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ABSTRACT: A fluid-lattice theory of fluid mixtures is combined with the Gibbs-DiMarzio 
approach of zero configurational entropy at glass transition in order to correlate and predict the 
composition dependence of glass transition temperature, T8 , in one-phase polymer mixtures. Such a 
combination allows an independent quantitative estimation of the significance to r. of both 
equation-of-state terms and chain flexibility terms. The model is tested against experimental data on 
r;s for three polymer mixtures known to be compatible in the complete range of composition. The 
effect of the various binary parameters on glass transition is discussed along with the effect of chain 
flexibility change upon mixing. It is shown that chain flexibility terms are predominant In 
determining T8 • Two possible ways of taking into account chain flexibility change are proposed. 
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Prediction and correlation of the compo
sition dependence of glass transition temper
ature in compatible polymer mixtures is a 
subject of, both, practical and theoretical in
terest. From the practical point of view a 
knowledge of Tg is of considerable impor
tance in connection with the processing con
ditions and the in-service properties of poly
mer mixtures. From the theoretical point of 
view the thermodynamic as well as the kinetic 
character of liquid-glass transition have to 
be taken into account in fundamental treat
ments of the phenomenon. Existing treat
ments are only approximate ones and such a 
fundamental treatment still remains a challenge 
to theoreticians. 

The rapid accumulation of information 
on compatible and semicompatible polymer 
mixtures, especially in the last decade, justi
fies efforts towards extensions of traditional 
treatments of glass transition for pure poly
mers to polymer mixtures. Polymer solution 
thermodynamics is of great value in these 
extensions. For engineering calculations, 

of course, one may resort to simple empirical 
or semiempirical equations such as the sim
ple Fox equation1 or the Couchman equa
tions.2 Although the thermodynamic basis 
of Couchman's equations has been seriously 
disputed recently,3 they have been proved 
quite successful in a number of cases.2 Devia
tions from linearity with composition of Tg 
in polymer mixtures may be negative, zero or 
positive and it is rather too much to expect 
from these simple equations to be successfull 
in all these diverse cases. Nevertheless, mo
lecular theories are more appropriate if we, 
also, wish to gain some physical insight of the 
liquid-glass transition phenomenon. 

Fluid-Lattice models of polymer solu
tions4-9 is a promissing class of models for 
their thermodynamic properties. A variety 
of properties of polymer mixtures have been 
correlated, so far, with these models such as 
the basic thermodynamic quantities of mixing, 
upper and lower critical solution temperatures 
and gas solubilities at various external con
ditions. On the other hand, in spite of its 
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shortcomings/0 • 11 the Gibbs-DiMarzio where 
theoryl 2·13 may be considered as one of the 
best available thermodynamic treatments (2) 
of the glass transition today. The links be-
tween the fluid-lattice models and the Gibbs- and15 

DiMarzio theory have been recently discuss
ed for the case of pure polymers.14 

In the present work we combine an im
proved fluid-lattice model for polymer solu
tions9 with Flory's approximate rotational 
isomeric state model for chain conforma
tions15 and with the Gibbs-DiMarzio ap
proach12·13 of zero configurational entropy 
at glass transition in order to estimate the 
composition dependence of Tg in one-phase 
polymer mixtures. The fluid-lattice model 
is used for a separate estimation of the equa
tion-of-state terms from independent infor
mation on other thermodynamic properties of 
the polymer mixtures. 

THEORY 

Consider a mixture of N1 molecules of type 
1 each consisting of r1 segments and N2 mol
ecules of type 2 each consisting of r 2 segments 
at temperature T, external pressure P, and 
total volume V. Both types of molecules are 
considered semiflexible. In order to formulate 
the partition function of the system, we con
sider that the molecules are arranged on a 
quasi-lattice of N, sites, No of which are empty. 
In other words, we consider that the void 
volume between the chain molecules is evenly 
divided in N0 holes. 

Following Flory, 15 Gibbs and DiMar
zio12· 13· 16 and our previous work9 we may 
write for the system configurational partition 
function in the T,P ensemble and in its max
imum term approximation 
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-Eo is the lattice (intermolecular potential) 
energy of the system, Zi is the bond (lattice) 
coordination number (bond conformations) 
for bond of type i; For simplicity we set Z1 = 

Z2 = Z. rri is a symmetry number and ai is the 
flex energy for bonds of type i, that is the 
potential energy of the Z- 1 bent confor
mations over the favoured conformation. 
The equilibrium fraction J; of bonds i in 
bent conformations is given by15 

(Z-2)exp( --Jt) 
1 +(Z -2)exp(-

(4) 

