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ABSTRACT: The morphology of semicrystalline polymers can be described to a good 
approximation as consisting of lamellar crystallites separated by amorphous regions. The way in 
which a single macromolecule traverses the crystalline and amorphous phases can be evaluated 
from neutron scattering studies of mixtures of deuterated and protonated samples of the same 
polymers. A new method is proposed for the evaluation of the neutron scattering data without 
introducing detailed structural models. The only assumption made is that the molecular structure 
can be described as consisting of "clusters" of crystalline stems which belong to the same molecule. 
It is shown that this cluster model can be verified experimentally for the cases of poly( ethylene 
oxide), polypropylene and polyethylene. The spatial correlation of the crystalline stems within a 
cluster can be evaluated from the scattering data by introducing a direct correlation function 
c(x). The method was checked by Monte-Carlo calculations and applied to the neutron 
scattering data of poly(ethylene oxide) (PEO) in the wide angle range. The fraction of stems 
occupying adjacent sites in the crystal lattice depends strongly on crystallization conditions. 
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Semicrystalline polymers with a high degree of 
crystallinity generally consist of stacks of lamellar 
crystals separated one from another by amorphous 
layers. This structural model has been well estab­
lished by numerous electron microscope and small 
angle X-ray scattering studies. As an example 
Figure 1 shows the electron micrograph1 of a 
polyethylene fraction crystallized at Tc = 130°C. The 
amorphous regions appear as black areas because 
of the staining with uranyl acetate.2 However, it is 
well established that the polymer molecule in the 
melt forms a coil with unperturbed dimensions. The 
insertion in Figure 1 shows a polyethylene molecule 
with M = 105 generated by the Monte-Carlo meth­
od3 and the approximate volume of a single 
molecule (Rg 184 A) is also indicated in the scak 
of the electron micrograph. The problem arises 
what is the conformation of the molecule in the 
crystalline state and how does it traverse the crystal­
line and amorphous regions. Various models have 
been proposed4 and Figure 2 shows the schematic 
diagrams of two examples.5 •3" 

The models differ especially with regard to the 
assumptions made about the nature of the so-called 
fold surface and about the number of "re-entries"of 
a chain molecule into the same lamella. The struc­
ture of the amorphous regions has important impli­
cations, some of them are listed in Table I. There are 
several other reasons why we want to know the 
trajectory of a single chain in the semicrystalline 
polymer, as seen in Table II. 

It is quite obvious that the molecular confor­
mation is governed by all the factors which effect 
the crystalline-amorphous texture or morphology. 
In Figures 1 and 3 the influence of the molecular 
mass Mw is demonstrated. With increasing Mw the 
regularity of the morphological pattern decreases as 
one would naively expect. Figure 3c shows the effect 
of crystallization temperature (compare with Figure 
1 ). One must assume that the chain conformation is 
correlated to those variations of morphology. 
Therefore it is not enough to prove or to disprove 
certain models, but one looks for a method which 
enables us to determine the relevant structure pa-
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Figure 1. Electron micrograph of an ultrathin section 
of stained polyethylene, Mw = 189,000, crystallized at 
T = 130°C.1 The insertion shows a polyethylene mol­

generated by the Monte-Carlo method,3 and a 
reduction to the scale of the micrograph (R• in the 

184 A). 

( 6 ) 

Figure 2. Two examples of proposed models for the 
structure of the amorphous regions in semicrystalline 
polymers. (A) Central core model with 8 adjacent re­
entry folds in the cores, 5 (B) "Switchboard" model. 3• 

rameters in a quantitative manner. 
Direct information about the chain conformation 

can be obtained from neutron scattering studies of 
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Table I. Nature of the amorphous regions 
in semicrystalline polymers 

Questions 

Number of tie molecules 
and cilia 

Conformation of non­
crystalline sequences 

Persistence of orienta­
tiona! order in 
amorphous regions 

Some implications 

Strength of polymers 
Fracture, crazing and yield 

Deformation behaviour 
Glass transition temperature 
Diffusion, physical aging 

Mechanical modulus 

Table II. Why do we want to know the 
single chain trajectory? 

