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ABSTRACT: The birefringence, !'J.n, and the shear stress, u, were measured after an in
stantaneous shear deformation for a 10.5% solution of triblock copolymer, poly(methyl 
methacrylate)-block-polystyrene-block-poly(methyl methacrylate), in polychlorinated biphenyl. 
Hereafter M stands for methyl methacrylate and S for styrene. The mole fraction of S of the 
copolymer was 0.4. Measurements were performed at various magnitudes of shear, y, ranging from 
0.4 to 3 and !'J.n was measured with a light led perpendicularly to the shear plane. Under 
assumptions that the !'J.n and u are sums of independent contributions from M and S blocks and that 
the stress-optical law holds good for the contribution from each block, the stresses, uM and u8, 
attributable to theM and S blocks, respectively, were separately evaluated. The result at short times 
was consistent with the assumption that the chain is uniformly deformed on instantaneous 
deformation of the material. The ratio u8lu increased with time. For small y, the result was 
consistent with the tube model theory if the ratio· u8lu was regarded as the fraction of stress 
attributable to the central portion of chain. At large deformations, the increase with time of the 
ratio was much less than expected from the theory. 
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Block Copolymer I Poly(methyl methacrylate-styrene-methyl methac
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The measurement of flow birefringence is 
a powerful method in rheological studies of 
polymeric liquids. 1 For homopolymer systems, 
the birefringence and the stress are connected 
through a relation called the stress-optical 
law. This states that the anisotropic compo

nent of the refractive index tensor, lln, is 
proportional to that of the stress tensor, a: 

of stress measurement when the latter is dif

ficult for various reasons. 1 

lln= Ca (1) 

Here C is called the stress-optical coefficient. 
The relation was revealed to be valid in time
dependent flows as well as in steady flows. 2 - 4 

According to the stress-optical law, one can 
use birefringence measurement in the place 

The stress-optical coefficient is propor
tional to the anisotropy of the Kuhn statis

tical link of the chain, namely, to the differ
ence between the polarizability parallel to 
the link and that perpendicular to the link. 
Thus the stress-optical coefficient depends on 
the monomer species. In the case of a block 

copolymer, the degree of anisotropy is not 
uniform along the chain but depends on the 
position along the chain. The stress-optical 
law will not hold valid unless the contribution 
to the stress of each segment is uniform along 
the chain. This, in turn, implies that the de-
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viatwn from the stress-optical law may re
present the non-uniform contribution to 
the stress from various parts of the polymer 
chain. 

Let us take a block copolymer of an ABA
type. Suppose the anisotropy of polarizability 
of the A segment is zero. Then the stress will 
be the sum of the contributions from the A 
blocks, a A• and from the B block, a 8 , while 
the birefringence will include only the contri
bution from the B block, C8 a 8 . Thus one may 
be able to estimate the contribution to the 
stress from the central part of a polymer chain. 
Here it is assumed that the different blocks 
are homogeneously mixed and microphase 
separation does not exist. We also assume that 
the form birefringence is negligible. This is 
valid for homopolymer concentrates. 1 For 
more general case of CA #0, one may write 

(2a) 

(2b) 

One may assume as a first approximation that 
C A and C8 are equal to the stress-optical 
coefficients of homopolymers of A and B, 
respectively. The assumption is supported by 
the fact that the stress-optical coefficient for 
homopolymer solutions are affected very little 
with varying solvents. 1 If we measure a and 
l'ln for a block copolymer, we can solve eq 2 
for a A and a 8 and estimate the contributions to 
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Figure I. Shear deformation and principle of bire
fringence measurement. Shear deformation is applied to 
test liquid, S, by relative motion (thin arrows) of glass 
plates, G I and G2. Light beam (thick arrow) is led 
through polarizer P, liquid S, and analyzer A, and its 
intensity is measured with optical detector, D. 
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the stress from various parts of the chain. 
As a start in applying the above-mentioned 

idea, we employ a simple birefringence mea
surement in a stepwise shear deformation 
(Figure 1): 

U1 =u2 =u3 =0 (t<O) (3a) 