For convenience we will call the first two 
terms in eq 1 flexibility terms and all other 
terms equation-of-state terms. For the eval
uation of the equation-of-state terms we will 
adopt the fluid-lattice approach.4·9 In this 
approach, each pure ri-mer is characterized by 
three scaling constants or equation-of-state 
parameters: A characteristic pressure, a 
characteristic temperature, and a charac
teristic density, p'(: An equivalent set of scaling 
constants is the interaction energy, the 
nurnber of segments per molecule, ri, and the 
characteristic volume per segment, v{. The 
basic relation between the scaling constants is 

(5) 

For our mixture and in the one-fluid ap
proximation the total volume of the system is 

(6) 
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where v* is the average close-packed volume 
per segments in the mixture, assumed to be 
given by the common quadratic mixing rule9 

v* qJ1 2Vt + 2cpl (/)2Vt2 + (/)2 2Vf 

The segment fraction cpi is given by 

riNi Xli --
rN r 

(7) 

(8) 

where xi is the mole fraction of component i. 
vt2 is assumed to be given by 

* 1 2 ( 
v*1/3 + v*1/3)3 

v12= 2 (9) 

as for hard spheres. Notice that with the 
mixing rule of eq 7 the close-packed volume 
is not, generally, conserved during mixing. 

The reduced volume is 

_ Nrv* p* 1 
v=--=-=-

rNv* p p (10) 

where p is the density of the mixture. 
The intermolecular potential energy of the 

system is given by9 

where 

RT 

(11) 

(12) 

The binary parameter is expected to have 
values close to unity and can be estimated 
from experimental data for various thermo
dynamic properties of the mixture. 

In terms of the reduced quantities of the 
mixture the equation of state obtained from 
eq 1 is9 

where 

Pv 1 ln(1 P) p 
T r p T 

- p 
P=- and 

P* 
- T T=

T* 

(13) 

(14) 

An equation analogous to eq 5 is valid be
tween '7*, P*, v*, and T* for the mixture. 

The total configurational entropy of the 
system obtained from eq 1 is 

s _ v Jnv 
1)1n--+-

rRN r 

In Z 1 r 1 
r r 2 r 

x1lnx1 +x2lnx2 
r 

(15) 

In the case of high polymers this equation 
simplifies to the equation 

Table I. Characteristic parameters for pure polymers 

T* P* p* r. E/R 
Polymer 

K mNm- 2 kgm- 3 K K 

Poly(dimethyl siloxane) 476 302 1104 !50 177.2 
Poly(E-caprolactone) (PCL) 570 500 1189 202 258.8 
Polyisobutylene 643 354 974 243 321.5 
Poly(vinyl methyl ether) (PVME) 639 679 1115 244 325.8 
Poly(vinyl chloride) (PVC) 661 754 1485 355 597.2 
Polystyrene (PS) 735 357 1105 373 602.4 
Poly(methyl methacrylate) 696 503 1269 395 689.3 
Poly(2,6-dimethylphenylene oxide) (PPO) 739 1186 485 936.9 
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(15a) 

The suggestion of Gibbs and DiMarzio is 
that the entropy Sis becoming zero at the glass 
transition temperature. By adopting this sug
gestion, one can use eq 15 for the case of pure 
polymers and evaluate the flex energies 8i. 

Values of 8i along with equation-of-state 
parameters for some common polymers are 
shown in Table I. 

It is worth observing in this table, that the 
quantity 8/ RTg varies, to a good approxima
tion, linearly with Tg. The least squares line is 

8 
-=0.797+2,34x w- 3 Tg 
RTg 

with a correlation coefficient equal to 0.990. 
If 81 , 82 , and are known, eq 15 or 15a 

may be used for an estimation of the com
position dependence of glass transitions in 
one phase polymer mixtures. It would be 
more appropriate to say that, at Tg, SjrRN= 
sJr, where sg is of the order of - (<p1 ln <p 1 + 
<p2 ln <p2). In our case oo ), on inspection 
of eq 15, sg/r is essentially zero. 

APPLICATIONS 

In this section we will compare theoretical 
estimations of glass transition temperatures 
with experimental data for pairs of high 
polymers known to be compatible in the 
complete range of compositions. Such a 
comparison requires the following experi
mental information: 

a) PVT data over extended range of ex
ternal conditions for each pure polymer in 
order to evaluate the pure component equa
tion-of-state parameters. 

b) Experimental data for any (in principle) 
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basic thermodynamic quantity of mixing of the 
polymer pair in order to evaluate their bi
nary(ies) parameter(s). 

c) Data for the chain flexibility change on 
mixing the two polymers. In addition one 
must, of course, have: 

d) Experimental data on glass transition 
temperatures for various compositions of 
the polymer mixture. Unfortunately the 
available experimental information for any 
compatible pair of polymers is, by no means, 
complete. 

