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ABSTRACT: An attempt was made to construct a quasi-ternary system cons1stmg of 
multicomponent polymers dissolved in binary solvent mixture (solvents I and 2) to derive the 
equations of spinodal and neutral equilibrium conditions and to clarify the effects of three 
thermodynamic interaction x-parameters between solvent I and solvent 2, solvent I and polymer, 
and solvent 2 and polymer(x12 , x13 , and x23) and the weight-average degree of polymerization 
and the ratio of to the number-average degree of polymerization of the original polymer on 
the spinodal curve and the critical points (the critical concentration calculated from the above 
mentioned equations. The cloud point curve was also calculated indirectly from coexisting curve 
evaluated according to a method in our previous papers and constant (starting polymer volume 
fraction) line. The cross point of a constant line and a coexisting curve is a cloud point. The cloud 
point curve thus calculated was confirmed to coincide, as theory predicted with the spinodal curve, 
at the critical point. decreases with an increase in X12 , x23 , and and increases with an increase 
in x13 and 

KEY WORDS Quasi-Ternary Polymer Solution 1 Spinodal Curve I Critical 
Solution Point I x-Parameter ! Cloud Point Curve I Average Degree of 
Polymerization I 

Recently, Kamide, Matsuda and their col­
laborators proposed a theoretical method for 
calculating a cloud point curve (CPC) and 
critical solution point (CSP) of a quasi-binary 
solution consisting of multicomponent poly­
mers in a single solvent on the basis of the 
polydispersity of the original polymer and 
the concentration- and ·molecular weight­
dependences of the polymer-solvent thermo­
dynamic interaction parameter X· 1 They dis­
closed the effects of the concentration de­
pendence of x and the molecular characteris­
tics (i.e., the weight-average and the breadth of 
the molecular weight distribution (MWD)) on 
CPC and CSP in a systematic manner. 
Koningsveld and Staverman2 also derived for 

a quasi:binary system a rigorous expression of 
the critical point, where the concentration 
dependence of x-parameter was considered 
along with the polydispersity of polymer and 
proposed a method for estimating the con­
centration dependent parameter of x using the 
experimental CSP data. But they did not in­
vestigated systematically CSP for the system. 
Kamide and Matsuda3 -s established a theory 
and a computer simulation technique, based 
on the theory, of the phase equilibrium of a 
quasi:.ternary system consisting of multicom­
ponent polymers dissolved in binary solvent 
mixture. They studied (i) a suitable choice of 
solvent I and solvent 2 (three thermodynamic 
interaction parameters between solvent 1-2 
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(x12), polymer-solvent 1 (X13) and polymer­
solvent 2 (x23)),3 (ii) role of initial concen­
tration and relative amounts of polymers dis­
solved in two phases,4 (iii) effects of average 
molecular weight and MWD of the original 
polymer,5 and (iv) effects of concentration 
dependence of three thermodynamic interac­
tion parameters6 for two-phase equilibrium of 
quasi-ternary systems. As early as 1949, Scott1 
derived equations giving CSP of a ternary 
system consisting monodisperse polymer, sol­
vent and non-solvent. Two equations derived 
by Scott for spinodal and so-called neutral 
equilibrium conditions (i.e., eq 25 and 26 in ref 
7) are, as will be discussed in more detail, not 
thermodynamically consistent and in partic­
ular the latter equation is incorrect. Kurata8 

proposed general and strict equations of CSP 
of the mixed solvent system including a ternary 
system, consisting of the monodisperse poly­
mer dissolved in a binary solvent mixture. 
All the studies made by Tompa,9 Bamford 
and Tompa,10 Okamoto,11 and Nakagaki and 
Sunada, 12 who put their theoretical starting 
point on the Scott equations, are obviously not 
theoretically rigorous. Of course, no theoreti­
cal study has ever been published on CPC and 
CSP of quasi-ternary system. 

