1)}(\omega)+W^{(2)}(2 \omega)\right) \tag{5}
\end{equation*}
$$

If $\left|m_{1}\right\rangle$ and $\left|m_{2}\right\rangle$ are two eigenstates of the unperturbed Hamiltonian with the corresponding energy E_{1} and E_{2}, the transition probability per unit time between these two states, $W^{(q)}(q \omega)$ is expressed as

$$
\begin{align*}
W^{(q)}(q \omega)= & \frac{q}{2 \hbar^{2}}\left\langle A_{12}^{(p)}\right\rangle \int_{-\infty}^{\infty}\left\langle F^{(p)}(0) F^{(-p)}(\tau)\right\rangle \mathrm{e}^{i q \omega \tau} \mathrm{~d} \tau \\
& \left.=\left.\frac{q}{2 \hbar^{2}}\left\langle A_{12}^{(p)}\right\rangle\langle | F^{(p)}(0)\right|^{2}\right\rangle \\
& \times \int_{-\infty}^{\infty} \varphi_{12}^{(q)}(\tau) \mathrm{e}^{i q \omega \tau} \mathrm{~d} \tau, \quad q=|p| . \quad \text { (6a) } \tag{6a}
\end{align*}
$$

* $\{1-\operatorname{erf}(x)\}$ is represented by the asymptotic expansion as

$$
1-\operatorname{erf}(x) \sim \int_{x}^{\infty} \mathrm{e}^{-t^{2}} \mathrm{~d} t-\mathrm{e}^{-x^{2}} \sum_{n=0}^{\infty}(-2)^{n} \frac{(2 n-1)!!}{2^{n+1} x^{2 n+1}}
$$

Since the first term for $n=0$ on the right side is dominant for $x \rightarrow \infty$, the error function takes the simpler form

$$
\operatorname{erf}(x)=1-\frac{1}{2 x} \exp \left(-x^{2}\right) \quad(x \rightarrow \infty)
$$

Therefore, if $x=\left(\tau / \tau_{\mathrm{D}}\right)^{1 / 2}$, eq 1 is approximated by

$$
\varphi_{\mathrm{D}}(\tau)=\frac{1}{2} \tau_{\mathrm{D}}^{1 / 2} \tau^{-1 / 2} \quad\left[\tau / \tau_{\mathrm{D}} \rightarrow \infty\right]
$$

where

$$
\begin{align*}
& \varphi^{(\mathrm{q})}(\tau)=\left\langle\mathrm{e}^{ \pm \mathrm{i} \phi(0)} \mathrm{e}^{ \pm \mathrm{i} \phi \phi(\tau)}\right\rangle \tag{6b}\\
& \left.\left\langle A_{12}^{(\mathrm{p}}\right\rangle=\left|\left\langle m_{1}\right| A_{12}^{(\mathrm{p})}\right| m_{2}\right\rangle\left.\right|^{2}
\end{align*}
$$

and ω is the angular resonance frequency.
Conformational defects emerged thermally in the chain move along the chain axis as the $1-$ D diffusion motion. ${ }^{2}$ The transition probability, $W^{(q)}(q \omega)$, is calculated by assuming that $H_{\mathrm{d}}(t)$ is modulated by the 1-D diffusion motion and

$$
\begin{equation*}
\varphi_{12}^{(1)}(\tau)=\varphi_{12}^{(2)}(\tau)=\varphi_{\mathrm{D}}(\tau) \tag{7}
\end{equation*}
$$

Then, T_{1} of the 1-D diffusion motion is represented by**

$$
\frac{1}{T_{1}}=\frac{9}{8} \frac{\gamma^{4} \hbar^{2}}{\gamma_{12}^{6}}\left\{\left[\sin ^{2} \beta \cos ^{2} \beta\left(4 \cos ^{4} \gamma-3 \cos ^{2} \gamma+1\right)\right.\right.
$$

$$
\left.+\frac{1}{4} \sin ^{4} \beta\left(1-\cos ^{4} \gamma\right)\right] \frac{\tau_{\mathrm{D}}}{1+\omega^{2} \tau_{\mathrm{D}}^{2}}
$$

$$
\times\left(\frac{1+\omega \tau_{\mathrm{D}}}{\sqrt{2 \omega \tau_{\mathrm{D}}}}-1\right)
$$

$$
+\left[2 \sin ^{2} \beta \cos ^{2} \beta\left(1-\cos ^{4} \gamma\right)\right.
$$

$$
\left.+\frac{1}{8} \sin ^{4} \beta\left(1+6 \cos ^{2} \gamma+\cos ^{4} \gamma\right)\right]
$$

$$
\begin{equation*}
\left.\times \frac{\tau_{\mathrm{D}}}{1+4 \omega^{2} \tau_{\mathbf{D}}^{2}}\left(\frac{1+2 \omega \tau_{\mathrm{D}}}{2 \sqrt{\omega \tau_{\mathrm{D}}}}-1\right)\right\} \tag{8}
\end{equation*}
$$

