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ABSTRACT: The concentration dependences of three x parameters (thermodynamic in
teraction parameters of solvent 1-2, solvent !-polymer, and solvent 2-polymer; x12 , X13 , and x23 , 

respectively) were studied for developing a theory of the two-phase equilibrium of a quasi-ternary 
system which consists of multicomponent polymers and a binary solvent mixture. x12 , x13 , and x23 

were defined by 

X13 = x?3 (1 +X 
X23 = ( 1 + I 

r=l 

where x?2 , x?3 , and xg3 are the parameters independent of the total polymer concentration vv and 
are dependent on the temperature only, and p12 1 , p 13 1 , and p23 1 are the concentration dependent 
parameters. Computer experiments on solutions 'or an "original with the Schulz-Zimm type 
molecular weight distribution (the ratio of weight- to number-average molar volume of the polymer 
to the solvents 2.0 and 300) were carried out to study the effects of concentration 
dependent parameters on the two phase equilibrium characteristics. Partition coefficient u, phase 
volume ratio R, and polymer volume fraction in polymer rich phase vv<ZI increase with an increase in 
p13 _1 and p23 ,1 and yield maximum near p12 _1 = - 0.2. The effects of the concentration dependence of 
x-parameter on u, R, and vv<ZI decrease in the following order: p23 .1 > p13 .1 > p12 . 1 . 

KEY WORDS Concentration Dependent Parameter I Thermodynamic; 
Interaction Parameter I Quasi-Ternary System I Binary Solvent Mixture I 
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The phase separation phenomena of mo
nodisperse polymer/solvent/nonsolvent sys
tems had been studied by Flory/ Scott,2 •3 

Tompa,4 Nakagaki and Sunada,5 Krigbaum 
and Carpenter6 and Shu and Liou,7 but even 
for these relatively simple cases, two-phase 
equilibrium calculation had been based .on 

crude assumptions: (1) a solvent mixture 
coulc! be approximated as a "single solvent" 
(Flory/ Scott2 •3), (2) polymer molecular 
weight was infinite (Scott,2 •3 Nakagaki
Sunada5), (3) among three thermodynamic 
interaction parameters x12 , x13 , and x23 ( orig
inally defined in the Flory-Huggins theory: 8 
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1, solvent 1; 2, solvent 2; 3, polymer), there
lationships that x12 = X13 and x23 = 0 held 
(Tompa,4 Nakagaki-Sunada5) and (4) poly
mer did not exist in the polymer-lean 
phase (Krigbaum-Carpenter, 6 Shu-Liou 7). 

Very recently9- 11 , we proposed a rigorous 
theory of phase equilibrium for a quasi-ternary 
system consisting of multicomponent poly
mers, solvent 1 (good solvent) and solvent 2 
(poor solvent), where X12, x13 , and X23 were 
assumed to be concentration independent. 
Based on this theory, we carried out system
atically a series of computer experiments on 
the quasi-ternary system to study the effects 
of (a) three thermodynamic interaction par
ameters,9 (b) the relative amount pP of poly
mer partitioned in a polymer rich phase and 
the initial concentration and (c) the av
erage molecular weight and molecular weight 
distribution (MWD) of the original poly
mer,11 on the phase separation characteristics, 
and compared the results with those of quasi
binary systems consisting of multicomponent 
polymers and a single solvent. Aminavhabi 
and Munk,12 Altena and Smolders13 showed 
that the magnitude of x12 and its concentration 
dependence influence thermodynamic prop
erties, such as phase separation character
istics, of monodisperse polymer in binary 
solvent system. In this communication we have 
generalized the theory for phase equilibrium of 
quasi-ternary system studied in the previous 
papers9 - 11 to the case where the three x par
ameters (not only x12 but also x13 and X23) 
depends significantly on the concentration, 
and explored the effects of these concentra
tion dependence on the two-phase equilibrium 
characteristics. 

THEORETICAL BACKGROUND 

On the basis of Flory-Huggins theory,8 

Kamide et a/.9- 11 proposed a theory of quasi
ternary system, assuming that X12, X13 , and X23 
are independent of the polymer molecular 
weight and concentration. Chemical potentials 
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of solvent 1, 2, and Xcmer (Af.11, Af.12, and Af.lxi' 
respectively) given by following equa
tions. 

Af.11 =RT{ln v1 +(1-; n )vP 

+X 12vz(1- V1) + X13 vp(1- v1)- Xz3VzVp} 

'(1) 

Af.12=RT{lnv2+(1- ;.)vP 
+ X12V1 (1- Vz) + Xz3Vp(1- Vz)- X13V1 vP} 

Af.lx,=RT[ln vx, -(Xi-1)+X{1-; .}P 
+Xi {X13V1 (1- vp) + X23v2(1- vp) 

(i=1, · · ·, m) 

(2) 

(3) 

where Xi is the molar volume ratio of the ith 
polymer to solvent 1 or 2, v1, v2 , and vx ,, the 
volume fraction of solvent 1, 2, and Xi-mer, 
respectively, vP, the total polymer volume 

m 

fraction ( = LVx ), R and T, the gas con-
i=t 1 

stant and Kelvin temperature, respectively. m 
is the total number of polymer component, all 
belonging to the same chemical homologue. 
We assume that (a) the molar volume of 
solvent 1 is the same as that of solvent 2, (b) 
solvent 1, 2, and polymer are volumetrically 

and (c) the densities of solvent 1, 2, 
and polymer are the same.9 These assumptions 
do not limit the validity of the theory. For 
the quasi-binary system consisting of multi
component polymers dissolved in a single 
solvent, we considered the concentration de
pendence of x parameter, as follows. 14 

x= Xo (1 + .± 
j= 1 

(4) 
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Here, Xo is the temperature dependent factor 
and Pi U= I,··· ,n) are the concentration de
pendent parameters. From the analogy to 
the quasi-binary system, concentration de
pendence of xu, x13 , and x23 for the quasi
ternary system should be written as 

X12 = Xfz( 1 + 

X { 1 + + (5) 

X13 = x?3 ( 1 + qt
1 

(6) 

Xz3 = Xf3 ( 1 + rt
1 

Pz3,rv;) (7) 

where x?2 , x?3, and are parameters inde
pendent of the concentration and the degree of 
polymerization ( "'XJ and are dependent on 
temperature only. Pu,s• p 13 ,q, and p23 ,r are in
dependent of X;. and temperature. P1,1 and Pz.r 
are the solvent composition dependent par
ameters. Here, we neglected the theoretical and 
experimental possibility of the dependence 
of Xu parameters on the composition of bi
nary solvent mixture. 