In this article, an attempt is made to estab­
lish a theory of CSP of quasi-ternary system, 
studying the effects of X12 , X13 , and x23 and that 
of and of the original polymer on 
CSP and to propose a method· for calculat­
ing indirectly CPC for the system, as inter­
cepts of line of constant starting concentra­
tion = vg;(v? + vg); v?, volume of solvent 
1, vg, volume of polymer) with a coexisting 
curve theoretically obtained. 

olllG'I olllG'I 
ov2 ovx, 

lllG"I= LlG{N llG{l 
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THEORETICAL BACKGROUND 

The spinodal for quasi-ternary system IS 

given by 

LlG{N llG{l flG{m 

lllG'I= =0 

(1) 

and the Gibbs free energy change of mixing 
per unit volume, !lG' is given by 

LlG'=v1 (Llj11)+v2 (LlJ12)+ I vx,(Llflx,) 
Vo Vo i=1 xjvO 

(2) 

and !lG ti is defined by eq 3 

- ( fJ2/lG' ) 
IJ OVx,OVXj T, P, v._ 

(i,j=N,l,2, · · ·,m; k#i,j) (3) 

V0 is the molar voiume of solvents 1 and 2, v1 

and v2 , the volume fraction of solvents 1 and 2, 
vx, (i= 1, 2, · · ·, m), the volume fraction of X;­
mer, LlJ11 , LlJ12 , and LlJlx,• the chemical poten­
tial of solvent 1, solvent 2, and X;-mer, m, the 
total number of the components making up 
the polymer. In eq 1 and 3, the suffix N de­
notes non-solvent (in this case, solvent 2) in 
order to distinguish the component of the 
polymer (i = 2) and the suffixes T and P are 
temperature and pressure respectively. 

The neutral equilibrium condition is ex­
pressed by eq 4. 

olllG'I olllG'I 
0VX2 ovx, 

llG{z flG{m =0 (4) 

. llG 
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We assume that (a) three thermodynamic in­
teraction parameters Xii (i <j, and i, j = 1, 2, 3) 
are independent of polymer molecular weight 
and concentration, (b) the molar volume of 
solvent 1 is the same as that of solvent 2, (c) 
polymer, solvents 1 and 2 are volumetrically 
additive, and (d) the densities of polymer, 
solvents 1 and 2 are the same (=unity). 

Then df.11 , df.12 , and df.lx, in eq 2 are given by3 

df.11 =RT[ln v1 + ( 1- ;Jvv 

( V0 ) -, _ RT !J.Gii=M + X13 + Xz3- X12 =M +K 

(for i=fj, i or j=N) (9b) 

( V0 ) 1 . !J.Gii=M+-+2(X13 -X12)=M+U 
RT v2 

(for i=j=N) (9c) 

( :o )a .. =M +-1-=M +M· 
RT '1 X;vx, ' 

(for i = j =f N) (9d) 

J Combining eq 9a-9d with eq 1 and 4, we 
+ X1zvz(1- vi)+ X13Vp(1- vl)- Xz3vzvv finally obtain eq 10 and 11, respectively (see 

Appendix A) to give the composition of CSP. 
(5) 

df.1z=RT[lnvz+(1- ;Jvp el + V1z + v11 -2x13) 

+ x12v1 (1- v2 ) + X23 vp(1- v2)- X13V1 vP J 

df.1x,=RT[1n vx, -(X;-1)+ x{ 1-;.}P 

+X;{x13vl(l-vP)+ Xz3Vz(l-vP) 

(6) 

(7) 

where R is the gas constant, vP' the polymer 
m 

volume fraction ( = L: vx). Substitution of eq 

5, 6, and ·7 into eq 2 yields 

-, (RT)[ 1 1 vx !J.G = - V1 n V1 + V2 n Vz + L, -..!.Jn Vx, 
Vo i=! Vo 

+ XtzVt Vz + X!3VI vP + Xi3VzVp J (8) 

From eq 3 and 8, we obtain 

(9a) 
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(10) 

