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ABSTRACT: Incipient phase, isolated at cloud point from quasi-binary solution consisting of 
multicomponent polymers in a single solvent, was named "cloud particle" and an attempt was 
made to clarify the concentration and the composition (i.e., the molecular weight distribution) of 
the polymer in the cloud particle as a function of initial polymer volume fraction For this 
purpose, a theoretical method for direct calculation of the cloud point curve was employed 
considering concentration- and molecular weight-dependences of the polymer-solvent interaction 
parameter X· In order to compare characteristics (the concentration and composition of polymer) of 
two-phase equilibrium for Pv > 0 (pp, the relative amount of polymer partitioned in a polymer-rich 
phase) with those of the cloud particle (two-phase equilibrium for Pv=O), two-phase equilibrium 
for Pv > 0 was calculated under the same conditions as those of cloud particle. Computer 
experiments of the cloud particle were also carried out in the range of I.l--4, 
3 x 102-5 x 103 and are number- and weight-average of the molar volume ratio of polymer 
to solvent of original polymer, respectively), p 1 =0--0.8, and p2 =0--0.4 (p1 and p2 , 1st and 2nd 
order concentration dependent parameters). With a decrease in and an increase in p 1 and p2 , 

polymer concentration of the cloud particle increases. 
KEY WORDS Quasi-Binary Polymer Solution I Cloud Point f Cloud 

Particle I Molecular Weight I Molecular Weight Distribution I 
Concentration Dependence I x Parameter I Polymer Concentration f Critical 
Solution Point I 

During these fifteen years, Kamide and 
his coworkers1- 8 and Koningsveld et a/.9 - 13 

have clarified, based on the modified Flory
Huggins14 thermodynamic theory, the effect 
of molecular characteristics of the original 
polymer, solvent nature and operating con
ditions on the coexisting curve and the char
acteristics of two co-existing phases for mul
ticomponent polymers/single solvent system 
(quasi-binary system). They showed that the 
concentration- and molecular weight-depen
dences of the polymer-solvent interaction 
parameter x should be considered very care
fully in phase equilibrium. As an extension 

of their theory, Kamide et a/. proposed a 
method for directly calculating cloud point 
curve (CPC) and critical solution point (CSP) 
of quasi-binary solutions.15 Using concen
tration-independent and -dependent x para
meters, Solc16 - 22 suggested a direct method 
to calculate CPC and studied multiple critical 
points and three phase equilibria. But he did 
not study molecular characteristics of polymer 
in the cloud particle systematically. 

Recent experiments (for example, see Fig
ure 8 of ref 23) show that a phase separated 
near the cloud point is in a particle form. In 
this paper; incident phase, isolated at cloud 
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point from quasi-binary solutions, was named 
the cloud particle and an attempt was made to 
clarify the composition and molecular char
acteristics of the polymer in the cloud particle. 
Comparisons of the cloud particle charac
teristics with two-phase equilibrium charac
teristics (pP = 0.005---0.995, pP, weight ratio of 
polymer partitioned in polymer-rich phase to 
the original polymer)1- 8 were also made. 
Further, the effects of the molecular weight 
distribution (MWD) and the weight-average 
molecular weight- and concentration-depen
dences of x-parameter on the composition 
of the cloud particle and molecular charac
teristics of polymer in the cloud particle were 
also studied. 

THEORETICAL BACKGROUND 

When the polymer volume fraction of the 
starting solution is lower than the critical 
polymer volume fraction (i.e., < the 
two phase volume ratio R (= V(l/V<2 >; V<o 
and V<2 > are the volume of polymer-lean and 
-rich phases, respectively) becomes infinite 
at cloud point (CP) and the volume fractions 
of the X;-mer (in the strict sense, X; is the 
molar volume ratio of polymer to solvent) in 
polymer-lean and -rich phases, vx d 1l and Vx ,<2>, 
at CP (referred to as v'jd1> and v'jd2 >, respec
tively) are given by eq 1 and 2, 15 

cp _ 0 ( cpX) Vx,(2)-Vx,exp (Ji i 

(l) 

(2) 

where is the volume fraction of the X;
mer of the starting solution and (J? is the 
partition coefficient (J; at CP. When is 
higher than (i.e., > R becomes zero 
and v'jd1> and v'/,(2) are given as followsY 

cp _ o ( 'PX) Vx;(1)-vx,exp -(J; ; (3) 

(4) 