X12 = Xfz ( 1 + P12,s (5') 

Gibbs's free. energy of mixing of these sol
vents and polymer, !lG can be devided into 
four parts; Gibbs free energy of ideal solu
tion, !).Gid, excess free energy of solvent 1-2, 
!lGf2, excess free energy of solvent 1-
polymer, !lGf3, and excess free energy of 
solvent 2-polymer, !lGf3: 

!lG= !lGid + !lGf2 + llGf3 + !lGf3 (8) 

Using eq 4, the excess chemical potential of 
solvent 8!lGEj8N0 for quasi-binary system 

becomes/ 4 

=RTx0 (1+J1 (9) 

where N0 is the number of solvent molecules. 
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In the same way as for quasi-binary system, eq 
6 and 7 are combined with the original equa
tions of the exess chemical potential of so
lvents 1 and 2 (8 !lGf3/8N1 and 8 !lGf3/8N2), 

to give 

(10) 

(11) 

Here N1 and N2 are number of solvent 1 and 
2, respectively. Equation 5' was directly put 
into an equation of !lGf2 (eq 12) ln order to 
satisfy the symmetry with respect to the ex
change of solvents I and 2, 

!lGf2 =RTLX12v1v2 (12) 

=RTLxf2(1+ (12') 

where L=N1 +N2+ L,X;Nx; and Nx; is the 
number of X;-mer. Combining eq 8, 10-12, 
we can determine !lG of the quasi-ternary 
system and derivate !l/).1, !l/).2 , and ll!J.x; (i == 1, 
· · · ,m), respectively (see Appendix A), as 

!l/).1 =RT[lnv1-(1-L )vP 

+xfz{Vz(l-v1)+ J1 P1z,sVzv;(l-(s+1)v1)} 

+xf3vp(1-v1){1+ qt1 

-xf3v2vp{1+ I I P23.r( +r 1·) 
r=1 r=l r 

x v; (1-(v1 +vp)'+ 1)}] (l3) 
(1-vz}'+1 Vz 

ll/).2 =RT[ln v2 -(1-; n )vP 

+xfz{v'l(l-vz)+ 
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+ 

Xc-(u2:vp)q+ 1 )} 

n, ( ( r ) v ) ( v )r + I p 1- -- __ P_ __P_ 

r= 1 23 'r r+1 1-Vz 1-Vz 

(i=1, ···,m) 

(15) 

For quasi-binary system, Koningsveld et 
a/. 16• 17 defined the thermodynamic interaction 
parameter g in the expression of I'!G. For 
quasi-ternary system, thermodynamic inter
action parameters between solvent 1-2, so
lvent !-polymer, and solvent 2-polymer g12, 
g13 , and g23 can also be defined as, 

E -g12 =flG 12/(RTLv1v2 ) (16) 

g12, g13 , and g23 are related to x12, x13 , and 
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Xz3, respectively, through the equations (see, 
Appendix B). 

(19) 

(20) 

(21) 

Equation 20 and 21 are readily written in the 
differential forms. 

8g13 
X13=gl3-v18(1-v1) 

8g23 
Xz3 = gz3- Vz 8(1 - Vz) 

(22) 

(23) 

Conditions of two-phase equilibrium of the 
quasi-ternary system at constant temperature 
and pressure are given by eq 24-26, 

fl.u1(1) = fl.u1(2) 

fl.u2(1) = fl.u2(1) 

fl.ux ,(1) = fl.ux ,(2) 

(24) 

(25) 

(26) 

where subscripts (1) and (2) denote the poly
mer-lean and -rich phases, respectively. Par
tition coefficient a is defined by: 

1 1 Vx,(2) a=-n--
Xi Vx,o> 

Combination of eq 15, 26, and 27 gives 

( vp(Z) vp(1) ) 
a=(vp( 1)-VP<z>l+ 

n(2) n(l) 

+ X?z[Vl(z)V2(2)- Vl(l)V2(1)) 

s-1 s+ 1 )}] -v1(1)v2(1)vp(1) (1--s-vp(l) 

(27) 

- x?3[(v1(2)- vl(l)) -(v1(2)vp(2)- v1(1)vp(l)) 
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+ P13,q {v (q+ 1 qvp(2) ) 
q'='1 q + 1 1(2) 1- v1(2) 

x( vp(2) )q1-(v2(2)+vp(2))q+ 1 

1- v1(2) v1(2) 

( + 1 qvp(l) ) ( vp(l) )q 
-v1(1) q -

1- v1<o 1- vHo 

x 1-(vz(1)+vp(l))q+1}] 

v1(1) 

[(vz(2)- v2(1))- (v2(2)vp(2)- v2(1)vpo)) 

nr 
" ( r+1 r+l) - L. P23,r Vz(2)v p(2)- V2(1)v p(l) 

r; 1 

+ P23.r{v (r+1 rvp(2) ) 
r'='1 r + 1 2(2) 1- V2(2) 

x( vp(2) )' 1-(v1(2) + vp(2l+ 1 

1 - v2 (2) v2(2 ) 

( rvp(ll ) ( vp(l) )' -v2<1l r+l 
1- v2 (1) 1- v20 ) 

xl-(vl(l)+vpol+l}] (28) 
Vz(l) 

Substitution of eq 13 into 24 yields eq 29 (the 
left-hand side of eq 29 is put with A), 

- v1(2) ) ( vp(2l vp(l) ) 
A=ln--+(vp(2)-vp0 )- x--x 

vl(l) n(2) n(1) 

+X? 2 [( V2(2)- V20)- ( V 1(2)V2(2)--:- V1(1)V2(1)) 

ns 

+ L P12,s { 
s; 1 

- (s + 1 )( J 
+ x? {(vp(2)- vp(l))- (v1(2)vp(2)- v1(1)vp(1)) 

"• 
+ L 

q; 1 
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Substitution of eq 14 into 25 gives eq 30 (the 
left-hand side of eq 30 is put with B): 

B=ln v2(2)+(v -v )-( vp(2) vp(l)) 
- P< 2l p(l) X --X 

V2(1) n(2) n(l) 

+ x?{(v1(2)- v1(1))- (v1(2)v2(2)- vl(l)v2(1)) 

+ stt P12,s 

- (s + 1) J 
+ Vp(l)) -(v2(2)Vp(2)- V2(1)Vp(l)) 

+ J 
- x?3[(v1(2)vp(2)- v1(1)vp(1)) 

nq ( q ){ ( V )q + 1 
+ L P13,q q+ 1 v1(2) 1 q;l p(2) 

1-(v2(2)+vp(2))q+1 ( vp(1) )q+1 
x -v10) 

v 1<2l 1- vp(l) 

1-(v2(1) + vp<l))q+ 1 }]=o (30) 
v1(1) 

If both (a) x?2, x?3, and and (b) P12.s• Pt3,q• 
andp23,,(s.= 1, · · · ,n5;q= 1, · · · ,nq;r= 1, · · · ,n,) 
are given in advance, CJ, A, and Bare functions 
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having six variables, xn(1)• xn(2)• v2(1)• v2(2)• vp(1)• 
and vp<Z>· 

Dissolve original polymer into solvent 
(ordinally, solvent 1) and add non-solvent 
(ordinally, solvent 2), two-phase separation 
finally occurs. If volumes of solvent l, 2, and 
polymer are V2 , and respectively, the 
volume of solution V0 is given by 

+ and the starting concentration 

vp(1)• vp(2)• and xn(l) are finally expressed by 
eq 36a, b, and 37 (see, Appendix C). 

- s R + 1- Rvz(l)- Vz<z> (36a) 
Vp(l)-vp R Ps 

vp(Z) = (R + 1-Rv211)- v2<2>)Pp (36b) 

x:<l> = ;s ( X:12J (37) 

is given by Here, is the number-average X; of original 
polymer. If pP is set as initial condition · 

(31) a, A, and B become the functions of four 
variables v2(1)• v2(2)• Ra, and 

Under the two phase equilibrium, the total 
volume of the system is v?+ V2 + ( = V) and 
the initial concentration is expressed by 

o v =
p v (32) 

Normalized molecular weight distribution 
(MWD) of original polymer g0(XJ is a sum
mation the relative amounts of X;-mer 

separated into polymer-lean and -rich phase, 
gu>(XJ and g(2)(X;): 

g0(X;)=g11 >(XJ+g(2)(X;) (i= 1, · · · ,m) (33) 

The weight fraction Ps of the polymer in the 
polymer-lean phase to the total polymer and 
the fraction pP ( = 1- p5 ) of the polymer in 
the polymer-rich phase are given by eq 34a 
and 34b. 