EXPERIMENTAL

The sample used was the film of a random

Figure 2. $T N M$ coordinate fixed in the drawn film. The direction of the magnetic field H_{0} is specified by the alignment angle γ.
copolymer $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$ supplied by the Daikin Kogyo Co., Ltd. The film was drawn $\times 4.5$ uniaxially at room temperature and annealed at $135^{\circ} \mathrm{C}$ for 20 h . Its final draw ratio was 3.8 and its thickness was $97 \mu \mathrm{~m}$.

The measurement of proton magnetic resonance was carried out by a Bruker SXP 4100 NMR spectrometer operating mainly with the resonance frequencies of 20,36 , and 90 MHz over a temperature range from -23 to $130^{\circ} \mathrm{C}$. The films were packed in the glass sample holder of a square pillar suspended from a goniometer head to permit a continuous variation of γ. Figure 2 illustrates the TNM coordinates fixed to the sample. The magnetic field H_{0} applied was in the plane containing the drawn axis M and the normal axis N. The alignment angle γ was varied to 0,45 , and 90° at temperatures ranging from -23 to $130^{\circ} \mathrm{C}$. Free induction decay of proton magnetization could be observed from 5$10 \mu \mathrm{~s}$ after the $2.9 \mu \mathrm{~s} 90^{\circ}$ pulse. The null

[^0]

method of a $180^{\circ} \mathrm{C}-\tau-90^{\circ}$ pulse sequence was used to determine T_{1} with a precision of 0.5 0.8%.

EXPERIMENTAL RESULTS

Figures 3a, b, and c show the $\ln T_{1} v s$. Tcurves of $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$ for $\gamma=0,45$, and 90°, respectively. The filled and unfilled circles indicate the values of T_{1} for the temperature rise from -23 to $130^{\circ} \mathrm{C}(\uparrow)$ and for its fall from 130 to $-23^{\circ} \mathrm{C}(\downarrow)$, respectively. Here, the temperature rising and falling in a thermal cycle are taken as \uparrow - and \downarrow-processes, respectively. In the \uparrow-process, the T_{1} 's plotted against T give

Figure 3. Temperature dependences of T_{1} for $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$: (a) $\gamma=0^{\circ}$, (b) $\gamma=45^{\circ}$, and (c) $\gamma=90^{\circ}$. The filled circles and unfilled circles indicate T_{1} in the \uparrow and \downarrow-processes, respectively. The insect in Figure 3a shows the behavior of T_{1} above $80^{\circ} \mathrm{C}$ in the \uparrow process ($\boldsymbol{\bullet}$, first run; $\boldsymbol{\phi}$, second run).

Table I. Classification of spin relaxation processes in $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$

\uparrow-Process		\downarrow-Process	
Relaxation process	Temperature range	Relaxation process	Temperature range
	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$
β (\uparrow)	50-100	β (\downarrow)	50-65
$\alpha_{t} \quad$ ($\left.\uparrow\right)$	110-120	α_{1} (\downarrow)	70-95
α_{b}^{\prime} ()	120-130	α_{b}^{\prime} (\downarrow)	95-130

the concave curves in two temperature ranges from 50 to $100^{\circ} \mathrm{C}(\uparrow)$ and from 110 to $120^{\circ} \mathrm{C}$ (\uparrow), in which the relaxation processes are referred to as $\beta(\uparrow)$ and $\alpha_{\mathrm{t}}(\uparrow)$, respectively, (Hereafter, the same notations as those in the previous paper ${ }^{2}$ are used.) The T_{1} 's in these ranges are minimal at $88^{\circ} \mathrm{C}(\uparrow)$ and $115^{\circ} \mathrm{C}(\uparrow)$. Below $115^{\circ} \mathrm{C}, T_{1}$ increases in the order of $\gamma=0$, 90 , and 45°, and increases in the order of $\gamma=0$, 45 , and 90° between 115 and $127^{\circ} \mathrm{C}(\uparrow)$. In the \downarrow - process, T_{1} decreases gradually with decreasing temperature and are minimal at $79^{\circ} \mathrm{C}$ (\downarrow). In the temperature range between 70 and