The cloud particles are a polymer-rich phase 
itself for < and a polymer-lean phase 
for > Strictly speaking, the cloud par-
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ticles do not have the volume (V<2 >---+0 for 
and V<1>---+0 for and accord

ingly they do not contain the polymer 
(pp----+0 for and Ps----+0 for Ps 
( = l- pP), the weight ratio of polymer 
partitioned in polymer-lean phase to the 
original), but the volume fraction of poly
mer in the cloud particle can be defined by 
eq l-4. The cloud particle is expected to 
have the close correlation with primary 
particles first observed by Kamide and 
Manabe in the membrane- or fiber-form
ing processes. 23 

x-parameter is empirically given by the 
following equationY 

n 

x= XoCl + L (5) 
j= 1 

where 

Xo = XooCl + k'/Xn) 

=(a+b/T){1+ (1- )} (6) 

Here Xoo is a parameter independent of vP 
and of X;, and k' and pj are the molecular 
weight- and concentration-dependence pa
rameters, respectively. e is the Flory theta 
temperature, T is Kelvin temperature, and 
a, b, and k 0 are. coefficients independent of 
X"' vP, and T. Based on the Flory-Huggins 
theory/ 4 the chemical potential of the sol
vent !J.p0 and X;-mer !J.px, are expressed by 
eq 7 and 8, respectivelyY 

!J.p0 =RT{ln (1-v p) + ( 1- v P 

+Xoo(1+;n)(1+jt1 (7) 

!J.px,=RT[ln Vx, -(X;-1)+ x{ 1- )vp 

+X;(1-vp)2xoo[ (1 + ;n) 

Polymer J., Vol. 18, No. 12, 1986 
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x{1+ .± .Pi1 (I 
1=1J+ q=O 

( 1 1 ){ 1 +k' --- --
X; Xn 1-vP 

(i=1, ···,m) (8) 

Here, R is the gas constant. We assume that 
(a) the polymer and solvent are volumetrically 
additive, and (b) the densities of polymer and 
solvent are the same. Then, the dJ10 and 
dJ1x, in eq 7 and 8 satisfy the Gibbs-Duhem 
relation. The well-known Gibbs conditions 
for the two-phase equilibrium of a quasi
binary solution at constant temperature 
and pressure are, 

dJ1o(1) = dJ1o(2) 

dJlx ,(1) = dJ1x ,(2 ) (i = 1, · · ·, m) 

(9) 

(10) 

Here, the suffixes ( 1) and (2) denote the polymer
lean and -rich phases respectively. Combination 
of eq 7-10 gives 

and 

with 

-(vp(l)- vp(2) )}/[(v2 -v2 ) X X p(2) p(1) 
n(l) n(2) 

+ k' ( v;(2) - v;(l') ) 
X n(2) X n(1) 

n 
" { "+2 "+2 + L.t Pi -

i= 1 

+ k' -( "+2 "+2 )}] 

xn(2) xn(l) 
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(11) 

(12) 

-(vi+2_vi+2)}] -x k'[(vp(l)- vp(2)) p(1) p(2) • oo X X 
n(1) n(2) 

( 
2 2 ) n {( i+ 1 - vp(l) - vp(2) + L Pi vp(l) 

- )}] X n(l) 
X - ____.el.!L-

n(2) X n(1) X n(2) 
(13) 

and 

n Pi "+1 "+1 } +.I .+ 1 ]=11 
(14) 

If k' and Pi (J= 1, · · ·, n) are known, Xoo• a0 , 

and O'o1 become functions of vp(1)• vp(2)• xn(1)• 
and Xn<2). According to definition, vp(1), vP<2), 
xn(1)• and xn(2) are expressed in terms of 
Vx ,(1) and Vx ,(2) as follows. 

m 

vp(l) = I Vx,(l) 
i= 1 

m 

vp(2) = I Vx,(2) 
i= 1 

(15a) 

(15b) 

xn(l)= it! Vx,(l)/Ct1 Vx,(1/X;) (16a) 

xn(2)=it1 Vx,(2)/Ct1 Vx,(2/x) (16b) 

As expressed by eq 1---4, vj',(1) and vj',(2) are 
determined by a? alone. Considering eq 
11-16, we can give x00 , a0 , and a01 at the 
cloud point (referred to as and 
as functions of assumed a0 and a01 (denoted 
as O'o and O'o1). 