(34a) 
i= 1 

m 

Pp= L g(2)(X;) (34b) 
i= 1 

Using a, phase volume ratio R ( = V11)/V12 >; 
v(1) and v(2)• volume of the polymer-lean and 
rich phases) and g0 (XJ, g11 > (X;), and g12l (XJ 
are expressed as (see, Appendix C): 

g<1l(X ;) 
R 

R + exp(aX /o(X;) 
(35a) 

g<ziX;) 
exp(aX;) 

R+exp(aX;) go(X;) 
(35b) 
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a= a(v211 l, v212>, Ra, 

A =A(v2<1>, v212 >, Ra, 

(38) 

(39) 

B=B(v2u>• v2<2>, Ra, (40) 

where Ra and are the assumed value of 
R and X n<z>· Xn<Zl in eq 38-40 is given by 

xn(2)= it1 g(2)(X;) /(J1 g(2)(X;) I xi) (41) 

Combining eq 34b, 35b, and 41, pP and x.(2) 
are finally the functions of a and Ra. We 
define C and D by eq 42 and 43, respective
ly. 

C= pp(a(v2u>• v212 >, Ra, Ra)- (42) 

D=X.12 >(a(v2<1>, v212 >, Ra, 
(43) 

By solving non-linear simultaneous equa
tions 39, 40, 42, and 43, v2<1>, v2<2>, R, and 
x.<z> are determined. Substituting these four 
values into eq 38, we can calculate a and other 
phase separation characteristics (see, Ap
pendix C). 

COMPUTER SIMULATION 

Computer experiments were carried out ac
cording to the procedure, established in the 
previous papers.9 -u 

A .. () 0 0 d 0 I. s prereqmsttes, a X12, X 13 , an X23• 
(b) P12,s• P13,q• and (s = l, · · · ,ns; q = l' · · ·' 
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nq; r= 1, · · · ,nr), (c) V?, g0 (X;) (i= 1, · · ·, 
m), and pP ( = 1- Ps) are given. 

2. At first, and three values of Ra 
(low, middle, and high value of Ra, Rv RM, 
and R8 , respectively) are assumed. True R 
should be between RL and RM or RM and R8 . 

3. For the assumed Xn<z> and Ra, simul
taneous equations 44 and 45, 

A =A(v2<1>, v2<2>)=0 (44) 

B=B(v2<1>, v2 <2>)=0 (45) 

are solved by using two variable Newton's 
method. 

4. Substituting three sets of (v2 <1>, v2<2 >), 
which correspond to Rv RM, and R8 , into eq 
42, we get Cv CM, and C8 . Reset (Rv R8 ) 

by(Rv RM) for CL· CM<O andby(RM, R8 ) for 
CM·C8 <0. av aM, and a8 are also obtained. 

5. Using interhalving method (repetition 

Set : L.cmer, Middle. and Higher values (RL' f\t• RH) 

Solve: A(v2(l)' v2(2))=0and B(v2co· v2c2>)=0 
Newton's Method 

by Inter-halving Method 

Reset: 
Inter-halving Method 

Compute: 9cnCXi), 9(2)(Xi)• Xncn• Xw(l >· XZ(1)• Xw(2)• Xz(2) 
vl(l )• v1(2)• Vp<1)• Vp(2) 

Figure 1. Flow chart of the simulation. 
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of step 3--4), 

(46) 

can be attained. Thus, R and (j (accordingly, 
g(l)(Xi) and g<2lX)) are determined for the 
assumed value of xn(2)' 

6. When D (given by eq 43) =F 0 for calcu
lated (j and R, replace by ( Xn<Zl + X:rl2l)/2. 

7. Repeating step 3-6 (interhalving me
thod), 

(47) 

can be solved for and therefore an equi
librium state is finally determined. 

8. When a constant initial polymer volume 
fraction is needed, we 
solve the following equation 

0( Ra vo) Og_o VP Vz(1)• Vz(2)• , 1 -vP - (48) 

by replacing V? (repetition of step 1-7). 
9. Compute other phase separation char

acteristics (a) V2 , V, V<1l, and V<2l, (b) v1<1l, 
v1(2)• vp(1)• and vp(2)• and (c) xn(1)• xw(1)• xw(2) 
and so on. 
This simulation procedure is superior to 
others1- 7 • 13 with respect to following point. 

(i) MWD of polymer in both phases can 
directly be obtained, in addition to the volume 
fractions of solvents and polymer. 

(ii) pP can be determined rigorously. For 
example, Altena and Smolders13 did not write 
clearly pP in their computer experiments on 
the phase separation of mono-disperse po
lymer/binary solvent mixture. 

(iii) Calculations under constant are 
feasible. Constant is important to compare 
quasi-ternary system with quasi-binary system. 
Figure 1 shows the main flow chart of simul
ation. 

COMPUTER EXPERIMENT 

Original polymer was assumed to have the 
Schulz-Zimm (SZ) type MWD, 

1000 

(49) 

where 

(50) 

and 

h= (51) 

with 300 and 2. r ( h + 1) is 
the gamma function. We have already ascer
tained that the conclusion obtained for the 
SZ type polymer with 300 has very 
general character applicable for common 
polymer solution.U The calculations were 
made under following conditions: (a) x?2 =0.5, 
x?3 =0.2, and = 1.0, (b) p 12 , 1 = -1.0 
p13 , 1 = and p 23 ,1 = 
(p12,s=P13,q=Pz3,r=0 for (c) pP= 

1, and For 
comparison, calculations of quasi-binary 
system, under the conditions of p1 = -0.6, 
0, and 0.6 1, and 
were also carried out. When coexisting curves 
were calculated, we put in place of 

Equations 46--48 were consider
ed to be solved, if IC(Ra)l <E1 , 

<E2 , and <£3 were satisfied. E1 , 

E2 , and £ 3 are '!llowance errors. Here, E1 = 
0.001, £ 2=0.01, and £ 3 =0.001. 

RESULTS AND DISCUSSION 

Figure 2 shows the effects of p12 ,1 , p 13,1, and 
p23 , 1 on the normalized X distribution of the 
polymer partitioned in the polymer-rich phase 
g<2l(XJ at pp= 1/15. p12 ,1 was found to have 
small but still significant effect on g<2lXJ and 
the breadth in g<2 lX) attains minimum at 
p 12 ,1 = -0.2 when p 13 ,1 =p23. 1 =0. The poly
dispersity of the polymer in a polymer-rich 
phase becomes lower with an increase in p 13,1 
or p23 , 1, at least in the range p 13, 1 ;£0.6 and 
p23 ,1 Particularly, a small change in 

PolymerJ., Vol. 18, No. 12,1986 
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Figure 2. Effects of the 1st order concentration de
pendent parameters p12 .1, p13 .1 , and p23 ,1 on the norma
lized molecular weight distribution of the polymer par
titioned in polymer rich phase g121• Original polymer, 
Schulz-Zimm type distribution 300, 2); 

=0.5, =0.2, and xg3 = 1.0, pP = 1(15 and = 
0.005. a) P 13 .1 =p23 .1 =0, b) P12.1 =pz3.I =0, c) P12.1 = 
P13.1 =0. 