[ 1 (1 1) 1(1 ) -- --- +- --2xz3 
· vi vf V2 

1 { 1 2x13 2xz3 
+ + v1v2 ----;-;-----;-;-

+ 2(X12X!3 + X!3Xz3 + Xz3X12) 

-(xiz + xi3 + J=o (11) 

Note that the following relation holds 

(12) 

Equations 10 and 11 are evidently symmetrical 
with respect to the exchange of solvents 1 and 
2 (see Appendix B). By solving simultaneous 
equations (eq 10-12) with given and of 
the original polymer and X12 , x13 , and X23 , we 
can calculate v1, v2 , and vv at critical point, 
referred to as vL and 
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The conditions of spinodal and neutral 
equilibrium for monodisperse polymer with X 
in binary solvent mixture are given by eq I ' 
and eq 4', respectively. 

dGlN 

li1G"I= olt1G'I 
ov2 

I =O 
dGxx 

olt1G'I =O 
ovx 

(1') 

(4') 

where vx is the volume fraction of the X-mer. 
From eq 1' and 4' we obtain eq 10' and 11 ', 
respectively. 

( _.!._+_.!._-2x12)(-1-. +_.!._-2x13) 
v1 v2 vxX v1 

-e1
1 
+xz3-xl3-xl2Y =o (10') 

[vx
1x Ci- + :f (:2- 2X23) 

- (:1 - 2X13) Je:x + v11 - 2x13) 

-ell+ Xz3- X13- X12 )L1i el2- 2x23) 

1 1 { 1 2x13 2xz3 
+ vfvxX + vx v1v2 

+ 2(X12X13 + X13Xz3 + Xz3X12) 

-(xiz + xi3 + J=o (11') 

In deriving eq 10' and 11 ',reduced eq 2 to the 
case of a monodisperse polymer (i.e., m = 1) 
was employed. Equations 10 and II reduce to 
eq 10' and 11' by putting X ... =Xz=X and 
vP = vx, and are equivalent to Kurata's eq 
(2, 3, 15) and (2, 3, 16) in ref 8. In addition, eq 
10' coincides completely with eq 26 in ref 7 
(Scott's equation). An alternative equation of 
neutral equilibrium conditions, consistent with 
eq 1 ', is given in the form, 
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olt1G'I olt1G'I 

=0 (4") 

Though eq 4" is consistent with 4', eq 4" 
cannot be generalized to one similar to eq 4 for 
multicomponent polymers. Replacing one of 
the polymer component rows eq 1 by a row 
vector (oit1G'Ifov;) (i=N, I, 2, · · ·, m; vxN=v2), 
we cannot obtain the equation equivalent to eq 
11 (eq A-6). Curiously, at least for us, Scott's 
equation (eq 27? can be derived from neither 
eq 4' nor eq 4". 

Scott considered the line tangent of the 
phase boundary (in our vocabulary, coexisting 
curve for multicomponent polymer-solvent !­
solvent 2 system) at a critical point as a 
limiting tie line (this approximation is uncon­
ditionally acceptable for monodisperse po­
lymer solutions) and introduced a variable q in 
the line and determined the critical point (plait 
point by his expression) by solving the follow-
ing equations: 

'd 2L1F 
dq2 =0 (13) 

d3i1F 
(14) --=0 

dq3 

with 

L1F=x1dJ1 1 +x2dJ12+xxdJlx (15) 