U1 =]!X2 ,u2 =U3=0 (3b) 

where ui represents the displacement in a 
Cartesian coordinate system x 1 x 2x3 and y is 
the magnitude of shear. We define a relaxa
tion modulus at finite shear, G(t,y), from 
the shear stress, a, on the x 3x 1 plane, 

G(t,y)=a/y (4) 

The limiting value at y--+0 of G(t, y) is the 
linear relaxation modulus, G(t). We apply a 
light beam parallel to the x2 axis and measure 
a birefringence, !'ln. This corresponds to the 
difference of the principal values of an el
lipse formed as the intersect of the refractive 
index ellipsoid and the shear plane. For 
homopolymer solutions, a simple approxi
mate relatiqn has been found good for the 
quantities l'ln and a.4 - 6 

(5) 

Here C' is a constant and is about 80% of the 
stress-optical coefficient, C. Thus, for this 
particular deformation history, one may re
place the tensors in eq 2 with easily measurable 
components. 

a=aA+a8 (6a) 

l'ln = C' AJ!a A+ C' 8 ya8 (6b) 

In the present study, we measure a and 
l'ln for a solution of a triblock copolymer, 
poly(methyl methacrylate)-b/ack-polysty
rene-b/ack-poly(methyl methacrylate). The 
result will be compared with the chain de
formation predicted by a model theory for 
entangled polymers. 

THEORETICAL 

First we take a polymer segment in a con-
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centrated solution or melt of a polymer. 
Suppose the segment is composed of n Kuhn 
statistical links, with a polarizability 0!1 along 
its length and O!z perpendicular to its length. 
Then the increment of the stress and the 
polarizability tensors due to the segment are 
respectively given by7 

3kT 
a=---,;z<rr) (7a) 

(7b) 

where r is the end-to-end vector of the segment, 
b2 is the average of r2 in free state, and ( · · · > 
implies the average in the pertinent state. 
Here we assumed that each segment contrib
utes independently to the stress and polar
izability. The assumption may be valid pro
vided that the system is concentrated and the 
solution is uniform. The increment of stress 
and polarizability tensors are obtained as a 
sum of the quantities in eq 7 over all the 
segments in the volume. Provided that 0!1 -

O!z is the same for all the segments, as is the 
case with a homopolymer, the increments of 
the stress and polarizability tensors are pro
portional to each other. The anisotropic 
component of the latter is proportional to the 
anisotropic component of the refractive index 
tensor if the former is small. Thus the stress
optical law follows. In the case of a block 
copolymer, the proportionality coefficients 
of (rr) in eq 7 depend on the monomer type. 
If one takes the summation for each type of 
segments separately, one obtains eq 6. 

Tube Model 
We consider a tube model of Doi and 

Edwards8 with N tube segments per chain. 
Equation 7 holds good if the vector r is 
interpreted as the end-to-end vector of a tube 
segment. The 12-component of the tensor 
(rr), which corresponds to the shear stress, in 
the stepwise shear deformation with small y is 
given by 
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yb2 
( 4) . (pnj) ( tp2

) (riri) 12=-3 L - sm N exp --
p:odd pn '1 

(j= 1,2,3, .. · ,N) (8) 

Here j indicates the tube-segment number 
counted from one end of the chain and T 1 

is the reptation time characterizing the dis
engagement of the chain from the tube region 
defined at t = 0. The summation should be 
taken over odd integers of p. 

A B A 

j = 1 N 

Figure 2. Triblock copolymer model. Tube-segment 
numbers for block boundaries are indicated. 

Now we consider a block copolymer of 
an ABA type. We assume that all the prop
erties of the units A and B but the aniso
tropy of polarizability are the same. The 
fractions of A and B units are 1- and 
respectively, and the lengths of the two A 
blocks are the same. Adding up the contri
bution from all the tube segments in unit 
volume, one can calculate the shear stress 
as 

(9) 

Here M is the molecular weight, c is the mass 
concentration, NA is the Avogadro number, 
R is the gas constant and 

M 
M=

e N (10) 

is the entanglement molecular weight or the 
molecular weight corresponding to a tube 
segment. The factor eN AIM in the first line 
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Figure 3. Ratio a8 /a plotted against reduced time tj-r:1 

for tube model. = 0.6, 0.4, 0.2, and 0.1 from top to 
bottom. 

of eq 9 is the number of chains in unit volume 
and I: i takes the sum over each chain. 