2 a) 

0 10"" 

Figure 3. Effects of the 1st order concentration de
pendent parameters p 12 ,1 , p13 ,1 and p23 ,1 on the relations 
between partition coefficient a and Original polymer, 
Schulz-Zimm type distribution 300, 2); 

Xg3 =1.0, pP=l/15. a) P13 ,1 = 
p23 ,1 =0, b) P 12 ,1 =p23 ,1 =0, c) P 12 , 1 =p13,1 =0. Unfilled 
circle denotes 

Figure 4. Effects of p 12 ,1 , p13 ,1 , and p23 ,1 on the relations between the two phase volume ratio R and 
Original polymer, Schulz-Zimm type distribution 300, 2); =0.5, =0.2, and xg3 = 1.0, 
pP= 1(15. a) P13 ,1 =p23 ,, =0, b) P12 ,1 =p23 ,1 =0, c) P12 , 1 =p13 ,1 =0. Unfilled circle denotes 
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p 23 , 1 brings about a large change in g<2 >( X). 
The effect of the concentration dependence 
of x-parameters on g<2> (X) decreases in the 
following order: P23 ,1 >P1J,1 >P12,1· 

In Figures 3.and 4, the effects of p 12 ,1, p 13 , 1, 
and p23 , 1 on the a (or R) vs. relations at 
pP= 1/15 are shown. Unfilled circle indicates 
the point at which both a and R reach a 
minimum. Above at minimum, two
phase separation under given conditions be
comes impossible and this was defined as 
"critical point" by Kamide et a/. 18 for quasi
binary system and referred to as Unfilled 
circle approaches to critical solution· point 
(CSP) in the limit of pP---->0. Volume fractions 

a)Q =-2.0 
2 12,1 -I. 

-1.0--0.8 
-0.6-0. 
0.2-0.6 

Figure 5. Effects of p 12 , 1 , p 13 , 1 , and Pi 3 , 1 on the re
lations between the volume of the polymer rich phase 
V<2 J and Original polymer, Schulz-Zimm type distri
bution x?2 =0.5, x?3 =0.2, and 
Xg3 = 1.0, Pv = l/15. a) Pt3,t =pz,,t = 0, b) Ptz,t =pz,,t =0, 
c) p 12 ,1 =p13 ,1 =0. Unfilled circle denotes 
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of solvents I, 2, and polymer at CSP , 
an.d respectively) can be calculated from 
the spinodal and neutral-equilibrium condi
tions according to the method proposed by 
Kamide and Matsuda. 19 (vL is (0.4880, 
0.4609, 0.0511) under the conditions of Cx72, 
x73, 0.2, 1.0) with P12 ,1 =p13,1 = 
Pz3,1 =0. When P12,1 =P1J,1 =pz3,1 =0, 
at Pp = 1/15 is ca. 0.05 and is close to Both 
a . and R decrease with an increase in 
Generally, a and R, at given pP, increase with 
increasing p 13,1, and p 23 , 1. The effects of p 12 ,1 
on a (or R) vs. curve are small. 

Relations between V<2 > and under the 
conditions of pP= 1/15 are shown in Figure 5. 
In this figure, unfilled circle, is As 
increases, v(2) increases first and shows the 
maximum. at this maximum of V<2> vs. 
curve, corresponds to which gives the 
maximum of vH2 > or v2 <2 > vs. curve and also 
corresponds to the minimum of vp(Z) vs. 
curve (for example, se() Figure 13). With a 
decrease in p 13,1 and p23 ,1 V<2 > increases sud
denly. The effects of p12 , 1 on V<2 > is relatively 
small. And V<2 > shows a minimum at a specific 
P12 ,1, between P12 ,1 = -0.6 and 0. On the 
other hand, Vand V<1> decrease almost linearly 
with an increase in V0 /V<2> (namely R) 
vs. curve is little influenced by the maxi
mum of V<2 > vs. curve because of a rapid 
change in V<1> (see, Figure 4). 

Figure 6 shows the effects of P12 , 1, p 13 , 1, 
and p23 , 1 on the relations between V1 (or V2 ) 

and pP relations, when vP is constant (in this 
case, At constant (namely, 
constant V), we can compare p12 , 1, p13 , 1o 

and p23 , 1 with p1, which is the concentration 
dependent parameter of x for quasi-binary 
solutions (see eq 4). Between V1 vs. pP curve 
and V2 vs. pP curve, there is a mirror symmetry 
with respect to the broken line of V1 = V2 = 
( V- (in this case V = 200 and = 1 ). 
As p 13 , 1 and p 23 , 1 increase V1 decreases and 
V2 increases. In other words, solvent power of 
solvent I grows stronger with an increase in 
p13 , 1, and precipitating power of solvent 2 
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lh.f8: 
0. 

1.5 1.5 

N 

1.02 

0.5 0.5 o a5 ur 
9p 

Figure 6. · of p 12 •1 , P13 •1 , and p23 ,1 on the relations of the volume of solvent I (or 2), V? (or V2) and 
pP' Original polymer, Schulz-Zimm type distribution 300, xe = 2); x?2 = 0.5, x?3 = 0.2, and = 
1.0, a) P13 ,1 =p23 ,1 =0, b) P12 ,1 =p23 ,1 = 0, c) p12 ,1 =p13 ,1 =0. Broken line denotes the line of V1 = 
Vi= ( V-

gets weaker with an increase in p23 , 1 . As P12 , 1• 

decreases, solvent power of binary solvent 
mixture becomes stronger. The figure shows 
that V1 reduces to zero at pP= 1.0. 

The effects of p 12 , 1 , p 13 , 1 , and p23 , 1 on the 
relations between CJ (orR) and pP are shown in 
Figure 7. In the figure, results of quasi-binary 
system with p 1 = -0.6, 0, and 0.6 (pi=O, 
J'?;.2) are also shown by the broken line.20 - 27 

In the case of p12 , 1 , p 13 , 1 , and p23 , 1 =0, CJ and 
R for quasi-ternary system are smaller than 
those for quasi-binary system with p1 =0 
for any combination of x?2 , x?3 , and 
When p13 , 1 '?;_0.2 (with p 12 , 1 =p23 , 1 =0) or 
p23 , 1 '?;.0.03 (with p 12 , 1 =p23 , 1 =0), CJ (or R) 
for the quasi-ternary system exceeds CJ (or R) 
for the quasi-binary system with p1 = 0. Es
pecially, CJ and R for the quasi-ternary system 

Polymer J., Vol. 18, No. 12, 1986 

with p23 , 1 =0.09 (p12 , 1 =p13 , 1 =0) are larger 
than CJ and R for the quasi-binary system 
with p1 =0.6. In consequence, under specific 
conditions, a better fractionation efficiency 
is expected to be obtained for the quasi-ternary 
solution than for the quasi-binary solutions. 
This prediction however has not been ex
perimentally confirmed and clearly more de
tailed experimental examination is called for. 
The effect of p12 , 1 on CJ (or R) is not so large. 

We denote CJ, R, and the volume fractions of 
each phase at pP= 1 with an asterisk as CJ*, R*, 

(vj<1 >, vi<t>• v;<1>) and (vj<1>, vi(2), v;<1>). v ;<Z> can 
be calculated by the following equation. 
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8 
a) b) c) 

6 

b 4 

' -1.5 ' I 

-1.0-2.0 
I 

I 

2 

P=-0.6 
0 

d) e) f) 

%,,=0.09 
10 r(J5 0.03 

0. 
0:: 

-0.03 
-0.05 

10 

Figure 7. Effects of p 12 ,1 , p 13 •1 , and p23 •1 on the relations between partition coefficient rr or the phase 
volume ratio Rand Pp· Original polymer, Schulz-Zimm type distribution 300, 2); x?2 = 0.5, 
x?3 = 0.2, and = 1.0, =0.005. a) and d) p 13 •1 =p23 •1 = 0, b) and e) p 12 •1 = p23 •1 = 0, c) and f) p 12 •1 = 
p13 •1 =0. The broken lines are the results for quasi-binary system. p is denoted on curve. Filled circle 
denotes R at pP = 1.0. 