L1F is the partial molar Gibbs free energy (in 
. this case, L1F = V0 l1G' because the molar vol­
·umes of solvents 1 and 2 and the segment of 
polymer are the same), x1 , x2 , and xx are the 
mole fractions of solvent 1, 2, and X-mer. 
Using Gibbs-Duhem .relations, Scott convert­
ed eq 13 and 14 to eq 16 and 17, respectively.7 

ddJ11 -O ddj12 -O ddJlx =O (l6) 
dq- Ciq- dq 

)(d2::1 )(d2::2) 
(17) 
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In addition, eq 26 and 27 of ref 7 are said to be 
derived from eq 16 and 17, but unfortunately 
we could not follow. As mentioned before, eq 
26 and 27 of ref 7 are thermodynamically 
inconsistent; in other words, eq 27 cannot be 
theoretically given although eq 26 is correct. 
The critical points calculated erroneously 
using Scott's equations (eq 26 and 27 of ref 7) 
locate precisely on the spinodal curve because 
eq 26 giving a spinodal curve is correct, but its 

is some 20-40% higher than the correct 
evaluated by our rigorous method (for exam­
ple, see Figure 5). 

COMPUTER EXPERIMENT 

First, put the left-hand side terms in eq 10 
and 11 with A and B, respectively and express 
v2 in terms of v1 and vP using eq 12, we obtain 

A=(..!:..+ 1 -2x12) v1 1-v1 -vP 

x ( x1 o +...!:..-2x13) 
vP w vl 

-(:1 +X23-x13-x12Y =0 

+ 2(X12X13 + X13X23 + Xz3X12) 

-(xiz + xf3 + J=o 
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(18) 

(19) 

If X12 , Xu, X23 , and are known in 
advance, both A and B are functions of v1 and 

vP: 

A =A(v1, vp)=O 

B=B(v1 , vp)=O 

(20) 

(21) 

For a given vP, A =A(v1)=0 is obtained and v1 

can be evaluated using the single-variable 
Newton method and gives a spinodal curve. By 
solving simultaneous equations eq 20 and 21, 
using the two-variables Newton method, the 
compositions and (and vD at CSP can be 
evaluated. 

The computer experiments on the critical 
and coexisting curve were carried out under 
the following conditions: x12 = 0 1.0, 
Xu= 0 0.5, X23 = 0.8 1.4, 102 105 and 

I 5 (original polymer; Shultz-Zimm 
type molecular weight distribution). The 
coexisting curves were calculated according to 
our method2 under conditions as follows: orig­
inal polymer, Shultz-Zimm type distribution, 

x12 =0.5, x13 =0.2, 
x23 = 1.0; the starting polymer volume fraction 

1 X 10- 5 

The calculations were performed with 
FACOM M360. 

RESULTS AND DISCUSSION 

Figure 1 shows a coexisting curve by full line 
for some quasi-ternary solutions having the 
starting polymer volume fraction ranging 
from 10- 5 0. 7. Here, a chain line is a con­
stant line and the cross point of constant 
line and a coexisting curve correspond to a 
given a cloud point demonstrated as a filled 
mark in the figure. An unfilled circle is the 
composition of the polymer-lean > 
(initial concentration)= V? + V2 + 
V2 , volume of solvent 2) or -rich < 
phase which is separated from the mother 
solution at the cloud point. The polymer lean 
branch of the coexisting curve at > which 
could not be calculated for some unresolved 
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Figure 1. Binodal curve (solid line) and cloud point 
(filled circle) separated from the original solution of the 
quasi-ternary system with the starting polymer volume 
fraction I x 10- 5 Original polymer, Schulz­
Zimm type distribution 300, 2); x12 = 
0.5, X13 = 0.2, and X23 = 1.0; chain line, constant 
line; filled and unfilled circle are the coexisting phases. 

Figure 2. Cloud point curve (full line), constructed 
from Figure I, spinodal curve (broken line) and critical 
solution point (unfilled circle) of quasi-ternary system. 
Original polymer, Schulz-Zimm type distribution 

300, X12 =0.5, X13 =0.2, and X23 = 1.0. 

problems in our simulat_ion technique, is a 
hypothetical curve and denoted as broken line 
in the figure. A cloud point curve for the 
system can be obtained by connecting the filled 
marks and so-called shadow curve by connect­
ing unfilled marks and a line linking filled and 