Table II. The temperatures of T_{1} minima in $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$ in the heating and cooling processes

	T_{1}	H^{a}	$\Delta \varepsilon^{-1 \mathrm{~b}}$	$\mathrm{DSC}^{\mathrm{b}}$
$T_{\mathrm{c}}(\uparrow) /{ }^{\circ} \mathrm{C}$	115	116	134	114
$T_{\mathrm{c}}(\downarrow) /{ }^{\circ} \mathrm{C}$	79	80	84	75

${ }^{\text {a }}$ Observed from the discontinuous narrowing of the NMR line width. ${ }^{2}$
${ }^{\mathrm{b}}$ Observed from the minimum of the reciprocal dielectric relaxation strength $1 / \Delta \varepsilon^{7}$ and the endotherm starting point on the DSC curve. ${ }^{7}$

Figure 4. T_{1} at $110^{\circ} \mathrm{C}$ in the cooling process as a function of resonance angular frequency for $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)\left(\bigcirc, \gamma=0^{\circ} ; \square, \gamma=45^{\circ}\right.$, and O , $\gamma=90^{\circ}$).
$65^{\circ} \mathrm{C}(\downarrow)$, the T_{1} increases abruptly and at $40^{\circ} \mathrm{C}$ (\downarrow) returns to the value in the \uparrow-process. The β relaxation is observed slightly in the temperature region between 65 and $40^{\circ} \mathrm{C}(\downarrow)$, although the T_{1} minimum is not observed. The concave region with the minimum at $79^{\circ} \mathrm{C}(\downarrow)$ is referred to as $\alpha_{\mathrm{t}}(\downarrow)$. The T_{1} values become larger in the order of $\gamma=0,45$, and 90° in the temperature range from 127 to $75^{\circ} \mathrm{C}(\downarrow)$, and $\gamma=0,90$, and 45° below $75^{\circ} \mathrm{C}(\downarrow)$. In Table I, the temperature ranges of $\beta(\uparrow), \beta(\downarrow), \alpha_{t}(\uparrow)$, and $\alpha_{t}(\downarrow)$ in the \uparrow - and \downarrow-processes are summarized. The temperatures of the T_{1} minima in the \uparrow - and \downarrow-processes are referred to as $T_{\mathrm{c}}(\uparrow)$ and $T_{\mathrm{c}}(\downarrow)$, respectively, and are tabulated in Table II.

Figure 4 shows $\ln T_{1}$ at $110^{\circ} \mathrm{C}(\downarrow)$ as a function of $\ln \omega$. The filled circle and the unfilled rectangle and circle indicate the values of T_{1} for $\gamma=0,45$, and 90° in the \downarrow-process, respectively. For each orientation, a linear relationship can be observed and the values of T_{1} increase further with increasing of γ.

DISCUSSION

As shown in Table II, $T_{\mathrm{c}}(\uparrow)$ and $T_{\mathrm{c}}(\downarrow)$ in $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$ agree approximately with the transition temperatures obtained from the dielectric, ${ }^{7}$ DSC 7 and wide line NMR measurements. ${ }^{2}$ This agreement may be attributed to the critical slowing down of the molecular motion near $T_{\mathrm{c}}{ }^{9}$ that the T_{1} minima locate in the $\alpha_{t}(\uparrow)$ and $\alpha_{t}(\downarrow)$ regions.

Figure 5 shows the relaxation map in the \uparrow process, where the logarithm of the relaxation frequencies $\left(\ln f_{\mathrm{r}}\right)$ are plotted as a dashed line against T_{-1} based on the results of the dielectric measurement for $\mathrm{P}\left(\mathrm{VDF}_{73} / \mathrm{TrFE}_{27}\right) .{ }^{10}$ This curve is of the Willian-Watt type which may be due to molecular motion of the chain backbone in partially crystalline regions. ${ }^{7,10}$ In this relaxation map, the temperatures of the line-width narrowing and the T_{1} minima at 90 , 36 , and 20 MHz for the β and α_{1} relaxation processes in $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$ are also shown. (Here, the α_{b} relaxation process described in the previous paper ${ }^{2}$ was not observed.) The NMR data for the β relaxation process locate in the neighborhood of the $\ln f_{\mathrm{r}}$ vs. T^{-1} curve. While, the temperature of T_{1} minimum for the α_{t} which are plotted as filled square is independent of the relaxation frequency. This finding also supports that the α_{t} relaxation process is attributed to the ferroelectric phase transition. It should be here noted that no T_{1} minimum in the β-relaxation process is observed in the \downarrow-process and a discontinuity is observed in the T_{1} vs. T curves at about $67^{\circ} \mathrm{C}$ for each orientation of the sample. The latter finding suggests that the transition from ferroto paraelectric phase is of the first order.