* * v;<2> ln(l-vp(2))+vp(2)- xo 
n 

R:- are independent of x?2 , x?3 , p 12 ,s, and P13 ,q 

(s = 1' ... ' ns; q = 1' ... ,nq) and determined by 
and p 23 ,, (r= 1, · · · ,n,). The extrapolated 

values of R for pP-+ 1 are given by filled circle 
in Figure 7d, e, and f, and are consistent with 
R* calculated from eq 52. From the combi
nation of vx,<t>=O (i= 1, · · · ,0) for pp= 1 and 
the definition of CJ (eq 27), CJ for pP= 1 (CJ*) 
becomes infinite. Figure 8 shows the effect of 
p 23 , 1 on R*, v1(2), and v;<Z>· With an increase in 
p23 , 1, R* and v;<z> increase and v!<z> decreases. 

a [ *2 *'+2]-o +X23 vp<2>+ P23,rvp(2> -

and R * is expressed by 

* R*= -1 
vP 

(52) 

(53) 

As is known from eq 52 and 53, v ;<z> and 
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We can evaluate and P2J,r from R* exper
imentally determined. 

The effects of p12 , 1 , p 13 , 1 , and p23 , 1 on re
lations between XwfX. and (for Pv= 1/ 
15) are shown in Figure 9. With an increase 
in p 13 , 1 and p23 , 1 , Xw/X. decreases abruptly. 

6 a) 

'l' 

4 
0:: 

}} 
0.3 

;o.7 

c) 

0 01 

Figure 8. The effects of p23,1 on the R, v212 >, and vP 12 > 

for pP = 1.0 (R*, vf121, and respectively). Original 
polymer, Schulz-Zimm type distribution 300, 

and P12 •1 = 
p13 ,1 = 0, = 0.005. 

I. 

1.6 
c 

1.4 

1.2 

Xw/X. of the polymer in polymer-lean and -
rich phases (Xw<1/Xn<ll and Xw(2)/X.<2l) in
creases with an increase in and coincides 
with each other for As Pv decreases from 
1/15 to zero, approaches to the critical 
polymer concentration. 

Figure 10 shows the effects of P 12 , 1 , P13,1• 

and p23 , 1 on the relation between the ratio 
Xw/X. of the two phases and Pv· In this figure 
the results14 for quasi-binary solutions with 
various p1 are shown as broken lines for 
comparison. For any combination of P12 , 1 , 

P13 , 1 , and p23 , 1 , XwfX. of the polymer in the 
polymer-lean phase X w<ll/ X.0 l decreases 
monotonically from 2.0 to 1.0 as an increase 
in Pp- XwfX. of the polymer in a polymer-rich 
phase X w<2l/ Xn<ll reveals minimum at a specific 
Pv' approaching to at Pv= 1.0. Over 
a whole range of Pv Xw<2 /Xn(2) attains min
imum at Pl2, I= -0.2 when x?2 = 0.5, x?3 = 0.2 
and xg3 = 1.0 and becomes smaller for 
larger p13 , 1 and p23 , 1 . Note that the relation 
between Xw(2)/Xn<ll and Pv for the quasi
ternary systems agrees with that of the quasi
binary systems with p1 = 0.6. For exam-

1.0 "" 10 10-3 10"2 10"1 
Vp 

Figure 9. Effects of the concentration dependent parameters p 12 ,1 , p 13 ,1 , and p23 ,1 on the relations 
between X • ./ X. of the polymers in polymer-lean phase (PLP) or polymer-rich phase (PRP) and Original 
polymer, Schulz-Zimm type distribution 300, =0.5, =0.2, and = 1.0, pP = 
1/15. a) P13.t =P2J,1 =0, b) P12.1 =p23.t =0, c) P 12 .1 =p13 ,1 =0. Unfilled circle denotes .. 
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pie, when p 13, 1 =0.6 (p12 , 1 =p23 , 1 =0) or 
p23 , 1 = 0.05 (p12 , 1 = p 13 , 1 = 0) for the quasi
ternary systems (SZ polymer, 300, 

Xw(zJIXn(Zl vs. pP rela
tion almost coincides with that for the quasi
binary systems (SZ polymer, 300, 

In a previous paper,9 

we demonstrated that simply by a proper 
choice of x?2 , x?3 , and values, polymers 
could not be prepared having narrower 
MWD than those obtained from a quasi
binary solution with p 1 =0. Combination of 
solvents 1 and 2 with larger values of p 13 , 1 

and p 23 , 1 (in this case, p 13 , 1 and p 23 , 1 

0.05, respectively) will afford us polymer 
having narrower MWD than that obtained 
from quasi-binary system in a polymer frac
tionation experiment. It has been shown that 
the effects of x?3 on gdX;) is small but 
has a large effect on g(2 )(X;). 1° Figure 10 in-

1.6 

dicates that p23 , 1 has a strong influence on 
g(2 l(X;), accordingly Xw(2)/Xw(ZJ· In other 
words, a suitable choice of solvent 2 (i.e., 
non-solvent) is required to separate the poly
mers with sharp MWD from quasi-ternary 
systems. 

Figure 11 shows the effects of P12 , 1, p 13 , 1, 

and p 23 , 1 on the relation between the stan
dard deviation of MWD a' ( = {X wCXz
XwW 12 , Xz, the z-average of X;) of the poly
mers partitioned in two phases and in 
the case of pP= 1/15. Broken line in the fig
ure shows the a' of original polymer 
(=212.1)]. In the figure unfilled circle is the 

a' of the polymer in PLP (a(l)) increases 
with an increase in and almost coincides 
with at which approaches to for 
pp--->0. xn(1)• xw(1)• and xz(l) increase with an 
increase in a (1) is very close to at 

On the other hand, xn(2)• xw(2)• and 

PRP 
,,=-0.01 

0.01 
0.05 

10 0.07 

1006 

5 0 0.5 0 0.5 1.0 
9p 

Figure 10. Effects of the concentration dependent parameters p 12,1, p 13,1, and p23.1 on the relations 
between Xw/X. of the polymers in polymer-lean phase (PLP) or polymer-rich phase (PRP) and Pp· Original 
polymer, Schulz-Zimm type distribution 300, =0.5, =0.2, and xg3 = 1.0, = 
0.005. a) P13,t =P2J.1 =0, b) P12,1 =p23 ,1 =0, c) p 12,1 =p13 ,1 =0. The broken lines are the results for quasi-
binary system. p is denoted on curve. · 
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Figure 11. Effects of the concentration dependent parameters p12 1 , p 13 1 , and p23 1 on the relations 
between (J' of the in polymer-lean phase (PLP) or phase (PRP) and Original 
polymer, Schulz-Zimm type distribution 300, 2); =0.5, =0.2, and = 1.0, pP= 
1/15. a) P13 .1 =p23 .1 =0, b) P12 •1 =p23 .1 =0, c) P12 •1 =p13 .1 =0. Unfilled circle denotes 

5 a) b) c) 

Figure 12. Effects of the concentration dependent parameters p12 ,1, p13 ,1 , and p23 ,1 on the relations 
between (J' of the polymers in polymer-lean phase (PLP) or polymer-rich phase (PRP) and pP' Original 
polymer, Schulz-Zimm type distribution 300, 2); = 0.5, = 0.2, and = 1.0, = 
0.005. a) p13 ,1 =p23•1 =0, b) P12 •1 =p23 ,1 =0, c) P12 ,1 =p13 ,1 =0. The broken lines are the results for quasi
binary system. p is denoted on curve. 