1) Theory of cyrstallization 
Dependence of structure and crystallization rate 
on molecular mass, crystallization temperature T, 
and chemical defects (copolymers) 
Role of entanglements 
Reasons for "bad" and "good" crystallization 
behaviour 
Crystallization under extensional flow 

2) Further implications 
Disordered regions in high-modulus fibers 
Conformation of soft segments in block­
copolymers 
Transition of stiff chains from the liquid-crystalline 
state into the crystalline state 

mixtures consisting of deuterated polymers and co­
crystallized with protonated chains of the same 
polymer. This technique allows the evaluation of 
the single chain structure factor P(q), where q = 

(4n/A.) sin 8/2. The main aim of the following paper 
is to show what kind of information can be obtained 
from the various ranges of the scattering vector q 

without detailed assumptions about the structure. So 
we ask ourselves how far a straight-forward eval­
uation of the scattering data will yield relevant 
structure parameters. The proposed methods are 
applied to poly(ethylene oxide), polyethylene and 
polypropylene, and the results are discussed which 
were obtained so far. 

THE SMALL ANGLE RANGE 

The principle of the neutron scattering technique 
is well known.6 After a correct subtraction of the 
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(a) 

(b) 

incoherent "background" and the contributions 
due to density fluctuations, the differential scatter­
ing cross section per unit volume do"jdQ is given by 

(c) 

Figure 3. Electron micrographs of polyethylene crys­
tallized from the melt, 1 (a) M w = 5600, T, = 127°C, (b) 
Mw = 1.6 x 106, T, = 130°C, (c) Mw = 189,000, T, = 116oC 
(for comparison with Fig. 1). 

the contrast factor, nw the degree of polymerization, 
and P the form factor of the polymer molecule: 

1 
P(q)=-2 <I exp[iq(R;-R)J> (2) 

n...... i,j 

which may be approximated for small q by 

q2R;) 
or by 

where Rg is the radius of gyration. 

(3) 

(4) 

For the evaluation of the data it is useful to 
introduce the reduced scattering intensity 

(5) 

or a "scattering function" 

(6) 

(1) This function is very often used for comparison of 
measured and calculated data. 

provided that there exists no thermodynamic in­
teraction between H/H and D/D molecules (no 
segregation or intermolecular clustering). In eq I c0 

is the concentration of deuterated molecules, K is 
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In Table III the various information is sum­
marized7·8 which can be obtained in three different 
q-ranges characterized very roughly by the numbers 
given. In the small angle range (SANS) the radius of 
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Table III. Information obtainable from neutron 
scattering experiments in various 

angular ranges 

Range Informations 

SANS Molecular weight 
0.005<q/A -I <0.03 Radius of gyration R• 

Segregation effects 

IANS 
0.03<q/A -I <0.3 

WANS 
0.3<q/A-I <5 

Average number of stems per 
"cluster" in one lamella 
Average distance between 
crystalline stems of the 
same moelcule in a lamella 

Direct correlation function 
of stems 

gyration Rg of the molecules in the semicrystalline 
state can be measured. The apparent molecular 
weight obtained by extrapolation q->0 can be used 
for control of segregation effects. In the inter­
mediate angle range (IANS) integral informations is 
obtained about the spatial correlation of crystalline 
stems. As will be shown later, mainly the average 
density of stems and the number of stems per 
"cluster" can be measured. Most valuable results 
have to be expected from the upper range of IANS 
and from the wide angle scattering (W ANS), that 
means in the range of about 0.2 < q < 2A - 1 . The 
reasons are quite obvious if one takes into account 
that the various structure models differ with regard 
to the spatial correlation of the crystalline stems of 
one and the same molecule in the range of 5 to 20 A, 
let's say. 

We first discuss the results obtained in the small 
angle range. For qRg < 1 the scattering is due to the 
overall mass distribution of a polymer chain and 
yields valuable information about the "dilution" of 
a single chain in the crystalline state. The radius of 
gyration Rg can be evaluated from eq 4 without any 
specific model assumptions. On the other hand only 
this one integral number can be obtained from 
SANS measurements and therefore it is quite ob­
vious that this q-range is not suitable for deciding 
between different structure models. 