352 

Figure 3. Effects of Xw X13 , and X23 on the spinodal 
curve and CSP of quasi-ternary systems consisting of 
multicomponent polymers with Schulz-Zimm type dis­
tribution in a binary solvent 
mixture. a) x13 =0.2, X23 =1.0; b) x12 =0.5, X23 =1.0; c) 
X12 = 0.5, X13 = 0.2. 

unfilled marks is a "limiting tie line". 
Figure 2 exemplifies CPC, constructed in the 

same manner as shown in Figure 1, the spino­
dal curve and CSP for quasi-ternary solutions. 
As theory requires, the cloud point and spino­
dal curves intercept beautifully on CSP: This 
strongly implies that both the present theory 
and the simulation technique proposed here 
are reasonable and unconditionally accept­
able. 

Figure 3a)-c) shows the effects of Xw x13 , 
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Figure 4. Plots of v1, and against x12 , X13 , and 
x23 of quasi-ternary solutions. Original polymer, 
Schulz-Zimm type distribution 300, 2); 
a), d), and g) x13 =0.2, X23 =l.O; b), e), and h) x12 = 

0.5, X23 = 1.0; c), f), and i) X12 =0.5, X13 = 0.2. 

and x23 on the spinodal curve and critical 
point. With a decrease in x12 and with an 
increase in x13 and x23 , the spinodal curve and 
accordingly CSP shifts in a direction of de­
creasing content of solvent 2 (non-solvent). x23 

has the strongest effect on the spinqdal curve 
and x12 is second. At a point of v1 = 0 (i.e., the 
case of polymer-solvent 2 mixture) the spino­
dal curve is almost independent of x12 and x13 

and is governed by x23 alone, because the 
composition of this point can be given by 
solving the equation; 

(22) 

and at the limit of co eq 22 reduces to 

1 
v =1---

p 2X23 

1 
V2=--

2X23 

(23a) 

(23b) 

Equation. 22 can be readily derived from eq B-
3. 

Figure 4 shows the effects of X12, X13 , and X23 
on and for quasi-ternary solutions of 
a polymer with Schulz-Zimm type distribution 

For smaller x12 and 
larger x13, both and are larger and is 
smaller. For larger x23 , is larger and both 

Polymer J., Vol. 18, No. 4, 1986 

Figure 5. Effects of the average molecular weight of 
the original polymer on spinodal curve and CSP of 
quasi-ternary solutions. Original polymer, Schulz-Zimm 
type distribution unfilled circle), monodis­
perse (filled circle); x12 =0.5, x13 = 0.2, X23 = 1.0: Filled 
rectangle, CSP of ternary solutions (Scott). 

and are smaller. The effects of x12 on change 
in and are smaller than those of X13 

and x23 • 

Figure 5 shows the effects of on the 
spinodal curve and CSP fGt quasi-ternary so­
lutions of polymers with Schulz-Zimm distri­
bution 2, unfilled circle) and mono­
disperse polymer (filled circle). For compari­
son, CSP for monodisperse polymer in a 
binary solvent mixture was calculated using 
Scott's equations (eq 26 and 27 of ref 7) and 
is shown as the filled rectangles. CSP calcu­
lated by Scott's method is located on the 
spinodal curve, but it is significantly different 
from the true critical point obtained using 
the method proposed here, and shifted to a 
higher polymer volume fraction range. In 
other words, Scott's critical point for mono­
disperse polymer-solvent !-solvent 2 system 
corresponds to the true critical point for 
multicomponent polymers with relatively 
large heterogeneity-solvent 1-slovent 2 sys­
tem. With an increase in CSP changes 
roughly linearly in the phase diagram,. ap­
proaching a point on the v2-axis at limit of 

co. This point is denoted as the unfilled 
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0. 

0. 