For calculating the shear stress, u8 , origi
nated by B units, one has only to change the 
range of summation over j in the second line 
of eq 9. 

cRT 3<rir) 12 
<rs=-- L... 2 

M. j=N(l-W2 Nb 

=/RT L _8_exp(-tp2 
M. p:odd (pn)2 rl 2 

(11) 

Evidently this reduces to <T when = 1. The 
ratio u8/u is plotted against a reduced time 
t/r1 in Figure 3. For each value of the 
ratio increases with time, indicating the 
slower relaxation of the stress originated 
by the inner part of the chain. The limiting 
values of the ratio are 

<r8 /<r= (t-+0) (12a) 

. ( ) =sm2 t-HXJ (12b) 

The value at the short time limit is equal to 
the fraction of B units in the molecule. This 
is the result of the assumed uniform defor
mation of the chain in the instantaneous 
deformation of the material. 8 

Rouse Model 
One can perform similar calculations with 
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the spring-beads model of Rouse,9 under 
the assumption that each bead displaces in 
proportion to the deformation of the material 
in the instantaneous deformation. The cal
culation is tedious but trivial and the result 
is 

cRT ( tp 2 ) <r=y--Iexp --
M P r 1 

(13) 

cRT" ( tp2 )[y: sin pn(l- J <Ts=Y--L...exp -- ., +---=---=---'-
M P r 1 pn 

(14) 

where r 1 is the longest relaxation time. The 
summation is to be taken over positive inte
gers of p. The limiting values of the ratio 
<r8 /<r are 

(t-+0) 

J: sin 
=s+-

n 

(15a) 

(t-+oo) (15b) 

Qualitative features of the ratio u8/u are the 
same as those for the tube model. It may be 
noted that the long time limit of the ratio for 
the Rouse model is larger than that of the 
tube model at any value 

MATERIAL AND METHOD 

The relaxation of stress and birefringence 
were measured for a solution of poly(methyl 
methacrylate )-block-polystyrene-hi ock
poly(methyl methacrylate) (PMSM for 
short) in polychlorinated biphenyl. The syn
thesis and characterization of the polymer, 
PMSM code 27B, were reported elsewhere. 10 

The number average molecular weight Mn of 
the styrene (S for short) block was 5.14 x 
105 and the Mn of the copolymer was 1.24 x 
106 . The ratio of the weight-average molec
ular weight to Mn of the PMSM was 1.19. 
The weight fraction of S as estimated from Mn 
is 0.415 and the mole fraction is 0.405. 

The solvent, Aroclor 1248, was a polychlo
rinated biphenyl supplied from Monsanto 
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Chemical Company. Its viscosity and density 
were reported elsewhere.11 The refractive 
index of the solvent, 1.60,12 is not much 
different from those of homopolymers corre
sponding to the components of PMSM; 1.60 
for PS and 1.55 for PM (M stands for methyl 
methacrylate).U This is another factor, in 
addition to the factor that the concentration 
is high, to make the effect of form birefrin
gence smallY The coefficients C' of eq 5 
for the solutions in Aroclor of PS and PM 
are respectively, 

C's= -5.0x 10- 9Pa- 1 

C'M=6.7 X 10- 10Pa- 1 

These values are independent of the temper
ature and the magnitude of shear y. 

The solution was prepared with the pro
cedure described earlier. 11 The 20% solu
tion of PMSM scattered light strongly and 
looked blue. The color faded on dilution. The 
12% solution was clear and colorless to the 
naked eye. The measurements were, per
formed for the 10.5% solution. Preliminary 
measurements of dynamic complex modulus 
revealed that the shape of viscoelastic func
tions and the temperature dependence were 
very similar to those of PM solutions with 
a comparable molecular weight. The strain
dependent relaxation moduli to be shown 
later are also similar to those of homopoly
mer solutions. Thus the polymer is likely to 
be dissolved homogeneously in this solu
tion. These observations are in accord with 
those of Kitamura 15 for solutions of a di
block copolymer, PMS, in polychlorinated 
biphenyl. The block copolymers of S and 
M probably have little tendency of micro
phase separation in this solvent as suggest
ed by him. 