The evaluation of Rg may be distorted by phase 
separation between H- and D-molecules which fre­
quently occurs during crystallization. In so far as 
reliable information could be obtained, it turned 
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Figure 4. The long spacing L and the radius of gy­

ration Rg. "Y'' of polyethylene oxide quickly crystallized 
by quenching to T, = 40oc in dependence on the radius 
of gyration Rg,molt in the melt. Rg values are weight­
averages. The broken line gives approximate values L for 
extended chain crystals. 

out that the gyration radius in the crystalline state 
often does not differ markedly from that in the melt 
or in dilute solution. This was found by Schelten et 
a/.9 for melt-quenched linear polyethylene and by 
Ballard et a/: 10 for isotactic polypropylene crystal­
lized and annealed under various conditions. For 
isotactic polystyrene crystallized near its melting 
point a pronounced increase of Rg was reported.U 
Since the majority of those values were evaluated 
far from the Guinier range and since these samples 
had a rather low crystallinity ( 40%) it is not quite 
clear at the moment, whether the reported effect can 
be generalized. In the case of poly( ethylene oxide) 
quickly crystallized by quenching to Tc = 40°C only 
slight deviations of the radius of gyration Rg (cryst) 
from the value Rg (melt) have been found 12 as 
shown in Figure 4. 

In this connection it may be interesting to notice 
that the long spacing L of the crystallized samples as 
measured by SANS and small angle X-ray scatter­
ing strongly increases with molecular mass M w• as 
also shown in Figure 4. This observation cannot be 
explained on the base of the conventional crystalli­
zation theory. 13 If the crystal thickness would be 
determined by the supercooling t),T= Tc one 
should expect a slight decrease with increasing Mw. 
We will discuss the long spacing again in connection 
with the results obtained from the intermediate q­

range. 
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Figure 5. "Erstarrungsmodell" (solidification model) 
of the crystallization process of chain molecules. The 
fully drawn sequences of the coil are incorporated 
into the growing lamellae without long range diffusion 
or major reorganization of the chain conforma­
tion7·8·14 Note that the dimensions are not drawn in 
right scale. The length of the crystalline stems is much 
larger than their mutual distances. 

If we restrict our considerations to crystallization 
conditions where Rg remains approximately in­
variant during crystallization, the most simple ex­
planation may be based on a model which we call 
"Erstarrungsmodell" (solidification model). 7 •8 •14 In 
this rather naive picture, see Figure 5, it is assumed 
that the crystallization occurs only by straightening 
of suitably oriented sequences of the coil which are 
incorporated into the crystalline lamella. This 
should happen in such a way that the "volume" 
occupied by that part of the chain which is in­
corporated into one lamella is not changed ap­
preciably during crystallization. The main point of 
this model is that no long range diffusional process 
will take place and that the "dilution" of the 
considered chain by other chains remains constant. 
The model also implies that the number of entangle­
ments which are present in the melt has not to be 
changed, they are just shifted to the amorphous 
regions. The development of long crystalline 
"stems" necessarily causes the average distance 
between the centers of the stems to be much smaller 
than the distance of the same chain units before 
crystallization. Otherwise Rg could not be kept 
constant. In so far Figure 5 is not right in scale and 
has provoked a criticism, 15 which was based on the 
assumption of a two-dimensional projection of the 
initial random walk in the melt (see Figure 1 of ref 
15). It has been demonstrated that the results of 
such a treatment do not agree with the experimental 
data. As we have shown earlier, 16 however, the 
distance distribution of the crystalline stems is 
narrower than expected on the basis of this model. 

Since only one integral quantity-the radius of 
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gyration Rg--<:an be evaluated from the small angle 
region, this range is of a rather limited use for our 
main goal to learn something about the chain 
conformation in the crystalline state. 