Figure 6. Plots of the composition of critical solution 
points and versus of quasi-ternary solu­
tions. Original polymer, Schulz-Zimm type distribu­
tion I, 2, and 4); X12 = 0.5, X13 = 0.2, X23 = 
1.0: Broken line, and versus of ter­
nary solutions (Scott). 

triangle in the figure, giving the solvent com­
position of the Flory's theta solvent for given 
values of x12, x13 , and x23 at a given temper­
ature. In other words, we can predict theo­
retically the solvent composition of the theta 
solvent mixture from three x values. 

Figure 6 illustrates the effects of on CSP 
and for quasi-ternary solutions 

1, 2, 4: solid line) and CSP obtained 
from Scott's equations (broken line). Scott's 
is 20-40% higher than the correct in the 
range of 100 300, evaluated by our 
method. With an increase in increases 
and decreases approaching asymptotic val­
ues. This point gives the composition of the 
Flory · solvent. decreases gradually ap­
proaching zero at infinite for ternary 
solutions is significantly smaller than for 
binary solutions. When solvent 2 is added to 
polymer solutions with the starting coJ1cen­
tration CSP can be realized only at a 
specific (denoted by see Figure 2). is 
rather comparable with for binary so­
lutions. In order to determine the composition 
of the Flory solvent, it is necessary to use 
polymers with larger than at least I x I 03 

and desirably I x I04 . is practically inde-
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' ySC 
\ p V:: (quasi- binary system) 

' 

(quasi-ternary 
system) 

Figure 7. Plots of for quasi-binary and ternary 
systems and for quasi-ternary system as function of 

Original polymer, Schulz-Zimm type distribution 
for quasi-binary system P;=O 

(i= I, 2, · · ·, n) and k' =0 in eq 2 of ref I; for 
quasi-ternary system X12 = 0.5, X13 = 0.2, and X23 = 1.4: 

full line; broken line. 

pendent of of the polymer, in 
range investigated. As increases, both 

and decrease significantly and the effects 
of on and become quite remark­
able in a lower range. The corresponding 
values estimated by Scott's equations deviate 
noticeably from true values for polymers with 
lower and larger These deviations 
are apparently in the same direction of increas­
ing 

Figure 7 shows the dependence of for 
quasi-binary and ternary system and for 
quasi-ternary system, where the polymer has 
the Schulz-Zimm type molecular weight distri­
bution 300, 2), and for the 
quasi-binary system, x parameter was assumed 
to be independent of the concentration and the 
molecular weight (pi U= I, 2, · · ·, n)=O and 
k' =0 in eq 2 of ref 1) and for the quasi­
ternary system, x12 =0.5, X13 =0.2, and Xz3= 
1.4 were employed. For a given in the 
quasi-binary system is significantly larger than 
in the quasi-ternary system, but similar to 
in magnitude. Note that the total volume of 
the quasi-binary system V was maintained 
constant over the entire range of but V of 
quasi-ternary system was variable, depending 
on the amount of solvent 2 added and then 
decreasing with increasing 
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Figure 8. Effects of of the original polymer on 
spinodal curve and critical solution point of quasi­
ternary solutions. Original polymer, Schulz-Zimm type 
distribution 300); x12 =0.5, X13 =0.2, X23 = 1.0. 

a) 

'r 
0.4 

0.6 
u;:$" 

0.4 

b) 

2 3 4 5 

Figure 9. Dependence of the composition of critical 
solution point vj, and v; on of the original 
polymer of quasi-ternary. sol1,1tions. Original polymer, 

Schulz-Zimm type distribution 150, 300, 3 x 103 , 

and 3 x 104 ); X12 =0.5, X13 =0.2, X23 = 1.0. 