(17) 
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(18) 

(19) 

Here, solving following simultaneous equa
tions, 

(20) 

o-gl)-o-gl =o c21) 

we can obtain true and Substituting 
o-6 and into eq 17, we can evaluate 

can also be calculated by substituting 
into eq 6. Of course, utilizing eq 1---4, 15a, 
and b, we can calculate v x ,11 ), v x ,12 ), vp(l)• and 
vP12 ). This procedure is almost the same as 
that of CPC calculation, reported in a pre
vious paper. 15 

Koningsveld et a/.9 have carried out only 
the calculation of phase-diagrams (in other 
words, composition) of cloud point curve 
and shadow curve (incipient phase curve). In 
their study, CPC was only indirectly calcu
lated as a cross point of constant line 
and limiting tie-line of coexisting curve at a 
few and isolated 

In this article, (i) a direct method with
out any serious assumptions was employed 
and (ii) not only the phase-diagram, but 
also the partition coefficient o-, and the 
molecular characteristics (vi,, (Xwl 
X.YP, and the standard deviation o-'cp 
( = 12 ); and X? are the 
weight- and z-average of X;, respectively) 
were calculated. CPC can be estimated from 
x6, and the shadow curve from vcp. Both v p p 

and Xoo at critical solution point and 
can be calculated by solving simultaneous 
equations 22 (spinodal condition) and 23 
(neutral equilibrium condition)Y 
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1 xz 
(1- vp) 2 (X wvp) 2 

- Xoo { 1 + k' ( 1 +; n-

x {J
1 

}=o (23) 

COMPUTER SIMULATION 

Following parameters were calculated under 
the same conditions as those of actual CPC 
experiments on polystyrenejcyclohexane 
system, reported in the previous paperY The 
original polymer was assumed to have the 
Schulz-Zimm type distribution, 

yh+l 

go(X;) (24) 

with 

(25) 

and 

(26) 

with and The 1st and 
2nd order concentration dependent coeffici
ents p 1 and p 2 and molecular-weight dependent 
coefficient k 0 were taken as 0.643, 0.200, and 
0, respectively. and for the solution were 
0.0766 and 0.5066, respectively. In the case of 

< two phase separation characteristics 
were calculated under the same conditions 
to compare vj, o-cp, (Xw/X.YP, 
and o-'cP with vP, o-, x0 , Xw, XwfX. and o-' at 
two phase equilibrium (pp>O), respectively. 
Moreover, under the conditions of X 0 jX0 = 
1.1---4, = 3 x 102-5 x 103 , p 1 = 
p2 = 0--0.4, computer experiments on the 
cloud particle were carried out to study the 
effects of p 1 , and p 2 on the cloud 
particle characteristics. 

The computer experiments were carried out 
using FACOM M360. 

Polymer J .• Vol. 18, No. 12, 1986 
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RESULTS AND DISCUSSION 

Figure 1 shows the effect of on v';f(1l, vi(2 l, 

(Jcp, and A chain line in Figure Ia) is a 
I. f cp cp 0 Th t' me o v p(tJ or v p(l) = v p· e concentra IOn 
of cloud particles v"; is v';f(2l for < and 

cp r 0 c 
vp(t) tOr vP>vP. 

The polymer volume fraction of the cloud 
particles v"; decreases gradually with an in
crease in At CSP, the following relation 
holds (filled circle): 

(27) 

(Jcp decreases first with an increase in 
and shows a rather sharp minimum at CSP. 
At the limit of infinite dilution i.e., 

vi(1 l becomes zero, and accordingly CJcp be
comes infinite (see, eq 12). Note that CJcp vs. 
v0 curve is continuous except for singular 

p 

point (unfilled circle). 
Mathematically, the following relations 

hold: 

lim (Jcp( = = lim (JCP( = +) = 0 

(28) 

(29) 

Figure 1. The polymer volume fraction of cloud par
ticle the partition coefficient and x0 -parameter at 
cloud point, ifP and x'if, plotted as a function of 
Original polymer, Schulz-Zimm type distribution 

2117, p 1 =0.643, p2 =0.200, k0 =0. 

Polymer J., Vol. 18, No. 12, 1986 

(when denoted as filled circle) (30) 

Koningsveld and Staverman9 estimated, by 
applying an indirect method for Rehage eta!. 's 
data24 on polystyrenejcyclohexane system, a 
continuous shadow curve including CSP (see 
Figure 8 of ref 9). They draw a line passing 
through several points near and apart from 
CSP. Note that their indirect method becomes 
very inaccurate near CSP. We can draw con
tinuous shadow line as shown in Figure 2 
(broken line). 