Figure 5. The relaxation map of $\mathrm{P}\left(\mathrm{VDF}_{73} / \mathrm{TrFE}_{27}\right)$ and $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$ in the heating process. The dashed line (\cdots) represents the logarithim plot of resonance frequency $v s$. reciprocal temperature in $\mathrm{P}\left(\mathrm{VDF}_{73} / \mathrm{TrFE}_{27}\right) \cdot{ }^{10}$ The filled circles (\odot) and filled squares (■) indicate the temperatures of $T_{1 \text { min }}$ in $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$ for β and α_{t} relaxation processes, respectively. The unfilled circles (O) and squares (\square) represent temperatures of the NMR line width narrowing for the β and α_{1} relaxation processes in $\mathrm{P}\left(\mathrm{VDF}_{72} / \mathrm{TrFE}_{28}\right)$, respectively. ${ }^{2}$

Since the vector \vec{r}_{12} for an isolated spin pair in the chain is perpendicular to the chain axis, the β indicated in Figure 1 becomes 90°. Therefore, at the high temperature limit, $\omega \tau_{\mathrm{D}} \ll 1$, eq 8 reduces to

$$
\begin{align*}
\frac{1}{T_{1}}= & A\{(1+2 \sqrt{2}) \\
& \left.+6 \cos ^{2} \gamma(1-2 \sqrt{2}) \cos ^{4} \gamma\right\} \omega^{-1 / 2} \tau_{\mathrm{D}}{ }^{1 / 2} \tag{9}
\end{align*}
$$

where $A=9 / 128 \gamma^{4} n^{2} I(I+1) r_{12}{ }^{-6}$. Now we assume the variation of τ_{D} with $T(\mathrm{~K})$, as follows:

$$
\begin{equation*}
\tau_{\mathrm{D}}=\tau_{0} \exp (\Delta E / R T) \tag{10}
\end{equation*}
$$

where ΔE is the activation energy and τ_{0} is the correlation time for $T=\infty$. Inserting eq 10 into

Figure 6. Plots of logarithim T_{1} against reciprocal temperature for the cooling process in $\mathrm{P}\left(\mathrm{VDF}_{72} /\right.$ TrFE_{28}). The filled and unfilled circles, and the unfilled triangles indicate T_{1} 's for $\gamma=0,45$, and 90°, respectively.
eq 9 and taking the logarithm of both sides lead to

$$
\begin{align*}
\ln T_{1}= & -\frac{1}{2}\left(\frac{\Delta E}{R T}\right)+\frac{1}{2} \ln \omega-\frac{1}{2} \ln \tau_{0} \\
& -\ln \left\{(1+2 \sqrt{2})+6 \cos ^{2} \gamma\right. \\
& \left.+(1-2 \sqrt{2}) \cos ^{4} \gamma\right\}+\ln A \tag{11}
\end{align*}
$$

This equation shows that in the high temperature region, the plots of the $\ln T_{1}$ against T^{-1} and the plots of the $\ln T_{1}$ against $\ln \omega$ yield straight lines with the slopes $-\Delta E / 2 R$ and 0.5 , respectively. The plots of the $\ln T_{1}$ vs. T^{-1} shown in Figure 6 yield straight lines in the temperature region between 95 and $127^{\circ} \mathrm{C}(\downarrow)$. Then, we present here an interpretation for the experimental results for $\gamma=0,45$, and 90° as follows: (i) The slope observed for the straight lines shown in Figure 4 agrees with the theoretical value, 0.5 . (ii) The activation energy ΔE is determined to be 8.2 kcal mol^{-1} from the slope of the straight line by using eq 11 .