Figure 8 shows the effects of the polydisper­
sity of the polymer on the spinodal curve and 
CSP for quasi-ternary systems containing a 
polymer with Schulz-Zimm type distribution 

300). As expected from eq 10, the spino­
dal curve is absolutely independent of 

Polymer J., Vol. 18, No. 4, 1986 

Polymer 

Figure 10. Schematic representation of phase dia­
grams of quasi-ternary system of multicomponent_ 
polymers dissolved in binary solvent mixtures: Un­
filled circle, upper critical solution point; full line, cloud 
point curve at constant temperature; broken line, 
spinodal curve at constant temperature; dotted line, 
a cross section of the cloud point curve surface with a 
constant v1 plane; TP, temperature above which the 
system is a single phase for an entire composition. 

depending only on and three x parameters. 
CSP is only slightly influenced by It is 
interesting to note that CSP of a monodisperse 
polymer does not locate on the peak (max­
imum v1 point; vf, of spinodal curve, 
but shifts to the higher vP side. In this case, (vL 

0.4661, 0.0419) and (vf, 
= (0.4927, 0.4705, 0.0368). 

Figure 9 shows the plots of and as 
functions of of the polymer dissolved in 
binary solvent mixture (original polymer, 
Schulz-Zimm type; 150, 300, 3 x 103 and 
3 x .104 ). Surprisingly, and are practically 
constant over a wide range of but with 
an increase in from 1 to 5 gradually 
increases from 0.0419 to 0.0559 in the case of 

approaching an asymptotic value. 
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Change in v in the VICIOity of 1 is 
rather remarkable for lower .. It was con­
firmed that the solvent composition of the 
Flory solvent mixture is independent of the 
polydispersity of the polymer and only a 
function of three x parameters. 

Figure 10 demonstrates the effects of tem­
perature on the phase diagrams, including the 
cloud point curve, spinodal curve and upper 
CSP, for a quasi-ternary system consisting of 
multicomponent polymers in binary solvent 
mixtures. In the figure, the full and broken 
lines are the cloud point curve and spinodal 
curve at constant temperature, respectively. 
The chain line is the critical solution point 
curve. The cross section of the cloud point 
curve surface with a constant v1 plane is shown 
as the dotted line, whose shape is very similar 
to the cloud point curve for a quasi-binary 
system of multicomponent polymers in a single 
solvent (for example, see Figure 2 of ref 1). 
Above a specific temperature TP, the quasi­
ternary system is a single phase for an entire 

composition. 
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APPENDIX A 

Derivation of eq 10 and 11 
Substituting eq 9a-d into eq 1, we obtain 

M+U M+K M+K 

M+K M+M1 M 

M+K M M+M2 

M+K M M 

M+M1 

(RTr+T M 
= Vo (-lf(M+U) 

M 

356 

M 

M+K 

M 

M 

M+Mm 

M+M2 

M 

M 

M 
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m 

+I (-1)2j+ 3(M+K){(-1)2(M+K) 
j= 1 

M M 

M M 

M M 

M 

M M1 

M 
m M +I ( -1)2i+3(M +K) 

i-tj 

M 0 

M 

M 

(Rrr+T ( m )( m 1 ) = V, (M + U) .fl Mi 1 + M .fl -. 
o 1=1 1=1M1 

M;-1 

M 

M 

M+Mj-t 
M 

M 

M;+1 

M 

M 

M 

M+Mi+ 1 

M 

0 

Mi-1 

Mi+1 

M 

M 

M 

M 

M+Mm 

Mm 

} l 

-J1 Mk)]] 

(R T)m + 1 ( m )[ { m 1 } m 1 J = - .fl Mi (M+U) 1+M .I-. -(M+K)2 .I M. =0 
Vo 1=1 ,=1M, 1=1, 

(A-1) 

Equation A-1 can be rewritten as a a 

=f(a)-adf(x)l 
dx x=a 

{ 
m 1 } m 1 

(M + U) 1 +M Mi -(M +K)2 Mi =0 
a a 

a a 
(A-3) 

(A-2) 

Combining eq A-2 with eq 9a-d, we obtain eq 
10. Here, in deriving eq A-2, we employed the 
relation given by1 Partial differentiation of eq A-1 with vx; (i = N, 

1, 2, · · · m; vxN = v2 ) yields 
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= W; (k#i, k=N, 1,2, .. ·,m; vxN=v2) 