At the limit of approaches to 
infinity. With an increase in decreases 
and then increases after passing minimum 
at threshold CP Xo vs. curve 
is continuous even at CSP (Figure 1c)). 

Figure 3 shows the distribution of volume 
fraction of the polymer partitioned in the 
cloud particle, v'f,(referred to as vcP(X;)). For 

< vcP(X;) = vffJ (X;) and for > 
vcP( X;)= vffJ( X;) hold. As becomes higher 
in the range of vcP(X;) becomes 
apparently sharp and the content of higher X; 
component in cloud particle decreases. At 

(in this case, 0.0766) vcP(X;) coincides 
with volume fraction of X; component in 
the original polymer v0 (X;). The peak height 

24 

polymer concentration (•1. by weight) 

Figure 2. Cloud point curve and shadow curve of 
polystyrenejcyclohexane system: e, cloud point extra
polated using an indirect method by Koningsveld
Staverman9 from Rehage et al.'s24 coexisting curve; 0, 
shadow point extrapolated using an indirect method by 
Koningsveld-Staverman9 from Rehage et al.'s24 coexist
ing curve. --, cloud point curve estimated by 
Koningsveld and Staverman; -----,shadow curve esti
mated by Koningsveld and Staverman; ----, shadow 
cur¥e estimated in this paper. 
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of vcP(X;) attains maximum at 
then decreases for a further increase in 
and vcP(X;) approaches again v0 (X;) at limit 
of 1. 

Figure 4 shows XC,!, (XwfX.)"P, and ()'CP 
as functions of At the limit of 
becomes infinite and (XwfX.YP and f5'CP 
approach to unity and zero, respectively. 
With an increase in decreases first 
very remarkably down to the value smaller 
than Xw of the original polymer, (filled 
mark in the figure) and then increases very 
gradually after passing through minimum 
(unfilled mark), approaching to again at 

With an increase in (Xw!X.YP 
increases rapidly from unity (at = 0) and 
shows a maximum at a specific (in this 
case, = 0.045; denoted as unfilled rectangle) 
and then slowly decreases. At CSP (i.e., 

(XwfX.YP coincides with and 
with a further increase in beyond 
(XwfX.YP attains a minimum and approa
ches again at 1. It should be noted 
that (X wfX.YP coincides with at 
three different Among them, at the lowest 

is very larger than and of course 

4 
Vp=O.l 

Q25 
Original Polymer 

Figure 3. The distribution function of polymer volume 
fraction of cloud particle v'•(X;). Original polymer, 

type distribution 2117, xe = 
2.8); p1 =0.643, p2 =0.200, k0 =0. Number on curve 
denotes 
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vcP(X;) does not coincides with v0(X;). 
Therefore, the polymer having the same 
vcP(X;) as the original polymer is expected 
to appear at both = and 1, in which 
no phase separation occurs. f5' cp reveals 
minimum at specific between and 1. The 
specific giving minimum (Xw!X.)"P, 
and f5 •cp is the same ( denoted as unfilled 
circle), and referred to as Theore
tically, the following three equations are 
satisfied simultaneously at v0P = v0 m· . p, In 

axcp 
0; =0 (31) 

vP 

o(XwfX.)"P 
0 (32) 

ov 0 p 

O(J'CP 
(33) --0 =0 

ovp 

Figures 5a and b show vi(2 > (or vi( I)) vs. 

2 
a) 

1 

,...._. 

I 
2 

!l 
V' b 

n 
0.1 

. . 

.. 

v.o p 
02 Q3 

Figure 4. Plot of the weight-average, X1, the ratio 
Xw/X. and the standard deviation of the polymer in 
cloud particle, X';;:, (Xw/X.)'•, and a''P, as a function.of 

Original polymer, type distribution 
p1 =0.643, p2 =0.2oo, k0 =0. 