For certain values of ω and T (or τ_{D}), eq 11 predicts that T_{1} takes the minimum for $\gamma=0^{\circ}$ and the maximum for $\gamma=90^{\circ}$. The theoreti-
cal ratios of T_{1} 's for $\gamma=45$ and 90° to that for $\gamma=0^{\circ}$ are 1.26 and 2.1 , respectively. These values agree qualitatively with the averaged ratios 1.28 and 1.4 obtained from the experimental data for $\gamma=0,45$, and 90° at various temperatures from 95 to $127^{\circ} \mathrm{C}(\downarrow)$. The relaxation process due to the 1-D diffusion motion is referred to as α_{b}^{\prime}. The temperature ranges of the α_{b}^{\prime} relaxation in the \uparrow - and \downarrow-processes are also shown in Table I.
Thus the existence of a 1-D diffusion motion of the conformational defects in the paraelectric phase discussed in the previous paper 2 is verified from the agreements between the theoretical and experimental results on the spin lattice relaxation.

CONCLUSION

For the drawn film of $\mathrm{P}\left(\mathrm{VDF}_{72} / \operatorname{TrFE}_{28}\right)$, three kinds of T_{1} relaxation processes of α_{b}^{\prime}, α_{t}, and β except α_{b}, which were described in the previous paper, ${ }^{2}$ were observed in the temperature region between 40 and $130^{\circ} \mathrm{C}$. The relaxation may be attributed to the molecular motion of the chain backbone in partially crystalline regions. The α_{t} relaxation was caused by a ferro-to-paraelectric phase transition of the first order. The T_{1} for the $\alpha_{\mathrm{b}}^{\prime}$ relaxation in the paraelectric phase increased with increasing of ω, γ, and temperature T. On the base of Bloembergen's theory, ${ }^{6} T_{1}$ was theoretically derived in terms of the non-exponential correlation function obtained by Hunt and Powles. ${ }^{4}$

The existence of a 1-D diffusion motion of the conformational defect in the paraelectric phase was confirmed by a reasonable agreement between the theoretical and the experimental results.

Acknowledgements. The authors are grateful to Dr. Hiroji Ohigashi of Engineering Research Laboratories, Toray Industries Inc., for helpful discussions, and Drs. Syun Koizumi, Junichi Sako, Toshiharu Yagi and Yoshihide Higashihata of the Daikin Kogyo Co., Ltd., for supplying samples of VDF/ TrFE copolymers.

REFERENCES

1. K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, and H. Tadokoro, Polymer, 22, 1312 (1981).
2. F. Ishii, A. Odajima, and H. Ohigashi, Polym. J., 15, 875 (1983).
3. R. E. Diez, F. R. Merritt, R. Dingle, D. Hone, B. G. Silibernagel, and P. M. Richards, Phys. Rev. Lett., 9, 1186 (1971).
4. B. I. Hunt and J. G. Powles, Proc. Phys. Soc., 88, 513 (1966).
5. J. G. Powles and K. Luszczynski, Physica, 25, 455 (1959).
6. N. Bloembergen, Phys. Rev., 104, 1542 (1956).
7. N. Koizumi, N. Haikawa, and H. Habuta, Ferroelectrics, 57, 99 (1984).
8. M. E. Rose, "Elementary Theory of Angular Momentum," John Willy \& Sons, Inc., New York, London, 1961, Chapter IV.
9. T. Furukawa, G. E. Johnson, and H. E. Bair, Ferroelectrics, 32, 61 (1981).
10. N. Haikawa and N. Koizumi, Polym. Prepr., Jpn., 31, 2902 (1982).

[^0]: ** In the derivation of eq 8 , the calculation of $\left.\left.\langle | F^{(p)}(0)\right|^{2}\right\rangle$ is made under transformation from the spherical harmonics $P_{m}^{(2)}\left(\beta_{12}, \psi_{12}\right)$ to $P_{m}^{2}\left(\theta_{12}, \phi_{12}\right)^{8}$ as follows:

 $$
 P_{m}^{(2)}\left(\theta_{12}, \phi_{12}\right)=\sum_{m=-2}^{2} D_{m m}^{(2)}(0, \gamma, 0) P_{m}^{(2)}\left(\beta_{12}, \psi_{12}\right), \quad(m=p)
 $$

 where $D_{m m^{\prime}}^{(2)}(0, \gamma, 0)$ is Wigner's rotation matrix. Wigner's matrix has the following functional dependence on the Eular angle γ :

 $$
 D_{m m}^{(2)}(0, \gamma, 0)=\left[\frac{\left(2+m^{\prime}\right)!\left(2-m^{\prime}\right)!}{(2+m)!}(2-m)!\right]\left(\cos \frac{\gamma}{2}\right)^{m+m^{\prime}}\left(\sin \frac{\gamma}{2}\right)^{m-m^{\prime}}{ }_{1}^{\left(m-m^{\prime}, m+m^{\prime}\right)}(\cos \gamma)
 $$