Xz<zi decrease and Xz<z>- X w<Z> increases mono
tonically as increases. In the range of 

1·10-4 , 0'(2 > is smaller than With an 

increase in Xz<z>- X w<Z>• 0' (2> gradually in
creases and coincides with 0' at I x 
104 . In spite of the agreement of 0'(2 > with 
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at 1 x 10-4 , neither nor 
hold even at 1 x 10- 4 but 
and hold. 0'(2) attains a 

maximum at specific ( = max) because 
the effect of decrease in X w<ll becomes larger 
than those of increase in Xz<ll- X w<lJ· Fur-

1008 

0.5 a) 

0. 

0.3 
. -1.5 

-J.0--0.8 
-0.6-0. 
0.2 
0.4-0.6 

Figure 13. Effects of the concentration dependent parameters p 12 ,1 , p13 ,1 , and p23 ,1 on the relations 
between polymer volume fraction in polymer-rich phase vpll) and Original polymer, Schulz-Zimm type 
distribution and Xg 3 =1.0, pP=l/15. a) p13 ,1 =p23 ,1 =0, b) 
P12 ,1 = P23 ,1 = 0, c) P12 ,1 = P13 .1 = 0. Unfilled circle denotes 

0.5 a) 

0.2 

0.1 

0 o o.5 

Figure 14. Effects of the concentration dependent parameters p 12 ,1 , p13 ,1 , and p23 ,1 on the relations 
between polymer volume fraction in polymer-rich phase vpll) and Pp· Original polymer, Schulz-Zimm type 
distribution 300, 2); =0.5, =0.2, and xg3 = 1.0, =0.005. a) p 13 ,1 =p23 ,1 =0, b) 
P12 •1 = p23 ,1 = 0, c) p 12 ,1 = p 13 ,1 = 0. The broken lines are the results for quasi-binary system. pis denoted on 
curve. 
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ther, (J (2 J rapidly decreases with an increase 

in When = Xn(ZJ• X w<ZJ• and Xz<ZJ 
are fairly larger than and respec
tively and (J (2 J is larger than (J At = 

Xw<z/Xn<ZJ coincides with Xw<J/Xn< 1J as 
shown in Figure 9, but note that Xn<ZJ 

Xn<1J and always hold. As in
creases with an increase in p 13, 1 and p23 , 1, we 
can predict that slowly increases with an 
increase in p 13,1 and p 23 ,1· 

Figure 12 shows the effects of p 12,1, p 13,1, 
and p23 , 1 on (J' vs. p P curve. The figure also 
includes the results20 - 27 of quasi-binary sys
tem as broken line for comparison. Filled 
circle denotes the value for the original 
polymer As well as Xw<z/Xn<ZJ vs. Pp 
curve, (J (2 J vs. p P curve has a minimum at some 
Pp· (J(1J and (J(2 J gradually decrease with an 
increase in p 13.1 and p 23 .1. (J(2J of the quasi
ternary system with p 13 ,1 (p12 ,1 = 

Pz3,1 =0) or Pz3,1 =0.05 (ptz.t =p13,I = 
0) agrees fairly with (J (2 Jof the quasi-binary 
system with p 1 =0.6. Similar behavior is ob
served for (J (1J. 

Figures 13 and 14 show the effects of p 12 ,1, 

P13 • 1 , and P23 • 1 on the vp(ZJ vs, curve and 
vp(ZJ vs. pP curve, respectively. The effect of 
p 12,1 on vp(ZJ is small but innegligible and vp(ZJ 
for a given pP shows a maximum at p 12.1 , 

ranging between -0.6 and 0. The effects of 
p 13,1 and p 23 ,1 are remarkable and vp(ZJ in
creases abruptly with an increase in p13 ,1 and 

p23 •1 . Especially, vp(ZJ increases suddenly with 
a small increase in p 23 .1. vp(ZJ vs. curve has 
a minimum at the point corresponding to 
the maximum of V<2 J vs. curve. vp(ZJ in
creases with an increase in p P' and coincides 
with v;<ZJ at pP= 1 (see Figure 8). By use of eq 
C-8b, relation between R and pP is expressed 
by: 

(54) 

In the range of the small pP (i,e., pP<0.3)), 
R decreases abruptly with an increase in pP 
because vp(ZJ changes slowly with Pp· In con-

Polymer]., Vol. 18, No. 12,1986 

trast to this, in the large pP region R increases 
gradually with pP because of the rapid change 
of vp(ZJ with Pp· 

Equation C-8a can be rewritten as follows. 

1.0 
0 -Q6 

-0.3 \ 
0. 

1.0 

0.8 1.0 

9p 

Figure 15. Effects of P12 ,1 , and p23 ,1 on V1<Il• Vz<I>• 

vl(Z)• and v2(2) vs. pP curves. Original polymer, Schulz
Zimm type distribution 300, 2); x?2 = 0.5, 
x?3 =0.2, and = 1.0, a) and d) p13 ,1 = 
p23 ,1 =0, b) and e) P12 ,1 =p23 ,1 =0, c) and f) p12 ,1 = 
p 13 .> = 0. The broken lines are the results for quasi
binary system. p is denoted on curve. 
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+ (55) 

If 1, vP< 1> is independent of x?2 , x?3 , Xg3 , 

p12 ,.,p13 ,q, andp23 ,, and dependent on pPand 
(see for example, Figure 19 of ref 10). 

The effects of p12 , 1 , and p13 , 1 , and p23 , 1 on 
vH1>, v2<1>, v1<2>, and v2<2> vs. pP curves are 
shown in Figure 15. Generally, with a de
crease in p 12 , 1 and an increase in p 13 , 1 and 
p23 , 1 , v1(1), v1<2>, and v2<2 > decrease and v2<1> 
increases. The effect of concentration depen
dence of x-parameters i:ncreases in the fol
lowing order: p 12 , 1 <p13 , 1 <p23 , 1 . The effect 
of p 12 , 1 on vH2> is just reverse to that on v 2<2> 

and v1(2 ) + v2<2> is insignificantly influenced by 
p12 , 1 . v1<1> (or v1<2 >) vs. pP curve is similar to V1 

vs. pP curve in shape and v2 <1 > vs. pP curve has 
a similar shape to V2 vs. pP curve. As pP 
increases, v1<1> and v1 <2 > decrease rapidly, ap
proaching to zero at pp= 1.0 and v2 <1> increases 
remarkably, approaching to unity at pP= 1.0. 
Extrapolated value of v2<2> to pP= 1 is denoted 
by filled circle, which coincides with vj<2> calcu
lated by eq 52. 

Figure 16 shows the effects ofp12 , 1,p13 , 1 , and 
p23 , 1 on the relation between V (or V2) and 
pP when solvent 2 (poor solvent) was added 
to the starting solution consisting of solvent 
1 (good solvent) and polymer with 
0.01. As p 12 , 1 decreases and p 13 , 1 , and p23 , 1 

increase, a large amount of solvent 2 is need
ed to bring about the two phase separation. 
Especially small change in p23 , 1 causes a 
drastic change in V2 • Considering the strong 
effects of p23 , 1 and xg3 on V2 as first demon
strated by Kamide and Matsuda, 10 a care
ful choice of non-solvent is an important fac
tor to determine V2 (or V). 

Figure 17 shows the effect of the concen
tration dependence of three thermodynamic 
interaction parameters on the coexisting 
curve. Phase separation is obtained under 
the same conditions as those in Figure 16. 
In the figure tie lines for pp= 1/100 are shown 
by the full lines, which can be accurately ap
proximated with tie line for pP=O (limiting 
tie-line) and the line of is shown by 
the broken line. The cross point of the limit
ing tie-line and the line of can be 

Figure 16. Effects of the concentration dependent parameters p12,1 , p 13 ,1 , and P23 ,1 on the relations 
between the total volume of the system V(or volume ofnonsolvent V2 ) and pP' Original polymer, Schulz
Zimm type distribution 300, 2); = 0.5, = 0.2, and = 1.0, = 0.0 I. a) P13 ,1 = 

P2J,1 =0, b) P12,1 =P2J,l =0, c) P12,1 =pi,,! =0. 