The details of the measurements of bire
fringence in the stress relaxation process 
were reported previously.5 •6 Here the pro
cedure is described roughly. The test liquid is 
filled in a gap between a pair of parallel glass 
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plates as shown in Figure I. The shear de
formation is applied to the material by pull
ing the plates to opposite directions with a 
tensile tester. The shear stress, a, is evaluated 
from the force applied to the plate. Two 
polarizing films, P and A, are placed pa
rallel to the glass plates. The angles be
tween the direction of deformation and the 
polarizing directions of P and A are set equal 
to n/4 and - n/4, respectively. By measur
ing the intensity of light that passed through 
P, test liquid, and A, one can evaluate the 
birefringence, !ln, defined above eq 5. 

Measurements were performed at 20°C 
at various magnitudes of shear, y, ranging 
from 0.4 to 3. 

RESULTS AND DISCUSSION 

Shear Stress and Birefringence 
The experimental results for the shear 

stress, a, and the birefringence, !ln, are shown 
in Figrues 4 and 5, respectively: the strain
dependent relaxation modulus, G(t, y) = a/r, 
in Figure 4 and the ratio !ln/r 2 in Figure 5. 
These quantities are independent of the 
magnitude of shear, y, when y is small 
and they decrease with increasing y at large y. 
The curves at the top of Figures 4 and 5 
represent the results at the limit of small y. 

At the limit of small y, G decays more 
rapidly with time than lln/y 2 does, especially 

0 1 2 
log (t/s) 

Figure 4. Strain-dependent relaxation modulus G(t, y) 
for PMSM solution. y=O, 1.0, 1.8, and 3.0 from top to 
bottom. 
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Figure 5. Ratio l:injy2 for PMSM solution. y = 0.36 
(pip up), 0.55 (pip right), 1.0, and 3.0 from top to 
bottom. 

at long times. As y increases, the relaxation 
rate increases for both of the quantities. 
At the highest y studied, the difference be
tween the relaxation rates for G and 11njy 2 is 
not very large. From a different view point 
one sees that the relative decreases of G and 
11njy 2 with increasing y is about the same at 
short times, while the decrease of 11njy 2 is 
much larger at long times: the nonlinearity 
at long times is more marked for 11n/y 2 than 
for G. 

Evidently eq 5 does not hold valid for this 
solution. We apply eq 6 to the data shown 
above and estimate the portions of stress 
attributable to the M and S blocks. 

Stress AUributable to M and S Blocks 
Equation 6 may be rewritten as 

where the suffixes A and B are changed to M 
and S, respectively, and the notations 

GM=aMfy, Gs=ash 

were used. Equation 17 can be solved for GM 
and Gs with the use of the data of Figures 4 
and 5 and the coefficients given in eq 16. 

The results for the limit of small y and for 
y = 3 are shown in Figure 6. At short times, the 
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Figure 6. Relaxation moduli GM (small circles) and G8 

(large circles). y=O for upper pair andy= 3 for lower 
one. 

quantity GM (small circles) is larger than Gs 
(large circles). The former decreases more 
rapidly than the latter with time. At the limit 
of small deformation, Gs exceeds GM at long 
times, t > 1 Os. At y = 3, the difference between 
the relaxation rates of GM and Gs is not so large 
as at y = 0 and GM remains larger than Gs over 
the whole range of time of measurement. The 
difference in the relaxation rates of GM and Gs 
is as expected from the earlier model calcula
tions for portions of stress supported by the 
segments located at different parts of the 
chain. 