Substituting eq 9a---d and A-4 into eq 4, we obtain eq A-5; 

(
V, )m+l 

1,1G"I = 

wN wl W2 
M+K M+M1 M 

M+K M M+M2 

M+K M M 

M 

M 

M M M+Mm 

+ J
1 

( -1)2 j+ 3 W{( -1)2(M + K) 

X M+M 1 M M 

M M+M2 M 

M M M+Mj-t 

M M M 

M M M 
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(A-4) 

M M 

M M 

M M 

M+Mj+t M 

M M+Mm 

Polymer J., Vol. 18, No.4, 1986 



Phase Equilibria of Quasi-Ternary Systems IV. 

m 

+I ( -1)2i+3(M +K) 
ii'j 

M 

M 

M 

M 

M 

M;-1 

0 

0 

(A-5) 

In derivingeq A-5, we utilized eq A-3 and A-4. Equation A-5 can be rewritten in the form, 

( 
m 1 ) m W 

WN =0 (A-6) 

Equation 11 can be derived from eq A-7, considering eq 9a--d and eq A-4. 

APPENDIX B 

Symmetry of eq 10 and 11 
Equation A-2 can be rewritten as follows, 

{(M +K)(U -K)+(U -K)(Qw-K)+(Qw-K)(M +K)} =0 (B-1) 

where 

m 1 
1/Qw = Mj = vPX (B-2) 

Substitution of eq 9a-c and B-2 into eq B-l1 yields 
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cl1 + X23- X13- X12) (:2 + X13- X23- X12) 

+ (v1
2 + X13- X23- X12) 

X + X12- X13- X23) 

+x12-xl3-x23) 

X cl1 +X23-X13-Xl2)=0 (B-3) 

We can rearrange eq A-7 into the form, 

( 1 m w) 
-(M+K) -xoL Mi 

vP w•;l , 

w, 
=-N-{(M +K)(U -K) 

U-K 

+(U -K)(Qw-K)+(Qw-K)(M +K)} 

- I ltj)(U-K) 
U-K vpXwi; 1 Mi 

+ WN(Qw-K)}=o (B-4) 

Equation B-4 can be simplified using eq B-1 as 

1 I 
Qw-K vPX w i;l Mi U-K 

(B-5) 

Combination of eq B-1 and eq A-5 gives 

-(RT)m+l(nm )[(Qw-K)+(U-K) 
W;- - Mi 2 

Vo ·;1 V1 

(B-7) 

360 

From eq B-5, B-6, and B-7, we obtain 

{(Qw-K)+(U-KW (M+K)+(U-K) 

vf(Qw-K)(U -K) 

(M+K)+(Qw-K) O 
(B-8) 

By combining B-1 with B-8, we can derive eq 
B-9. 

_1_. (l X12 + X13- X23)2 

M+K M+K 

+-1-(l + X12 + X23- X13)2 
U-K U-K 

+ Xz (l X13 + X23 + X12)2 =O (B-9) 
Qw-K Qw-K 

Equation B-9 can be rewritten, using eq 9a----{; 
and B-2, as 

X13- X23 + X12 r 
+--;(_!_- X12- X13 + X23)

3 
v2 vl 

x X13- X23 + X12 y 
+(X (:1- X12- X13 + X23 y 

x(v1
2 -x12-X23+x13Y =0 

(B-10) 

Equations B-3 and B-1 0 are obviously sym­
metrical with respect to the exchange of sol­
vents 1 and 2 and are consistent with eq 10 and 
11, respectively. 

Polymer J., Vol. 18, No. 4, 1986 


	Phase Equilibria of Quasi-Ternary Systems Consisting of Multicomponent Polymers in a Binary Solvent Mixture IV. Spinodal Curve and Critical Solution Point
	THEORETICAL BACKGROUND
	COMPUTER EXPERIMENT
	RESULTS AND DISCUSSION
	REFERENCES