1010 Polymer J., Vol. 18, No. 12, 1986 



Phase Equilibria of Quasi-Ternary Systems V. 

regarded as a cloud point. In the previous 
paper,9 the coexisting curve shifted to a di
rection of decreasing v2 with a decrease in 

x?2 and a increase in x?3 and With an 
increase in p 12 _1 from -2.0 to 0.6, a similar 
shift in the coexisting curve was observed, but 

a) 

0 9p= 11100 
• 1/15 
A 2/10 
• 4/10 
v 6/10 
• 8/10 
c 9/10 

b) 

c) 

Figure 17. Effects of the concentration dependent parameters p12 _1 , p13 _10 and p23 _1 on the coexisting 
curves and their tie-lines for quasi-ternary system consisting of multicomponent polymer (Schulz-Zimm 
distribution, 300, =2) in binary solvent mixture. x?2 =0.5, x?3 =0.2, and = 1.0, =0.01. 
a)p13 _1 =P23 .1 =0, b)P12 .1 =p23 •1 =0, c)p12 ,1 =P13 •1 =0. Q, Pv= 1/100; •• Pv= 1/15; /',., Pv=2j10; •• Pv= 
4/10; \7, Pv=6j10; e, Pv=8j10; 0, Pv=9j10. 
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Figure 18. Effects of the concentration dependent 
parameters p12 ,1 , p 13 ,1 , and p23 ,1 on the relations between 
degree of selective adsorption 02 and Pp· Original 
polymer, Schulz-Zimm type distribution 300, 

x?z=0.5, x?3=0.2, and 
a) P!3,t =Pz3,1 =0, b) P12.1 =pz3,1 =0, c) P12.1 =p,3,t =0. 

vP<2l changes a little, showing a maximum at 
p 12 , 1 = -0.2. With an increase in p 13 , 1 and 
p23 , 1 , limiting tie-line approaches to v2 - v P 

axis and vP<2 l increases drastically. 
Figure 18 shows the effects ofp12 , 1,p13 , 1 , and 

p 23 , 1 on the relation between 82 , which is 
defined by following equation, 

()2 = v20l/(vl(l) + v20l) (56) 
v2(2)/(v1(2) + v2(2l) 

and Pp· As 82 is always larger than 1.0, a larger 
amount of non-solvent is partitioned in poly
mer-lean phase than -rich phase. The fact 
that() increases with an increase in pP suggests 
strongly that tie-line changes from v1 - vP axis 
parallel to v2- vP axis parallel. 

Summarizing, (a) a good separation effi
ciency can be expected for (i) small x?2 and 
p 12 , 1 -0.2, (ii) large x?3 and large p 13 , 1 , 

(iii) small and large p23 , 1 . Specially, care
ful choice of solvent 2 (non-solvent) is impor
tant. (b) For large p 13 , 1 and p 23 , 1 , separation 
efficiency in quasi-ternary system exceeds 

1012 

that in quasi-binary system. (c) In order to 
diminish the amount of non-solvent neces
sary to separate the polymer in the polymer
rich phase at the same pP (i) small x?2 and 
large p 12 , 1 , (ii) large x?3 and small p 13 , 1, (iii) 
large and small p 23 , 1 are desired. 
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APPENDIX A 

Derivation of eq 13-15. 
Integrating eq 9, 11GE for quasi-binary sys

tem is obtained: 14 

[ ( 
n 1 - + 1 )] 

x Xo Vo VoVp 

(A-1) 

Following the procedure of quasi-binary 
system, 11Gf3 and 11Gf3 for quasi-ternary 
system can be given by integration of eq 10 
and 11, respectively. 

!1GE =lN' (o/1Gf3 )dN 
13 oN 1 

0 1 

= RT(N1 +N2 + J
1 

X;Nx.) 

x [x?3 {1 + I Pl3,q (____!!_r_)q 
q= 1 q+1 v2 +vp 

1-(v2 +vp)q+ 1 }] 
x v1vP 

v1 
(A-2) 

1N2 
( )dN2 
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!1G id is expressed by eq A-4. ts 

!1Gid= RT(Nt +N2 + Jt XiNx,) 

x[vtlnvt+v2lnv2+itt Vx,lnvx,J 

(A-4) 

Substituting eq 12, and A-2 A-4 into eq 
8, !1G is given by eq A-5 

l1G= RT(Nt +N2 + itt XiNx,) 

x [vtln vt + v2ln v2 + itt Vx, In Vx, 

+x?2(1+ 

+x?3{1+ I Pt3,q 
q=t q+1 v2+vP 

1-(v2 + vP)q+ t } 
x vtvp 

Vt 

1-(vt+v)'+t} J 
X P V V v 2 p 

2 
(A-5) 

Differentiations of !1G by Nt, N2 , and Nx, give 
l1J.1.1, l1J.1.2, and l1J.1.x, (i=1,···,m) as eq 13, 
14, and 15, respectively. 

!1Gid, !1Gf2, !1Gf3, and !1Gf3 satisfy fol
lowing relations, 
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(A-6) 

N d(a!1Gf2 )+N d(a!1Gf2) 
t aN 2 aN t 2 

+ I N x,d(a!1Gf2 )=o 
i=t aNxi 

(A-7) 

N d(a!1Gf3 )+N d(a!1Gf3) 
t aN 2 aN t 2 

+ I Nx,d(a!1Gf3 )=0 (A-8) 
i=t aNx, 

N d(a!1Gf3 )+N d(a!1Gf3) 
1 aN 2 aN t 2 

(A-9) 

namely, Gibbs-Duhem relation holds among 
l1J.1.1, l1J.1.2, and l1J.1.x, (i=l, · · ·,m). 

m 

Ntd(l1J.I.t)+N2d(l1J.1.2)+ L Nx,d(l1J.1.x)=0 
i= 1 

(A-10) 

Equation A-10 can be converted into eq 
A-11: 

(A-ll) 
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Substituting eq 13-15 into A-11, we can 
readily confirm eq A-10. 

APPENDIX B 

Relation between x and g 
In the case of quasi-binary system, fol

lowing relation holds between x (given by 
eq 4) and g (introduced by Koningsveld et 
a/.t6,t7)Y 

1 11 g=- xd(1-vo) 
Vo 1- va 

[ 
n P· 1-vj+1] 

=xo 1 + L 1 P 
i=d+1 v0 

(B-1) 

Differential form of the relation between x and 
g is 

i3g 
x=g-VoiJ(l-Vo) (B-2) 

where v0 ( = l - vp) is volume fraction of sol
vent. Equation B-2 is consistent with eq 
B-l. For quasi-ternary system combination 
of eq 17 and A-2 gives relation between g13 
and X13• 

{ 
nq p ( v )q _ 0 1+ __ P_ 

g13-X13 L q+ 1 v +v 
q= 1 2 p 

1 - ( v + v )q + 1 } 
X 2 P 

.v1 

=X?3[ N2+LX;Nx, + £• P13,q 
v1 N1+N2+LX;Nx, q=1 q+1 

(LX;Nx)q(N2+ LX;Nx) ] 0 

x (N1+N2+LX;Nx)q+1 Nt=Nt 

XO i1 [ nq J =___!l 1 + L d(l- v1) 
v1 1-vl q=1 

(B-3) 
Equation B-3 is also rewritten in the differ
ential form. 
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According to the same procedure, relation 
between g23 and x23 is given by eq 21 and 
23. 