For more detailed study of the result, the 
ratio G5/G is plotted against time in Figure 7 
for the cases qf y = 0 and y = 3. The ratio 
increases with time and decreases with mag
nitude of shear y. At short times, the effect 
of varying '}' is small and the data points for 
various'}' seem to approach a common limiting 
value, about 0.4, at a still shorter time. Ac
tually one sees that the points for '}' = 3 tend 
to level off at short times. The limiting value 
seems to be approximately equal to the frac
tion of S units of the copolymer. This obser
vation is consistent with a simple assumption 
that on instantaneous deformation of the 
material, the polymer chain is deformed uni
formly in proportion to the material defor
mation. The contributions from segments 
located at different points along the chain 
would be the same at the instant of deforma
tion. Incidentally, the assumption is incor-
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Figure 7. Ratio G8/G. Upper circles and thin line are 
experimental results for y = 0 and lower ones are for 
y = 3, plotted against t. Thick line is result of tube model 
theory plotted against t/T 1. 

porated in model calculations shown in a 
previous section. 

The thick solid line in Figure 7 represents 
the theoretical result of the tube model theory 
for the ratio Gs/G with = 0.4. The parame
ter r 1 is arbitrarily chosen so that the line fits 
the data for small y. One may say that the 
theoretical result well represents the observed 
rate and amount of increase with time of the 
ratio Gs/G at small deformation. On the other 
hand, we do recognize that the shape of the 
relaxation curves in Figures 4 through 6 can
not be fitted with theoretical curves, which are 
very close to singfe exponential decay curves. 
More complete comparisons with the theory 
will be possible if the polymers with higher 
molecular weights and with sharper molecular 
weight distributions are available. 

For a large deformation, y = 3, the ratio 
Gs/G does not increase so much and levels off 
at a much lower value than predicted by the 
theory. The solid line in Figure 7 is expected to 
be applicable also to large deformations at the 
present level of theory. 8 •16 The relevant as
sumptions in the current version of the theory 
may be that the stress relaxation proceeds only 
in two processes, the equilibration of the 
fluctuation of the chain contour length and the 
disengagement of the chain from a deformed 
tube, and that the former process is completed 
before the latter process becomes effective. 
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It would be interesting to calculate 0'8 large 
y with modified assumptions. 16 

Nonlinearity at Long Times 
Finally we examine the degree of nonlinear

ity at long times. For homopolymer solutions, 
we define a function8 • 17 

h( )= G(t,y) 
y G(t) (18) 

This function was found to be a universal 
function for various polymeric systems, 17 and 
its strain dependence was well described with 
the tube model theory; in short, it represents 
the decrease of stress due to the shrink of 
highly extended chains in the equilibration 
process of the fluctuation of chain contour 
length.8 We add an obvious extension of eq 
18. 

h ( )= Gs(t,y) h ( )= GM(t,y) 
s y Gs(t) ' M y GM(t) 

Unfortunately, data at sufficiently long 
times are not available. So we take the ratios 
defined in eq 18 and 19 at t = 100 s and show 
them in Figure 8. The curves represent the
oretical results of tube model theory; the solid 
line, the result without a mathematical as
sumption called the independent alignment 
approximation (IAA) and the dashed line, the 
result with IAA. 

The filled circles representing h for the total 
shear stress is close to the dashed line. The 
result is very similar to that for homopolymer 

Figure 8. Nonlinearity functions h (filled circles), hM 
(small unfilled circles), and h8 (large unfilled circles), 
taken at t= IOOs. Lines are prediction of tube model 
theory; solid line, without IAA; dashed line, with IAA. 
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solutions.8 • 17 The large circles, for hs, repre
senting the nonlinearity of the central part 
of the chain, lie lower and close to the solid 
line. This result can be favorably compared 
with the theory because the solid line is ob
tained without the surplus assumption of IAA 
on one hand, and the central part of chain may 
better be described with the tube model con
cept than the chain ends are. The result for hM 
(small circles) indicates that the nonlinearity 
is very weak for the stress attributable to the 
segments located close to the chain ends. Such 
a behavior is not unexpected; the entanglement 
effect would be weaker for such segments and 
free polymer chains (not entangled) are not 
expected to exhibit much nonlinearity. The 
fact that h for homopolymer solutions is al
ways slightly higher than the theoretical 
value8 •17 may well be due to the weak non
linearity of the stress attri.butable to the chain 
ends. Again it would be interesting to develop 
the theory modifying the assumptions of the 
idealized tube model as mentioned at the 
bottom of the last subsection. 
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