The first polymer mixture in which we will 
apply the above theory is poly(vinyl chlo
ride)-poly(8-caprolactone). This pair of 
polymers is known to be compatible in the 
complete range of compositions. 17 Glass 
transition temperatures for various composi
tions have been measured by Koleske and 
Lundberg.18 Estimations of Flory-Huggins x 
interaction parameter at various compositions 
are also available. 19 •20 Unfortunately, good 
quality PVT data over extended range of ex
ternal conditions for both PVC and PCL 
are not available and their equation-of-state 
parameters reported in the Table have been 
estimated from a very limited set of data. 19 

On the basis of the available experimental 
information19 •20 the maximum value of the 
binary interaction parameter is 1.065 and 
the minimum value is 0.957. 

In Figure I we present various theoretical 
estimations of glass transition temperatures 
for this polymer mixture along with the ex
perimental data. 18 Curves I, 2, and 3 show 
the effect of varying on glass transition 
temperatures is equal to 1.0, 0.957, and 
1.065 for curves 1, 2, and 3 respectively). 
Curve 3 indicates that stronger intermolecu
lar interactions (higher values of between 
the constituents of the mixture lead to max
imum deviations of Tg·composition data from 
linearity and this is in accordance with phys
ical intuition. Curve 3 seems to indicate that 
[or an adequate representation of experimental 
data a lower value of is needed. However 
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Wpvc 

Figure 1. Glass transition temperatures for the mix
ture PVC-PCL vs. the weight fraction of PVC. 0, 
experimental points. 18 Curves I to 6 are theoretical 
estimations of T, for the mixture and have been obtained 
as described in the text. 

lower values of ¢12 violate the phase stability 
(spinodal) condition9 for the mixture. Con
sideration of vf2 in eq 9 as an adjustable bi
nary parameter does not improve significantly 
the model. Curves 1, 2, and 3 were calculated 
by assuming that the chain flexibilities of the 
two polymers remained unchanged upon 
mixing. Relaxation of this later assumption 
can lead to agreement with experiment. Curve 
4 was calculated by assuming a simple linear 
decrease of the flex energy of the less flexible 
PVC with composition: 

while BpcL was considered constant. XpcL is 
the mole fraction of PCL in the mixture. An 
increase of the flex energy of the more flex
ible PCL as 

(17) 

while keeping Bpvc constant gives curve 5. 
Both curves 4 and 5 were calculated with 
¢12 = 1. A simultaneous consideration of 
chain flexibility change for both polymers can 
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lead, also, to a better agreement with experi
ment. 

The other possibility is to consider the effect 
of temperature on chain flexibility. Flex ene
rgies may be considered flex free energies in 
analogy with free energies of interaction8 as 
a consequel).ce of the averaging procedures 
over microstates involved in formulating the 
partition function. In other words, we may 
write 

(18) 

Notice that segments of the polymers in 
the present treatment are fictitious and that 
"bond" conformations are considered inde
pendent of the conformations of previous 
bonds. 

Once a value for £5 (or is assumed, eh 
is obtained from the Tg of the polymer. 

Use of eq 18 leaves unaltered eq 4. However 
in eq 15 and 15a the flex energies must be 
replaced by the "enthalpic" parts, £h. 

In the case of the mixture PVC-PCL and for 
simplicity, we considered the effect of tem
perature on the flexibility of the more flexible 
component, PCL. Curve 6 in Figure 1 was 
obtained by setting for the flex energy of 
PCL: 

BpcL =586-0.962T 
R 

while keeping Bpvc constant and ¢12 = 1.0. 

(19) 

The second polymer mixture in which we 
apply the theory is polystyrene-poly(2,6-di
methylphenylene oxide), also, known to be 
compatible in the complete range of compo
sitions.17 Glass transition temperatures for 
various compositions have been measured by 
Kwei and Frish.22 PVT data over extended 
range of external conditions are available for 
polystyrene. However for PPO the available 
PVT data are very limited and in fact they 
allow an estimation of only T* and p*.4 

Variation of P* from 200 to 500mNm- 2 does 
not affect significantly the estimated flex 
energy for PPO. 
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Figure 2. Glass transition temperatures for the mix
ture PS-PPO vs. the weight fraction of PVC. O, ex
perimental points. 22 Curves 1 to 5 are theoretical es
timations of T. for the mixture and have been obtained 
as described in the text. 