Filled and unfilled circles are correspond to and 
respectively. 
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Figure 5. a) Comparison of the polymer volume fraction at cloud point v'J(i) vs. curve (broad solid line) 
with the polymer volume fraction at constant Pv (fine broken line; Pv = 5 x 10- 3-0.975). Suffix i denotes 
the polymer-lean phase in the case of i= I and the polymer-rich phase in the case of i=2. b) The 
comparison of the partition coefficient at cloud point ifP vs. curve (broad solid line) with the partition 
coefficient CJ vs. curve at constant Pv (fine broken line; Pv=5 x 10- 3-0.8). Fine solid lines are the 
contour lines of Xo· Original polymer, Schulz-Zimm type distribution 2117, 2.8); Pi= 0.643, 
p2 = 0.200, k0 = 0. 

curve and acp vs. curve (shown as broad 
solid line). The figure includes vP<Zl (or vp(ll) 

vs. curve and a vs. curve at constant pP, 
ranging from 0.005 to 0.975 (shown as fine 
broken line), in the range of Figure 5 
also includes the constant Xo line (denoted as 
fine solid line). With a decrease in pP and x0 , 

vp(Z) and a decrease and vp(l) increases. At the 
limit of pP-+0, vp(l) vs. vp(Z) vs. and a vs. 

curves converge into v'J<l)· vs. (namely, 
cp _ 0) cp 0 d cp 0 vp<ll-vP, vp<ZJ vs. vP, an a vs. vP curves, 

respectively. In the case of k' = 0, using eq 
6, we can get 

x0 =a+b/T (34) 

I 
I 

0.54 1
1 

0. 

0.52 

' ' ' 

' \ 

and vp(i) (i= 1,2) vs. and a vs. curves at 
constant x 0 value can be transformed into 
the corresponding curves at constant temper
ature (simply referred to as T constant curve). 
Along the constant temperature curve with 
x 0 0. 507, p P increases monotonically with 
an increase in In the case of x0 =0.506, 
with an increase in pP increases first and 
shows a maximum (pp=0.2). which gives 
the smallest x0 , coincides with 

Figure 6. Comparison of Xo at cloud point vs. 
curve (broad solid line) with Xo vs. curve at constant 
Pv (fine broken line; Pv = 5 x 103-0.975). Fine solid lines 
are the contour lines of phase volume ratio R. Original 
polymer, Schulz-Zimm type distribution 2117, 

2.8); Pi= 0.643, p2 = 0.200, k0 = 0. Filled circle 
is the critical solution point. 

Polymer J., Vol. 18, No. 12, 1986 987 
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vo=vc vo=vc 
8 

15 a) b) 
/2.5·10 

;o.1 ....... 0.2 6 ....... N 1 ;,o.4 '"":! 0.6 
I 0.8 II 

4;;' 

2 b;:; 

0 

3 
<'1 
(! 

>< 
"@ 

2 
>< 

2 4 2 4 6 10 6 80 
Vp·102 

Figure 7. Comparison of a) X;:(il, b) a(,)P, c) (Xw<li/X.<11)'P and d) (Xw<2 /X.(2))'P vs. curves (denoted as 
broad solid line) with a) Xw<•l• b) a (,1, c) Xw<11/X•<'P and d) Xw< 2 /X.<21 vs. curves (denoted as fine broken 
line) at constant p" (ranging from 5 x 10- 3 to 0.995), respectively. Original polymer, Schulz-Zimm type 

2117, 2.8);p1 =0.643, p2 =0.200, k0 =0. Suffix i denotes the polymer-lean phase 
in the case of i = I and the polymer-rich phase in the case of i = 2. 

A comparison of vs. curve (denoted 
as broad solid line) with Xo vs. curve at 
constant p P (denoted as fine broken line) is 
shown in Figure 6. CSP is denoted by filled 
circle. With a decrease in pP, Xo decreases and 
finally Xo vs. curve coincides with x'd' vs. 

curve at the limit of pP--->0. Constant R line 
is denoted as fine solid line in the figure. 
Contour line of R also coincides with x'd' vs. 

curve for R---> oo and converges into CSP for 
R---> I. With an increase in Xo· R decreases first 
and shows minimum ( = Rmin). 1 - 8 The relation 
between Rmin and is denoted as chain line. 
R near CP is large ( 1 x 105 ) for small and 
decreases with an increase in In contrast to 
this, pP near CP is small ( for small 
and becomes large ( 0. 3) for· large In 
other words, for small small amount of 
polymer is partitioned in small polymer
rich phase near CP and polymer volume 
concentration is high. For large large 
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'QI. 

0.5 

Q2 
p 

Figure 8. Effects of on v;;, a'P, and x't vs. 
curves. Original polymer, Schulz-Zimm type distri
bution =2000); p 1 =0.6, p2 =0, k2 =0. 
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amount of polymer is partitioned in large 
polymercrich phase near CP, resulting in low 
polymer concentration. 