APPENDIX C 

From the definition of Rand V, V<1> and V(2) 
are expressed by eq C-la and b. 

R 
J.(l)=R+1v 

1 
l-(2)= R+ 1 V 

(C-1a) 

(C-1b) 

Substitution of eq C-la and b into V2 = 
V2(1) V(1) + Vz(2) V(2)• yields, 

v 
Vz =--( Rv2(1) + Vz(2)) 

R+1 
(C-2) 

and combination of eq C-2 and 32 with V = 

V? + V2 + gives: 

0 s (R + 1 - Rv2u>- V2<2>) (C-3) 
Vp=Vp R+1 

(R+1)(V?+ 

R + 1 - Rv20>- v2<2> 
v (C-4) 

Substituting eq C-4 into C-Ia and b, we ob
tain: 

l-(1) 
R + 1 - Rv2(l)- v2<2> 

(C-5a) 

V?+ 
l-(2) = (C-5b) 

R + 1 - Rv2u>- v2<z> 

As V? and are initial conditions, V2 , and 
v (also v(1) and v(2) are obviously functions of 
three parameters, R, v2 (1>• and v2 (2). By use of 
eq C-la and b, vx and Vx ,<2 > are expressed by 
C-6a and b, respectively. 

0 R+1 
Vx,< 1> l-(1) v P g<l)(X;) (C-6a) 

Vx,(z) 1)g<2>(X;) (C-6b) 
l-(2) 
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Combining eq 27, C-3, C-6a, and b, eq 35a and 
b are derived. Vx ,<1> and Vx ,<2> are rewritten as 
follows, 

0 R+1 ( ) 
Vxm=VP R+exp(oX;) g0(X;) C-7a 

0 (R + 1) exp (oX;) 
vx,(z)=vP R+exp(oX;) g0(X;) (C-7b) 

Utilizing eq C-6 and 34, eq C-8a and b are 
obtained. 

m 

1) I 1)pP (C-8b) 
i= 1 

Substitution of eq C-3 into eq C-8a and b 
yields eq 36a and b. Combination of Xn<l) = 
L9(1)(X;)/(Lg<1>(X;)/X;) and eq 33, 34a, and b 
gives following relation (eq 37): 

_1_=2_{ I g0(X;) _ I g(2)(X;)} 
Xno> Ps i=1 X; i=1 X; 

_2_{_1 _ _!!_p__} 
- Ps Xn<z> 

(C-9) 

In the same way, l/Xn(Z) is represented by 
eq C-10. 

(C-10) 

APPENDIX D 

Derivation of eq 52 and 53 
At and Pp= l, v? =0, v2 = 

V- (vf<1>, vi<1>, v;<1>)=(0, I, 0), (vf<z>• vi(2), 
v;<2 >)=(0, l-v;<ZJ• v;(2)), g<1>(X;)=0, and 
g<2>(X;)=g0(X;) hold, and eq 30 becomes: 

I (1 * ) * ( vp(l) ) v;<ZJ n -vp(Z) +vp(z)+ X - xo 
n(l) Pp-1 n 

(D-1) 

By use of eq C-8a and 9, 
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( vpO)) =lim [voR+1 __ 1_]=0 
xn(1) Pp-1 Pp-1 p R xn(2) 

(D-2) 

Substitution of eq D-2 into D-l yields eq 52. 
Utilizing eq C-4, eq D-3 is obtained, 

V= ( R *+ 
v;<ZJ 

(D-3) 

and eq D-3 is rewritten as eq 53. Combining eq 
C-Ia, b, and 53, we can express and is 
expressed by eq D-4a and b, respectively. 

0 
* - vP V< 2>--*-v 

vp(ZJ 

(D-4a) 

(D-4b) 

If we set solvent I as non-solvent and sol
vent 2 as good solvent, eq 52 becomes: 

* I (1 * ) * v p(2) n -vp(2) +vp(ZJ- xo 
n 

REFERENCES 

I. P. J. Flory, J. Chern. Phys., 12, 425 (1944). 
2. R. L. Scott, J. Chern. Phys., 13, 178 (1945). 
3. R. L. Scott, J. Chern. Phys., 17, 2689 (1949). 
4. H. Tompa, Trans. Faraday Soc., 45, 1142 (1949). 
5. M. Nakagaki and H. Sunada, Yakugaku Zasshi, 83, 

1147 (1963). 
6. W. R. Krigbaum and D. K. Carpenter, J. Polym. 

Sci., 14, 241 (1954). 
7. K. W. Suh and D. W. Liou, J. Polym. Sci., A-2, 6, 

813 (1968). 
8. P. J. Flory, "Principle of Polymer Chemistry," 

Cornell University Press, Ithaca, New York, 1953. 
9. K. Kamide, S. Matsuda, andY. Miyazaki, Polym. J., 

16, 479 (1984). 
10. K. Kamide and S. Matsuda, Polym. J., 16, 515 

(1984). 
11. K. Kamide and S. Matsuda, Polym. J., 16, 591 

(1984). 
12. T. M. Aminavhavi and P. Munk, Macromolecules, 

12, 607 ( 1979). 
13. F. W. Altena and C. A. Smolders, Macromolecules, 

15, 1941 (1982). 

1015 



Phase Equilibria of Quasi-Ternary Systems V. 

14. K. Kamide, S. Matsuda, T. Dobashi, and M. 
Kaneko, Polym. J., 16, 839 (1984). 

15. M. Kurata, "Thermodynamics of Polymer So
lutions," Harwood Academic Publishers, Chur, 
London, New York, 1982, p 125, Chapter 2. 

16. R. Koningsveld, L. A. Kleintjens, and A. R. Shultz, 
J. Polym. Sci., A-2, 8, 1261 (1970). 

17. R. Koningsveld and L. A. Kleintjens, Macro
molecules, 4, 637 (1971). 

18. K. Kamide, Y. Miyazaki, and K. Sugamiya, 
Makromol. Chern., 173, 113 (1973). 

19. K. Kamide and S. Matsuda, Polym. J., 18, 347 
(1986). 

20. see, for example K. Kamide, in "Fractionation of 
Synthetic Polymers," L. H. Tung, Ed., Marcel 

1016 

Dekker Inc., New York, N.Y., 1977, Chapter 2. 
21. K. Kamide, Y. Miyazaki, and T. Abe, Polym. J., 9, 

395 (1977). 
22. I. Noda, H. Ishizawa, Y. Miyazaki, and K. Kamide, 

Polym. J., 12,•87 (1980). 
23. K. Kamide, K. Sugamiya, T. Kawai, and Y. 

Miyazaki, Polym. J., 12, 67 (1980). 
24. K. Kamide and Y. Miyazaki, Polym. J., 12, 205 

(1980). 
25. K. Kamide and Y. Miyazaki, Polym. J., 13, 325 

(1981). 
26. K. Kamide, Y. Miyazaki, and T. Abe, Br. Polym. J., 

13, 168 (1981). 
27. K. Kamide, T. Abe, and Y. Miyazaki, Polym. J., 14, 

355 (1982). 

Polymer J., Vol. 18, No. 12, 1986 


	Phase Equilibria of Quasi-Ternary Systems Consisting of MulticomponentPolymers in a Binary Solvent MixtureV. Effects of Concentration Dependence of ThermodynamicInteraction Parameters
	THEORETICAL BACKGROUND
	COMPUTER SIMULATION
	RESULTS AND DISCUSSION
	COMPUTER EXPERIMENT
	APPENDIX A
	APPENDIX B
	APPENDIX C
	REFERENCES