In Figure 2 we present various theoretical 
estimations of Tg for this polymer mixture 
along with the experimental data.21 Curve 1 
was calculated with = 1.0 and Ptro = 
359mNm- 2 so that P*/T* is the same for 
both PS and PPO. Agreement with experi
mental data is reached by a much lower value 
of Ptro· Curve 2 is calculated with = 1.0 
and Ptr0 =210mNm- 2 . Curves 3 and 4 are, 
also, calculated with this value of Ptro but 
with equal to 0.95 and 1.05 respectively. 
Such a value for Ptro is, rather, too low. The 
characteristic volume per segment for PPO 
corresponding to this value of P* is 29.3 cm3 

mol- 1 which is significantly larger than 
17.1 cm3 mol- 1 which is the largest reported 
value of v* for polymers4 and still larger than 
20.9 cm3 mol- 1 which is the largest reported 
value of v* for r-mers.23 Adoption of higher 
values for Ptro necessitate as in the previous 
case consideration of chain flexibility change 
upon mixing in order to correlate satisfactorily 
the experimental Tg's. 

For this mixture we may, also,. use eq 18 to 
describe the flex energy for the more flexible 
polystyrene. Curve 5 in Figure 2 was obtained 
by setting 

8; 8 = 1101-0.842T (20) 
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Figure 3. Glass transition temperatures for the mix
ture PS-PVME vs. the weight fraction of PS. 0, ex
perimental points. 24 Curves 1 to 3 are theoretical es
timations ofT. for the mixture and have been obtained 
as described in the text. 

while keeping Brro constant, = 1.0 and 
Ptr0 =359mNm- 2 . 

As a third example we apply the theory to 
the mixture polystyrene-poly(vinyl methyl 
ether), also, known to be compatible in the 
complete range of compositionsP Flory
Huggins x interaction parameters for this 
mixture are available.20 Glass transition tem
peratures for various compositions have been 
measured by Kwei, Nishi, and Roberts. 24 PVT 
data for PVME are very limited25 and the 
estimation of the scaling constants of the Table 
are based on this set. 

In Figure 3 we present various theoretical 
estimations of Tg's for this polymer mixture 
along with the experimental data.23 Curve 1 
was calculated with = 1.0 while curve 2 with 

=0.95. Once again the theory and the 
experiment cannot be reconciled by consider
ing chain flexibilities unaffected upon mixing. 
Considerably lower values of will violate 
the phase stability condition9 for the mixture. 

Consideration of the effect of temperature 
on the chain flexibility of the more flexible 
PVME leads to curve 3 in Figure 3 which was 
obtained by setting = 1.0 and 
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ePvME = 758.2-1.083 T (21) 
R 

while keeping constant Bps· 

DISCUSSION AND CONCLUSIONS 

In this work we have combined a recent fluid 
lattice model9 of r-mer fluid mixtures with the 
Gibbs-DiMarzio12 • 13 theory of glass transi
tion in order to estimate the composition 
dependence of T8 's in one-phase polymer 
mixtures. The fluid lattice·model has allowed a 
separate estimation of the equation-of-state 
terms consistent with the thermodynamic be
havior of the polymer at higher temperatures. 
It was, then, possible to estimate the sig
nificance of the chain flexibility terms to 
T8 . In addition it was possible to test the 
validity of the assumption of no change of flex 
energies upon mixing. 

The theory has been applied to three poly
mer mixtures, known to be compatible in the 
complete range of composition, for which the 
information needed for calculations was 
available. From this comparison it has been 
shown that the assumption of no change of 
chain flexibilities upon mixing cannot lead to 
agreement of theory and experiment without 
violating the phase stability condition. In fact, 
theoretical estimations of T8 's even with the 
lowest permissible value of the interactional 
binary parameter are significantly higher 
than the experimental T8 's. 

Agreement between experimental T8's and 
theoretical estimations with the present model 
can be reached by allowing for a chain flex
ibility change to take place either upon mixing 
or upon changing the temperature. We have 
not attempted, in this work, to present and 
justify and detailed model for this change. 
However, such a change upon mixing, besides 
being rather, drastic (see eq 16)), would, also, 
impose serious questions on the validity of 
traditional thermodynamic models for poly
mer mixtures since chemical potential is af-

Polymer J., Vol. 18, No. 12, 1986 

fected by this change.25 •26 •27 This problem 
can be alleviated by considering a temperature 
dependence of flex energies for pure poly
mers. Equation 18 requires, however, further 
justification and in a more consistent approach 
it must be applied to both components for all 
mixtures and for any value of r. 

The above mentioned problems point to the 
limitations of, both, the fluid lattice models 
and the Gibbs-DiMarzio approach to glass 
transition. Polydispersity has not been taken 
into account in the present work and the 
segments of the polymers in the fluid-lattice 
treatment4 •9 are fictitious. These approxima
tions may, in part, be responsible for the 
observed discrepancy between theory and 
experiment. The otherwise required, change of 
chain flexibilities may be due to a combined 
effect of the change in temperature and a 
change in mixture composition. How much 
contribute each of these changes to the flex 
energies? It is hoped that the present work 
will stimulate, both, theoretical and experi
mental work towards clarifying this ques
tion. 
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