Figures 7a, b, c, and d show (or 
0 'CP ( 'CP) 0 (X !"" )cp VS. VP' 0'(2) or 0'(1) VS. VP, w(l) An(l) 

vs. and (Xw<2 /Xn(2)YP vs. curves (shown 
as broad solid line), respectively. The figure 
also shows xw(2) (or xw(l)) vs. a(2) (or a(l)) 

vs. Xw<tYXn<t> vs. and Xw<2 /Xn<2> vs. 
curves (shown as fine broken line) with con
stant pp(pp=0.005-0.995), in the range of 

At the limit of pP-+0, the molecular 
characteristics of two-phase equilibrium co
incides excellently with the molecular char
acteristics of the cloud particle. As stated 

a) 

Figure 9. Effects of on X'.f, (X.,/ X.)'•, and a"• 
vs. curves. Filled and unfilled circles correspond to 
and respectively. Original polymer, Schulz-Zimm 
type distribution 2000); p1 = 0.6, p2 = 0, k0 = 0. 

Polymer J., Vol. 18, No. 12, 1986 

above, the concept of cloud particle is rather 
hypothetical, but all the characteristics of 
cloud particle coincides with those of polymer 
in a polymer-rich phase in the case of pP-+0 
and is expected to control the characteristics 
of primary particle, observed by Kamide and 
Manabe. 23 

Figure 8 shows the effect of on the 
vcp O'cp and xcp as the functions of v0 J)cp 
p' ' 0' p• p 

is strongly influenced by acp, which decreases 
with an increase in With an increase 
in acp (namely, with an increase in 
vj decrease for < and vj increase for 

(see, eq 2 and 3). Though decreases 
with an increase in for is 
not significantly affected by for > 

The effect of on (Xw/XnYP, 
and a "P is shown as the function of in 
Figure 9. As increases, decreases 
in the case of < and increases in the case 
of > min increases with an increase in 
X 0 jX° For v0 <vc (X jX )cp as well as a'CP w n· p p w n 

Figure 10. Effects of on v',f', a'•, and vs. 
curves. Original polymer Schulz-Zimm type distribution 

0); p1 = 0.6, p2 = 0, k2 = 0. 
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are strongly influenced by 
Figure 10 shows the effect on v'J', (Jcp, 

and vs. curves. With an increase in 
(Jcp decreases for < and increases for 

> A change in (Jcp with is the main 
cause of the decrease in with an increase 
in As increases, decreases. 15 

Figure 11 shows the effects of on XC:, 
(X IX )cp d 'CP 0 0 

w n ' an (J vs. v p curves. v p. min 

(shown as unfilled circle in the figure) de
creases with an increase in The decrease in 

a> 

a. 

c 
1.8 

.!S 
1.6 

5·102 
1·103 
·J03 

3·J03 

0.1 

·J03 

i=l 

5·J02 
I·J03 
2·J03 

v,O p 
0.3 

Figure 11. Effects of on X',!, (Xwl Xn)'•, and a"• vs. 
curves. Filled and unfilled circles correspond to and 

respectively. Original polymer, Schulz-Zimm type 
distribution p 1 =0.6, p2 =0, k0 =0. 
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(denoted as filled circle) with an increase in 
seems to demand a decrease of min· As 
increases, (X wf X.)<P increases for < 

and decreases for 
Figure 12 shows the effect of p 1 on v'J', (Jcp, 

and vs. curves. With an increase in 
p1 , (Jcp increases· in the range < and 
decreases in the range > The p 1 depend
ence of (Jcp brings about an increase in v'; 
with an increase in p1 . x decreases with an 
increase in p1 . p1 has a strong effect on 
V'J', (Jcp, and 

Figure 13 shows the effect of p 1 on XC:, 
(XwfX.)<P, and (J'<P as the functions of As 
p1 increases, XC: increases and for > 
(X w! x.)<P decreases. min (unfilled circle) 
increases substantially with an increase in p 1 . 

In the case of > min the molecular char
acteristics are almost independent of p 1 . 

Figures 14 and 15 show the effect of p 2 on 

0.1 0 0.2 0.3 
Yp 

Figure 12. Effects of p1 on v'f, a'•, and x't vs. 
curves. Original polymer, Schulz-Zimm type distri
bution 2000, 2); p2 = 0, k0 = 0. 
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M 

$2 
fr3: 
X 

a. 

c 
X -J 

6 

0 

1 

2.0 

1.0 

0 

c) 

0.1 0 0.2 
Vp 

0.3 
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