THE INTERMEDIATE q-RANGE 

From the intermediate q-range 0.03 <q/A -t <0.3 
one may expect to obtain more detailed information 
about the spatial correlations of the crystalline 
stems belonging to the same molecule. One useful 
way for evaluating the experimental data is the 
computation of the scattering function for certain 
models. 3 •4 •3a·8 •17 The calculated function can be 
compared with the experimental results. So for 
example Figure 6 shows a distance distribution of 
successive stems resulting from Monte-Carlo calcu­
lations for the case of quenched polyethylene.8 •16 

The distribution was adjusted in the way that the 
best fit with experimental data was obtained. 

It turned out, however, that satisfactory agree­
ment can be reached on the basis of quite different 
models.4 Therefore we are now concerned with the 
question which information can be obtained from 
the intermediate q-range in a straight-forward man­
ner without the introduction of detailed structural 
models. It is assumed only that the crystalline stems 
are incorporated in crystalline lamellae, see Figure 
7, and that the distances between stem centers 
within one package or "cluster" of stems located in 
one lamella are much smaller than the distances 
between stem centers belonging to different lamel­
lae. Details of the chain re-entry or chain tilting are 
not taken into account at the moment. We assume 
further that the sample has a high degree of crystal­
linity we and that a well pronounced long spacing 
reflection is observed by SAXS. 

As a consequence of a structure as pictured in 
Figure 7 the clusters of stems in one lamella will 
scatter as independent units in a certain inter­
mediate q-range. Only at very small q the in­
terconnection of the clusters by means of the tie 
molecules will be reflected in the scattering curve. 
We now discuss the scattering due to the un­
correlated clusters. 

In order to simplify the treatment we consider a 
molecular consisting of v clusters each of Nc stems, 
so that 

(7) 
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Figure 6. Evaluation of neutron scattering data of 
quenched polyethylene by means of Monte-Carlo calcu­
lations.8·16 The shown distribution of the distances 
between successive stems yields a good fit with experi­
mental results. 

Figure 7. Schematic representation of a single macro­
molecule transversing different lamellar crystals. 
Clusters of crystalline stems situated in different lamellae 
are connected by tie molecules. Note that the drawing is 
not in correct scale: The length of the crystalline stems is 
about 50 times larger than their lateral distances. 

where n,, is the number of monomer units per stem. 
The effects of a distribution of cluster sizes Nc has 
been considered in great detail in a recent publi­
cation.18 The reduced scattering intensity of a single 
cluster is given by 

1 Nc 

J(q) = nstP,(q) N I J o(qxmn) (8) 
c m,n 
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where J0 is the Besselfunction of order zero, which 
appears as a consequence of the fact that all stems in 
one cluster are parallel to each other. xmn is the 
distance between the m-th and n-th stems of the 
cluster. P,(q) means the formfactor of the stem, 
which can be easily calculated from the crystallo­
graphic data of the unit cell. 

The scattering of the uncorrelated clusters de­
pends only on the number N 0 of stems per cluster 
and on the mutual arrangement of the stems. We 
therefore introduce a stem correlation function 

1 Nc 

H(q)=N I <Jo(qxmn)) 
c m:;t:n 

(9) 

and consequently one obtains 

(10) 

The properties of H(q) for large q-values 
( q > 0.2A - 1) depend strongly on the direct cor­
relation between subsequent stems which are con­
nected by a loop or fold. This interaction can be 
described by a direct correlation function c(x), 
which we will discuss in the next paragraph. At the 
moment we are only interested in the intermediate 
q-range, let us say 0.03<q/A - 1 <0.2. Without any 
special assumptions about H(q) one obtains 

(11) 

or 

with the radius of gyration of the stem centers in a 
cluster 

(13) 

where xn.o is the vector from the center of gravity of 
the cluster to the nth center of a stem. 

Using this approximation the number Nc of stems 
per cluster and the dimensions of the clusters can be 
determined easily. By means of eq 10 the values 
H(q) can be calculated from the measured data J(q) 
and they are plotted in the usual way of H- 1 versus 
q2: 

Nc Rz z) 
q 2(N

0
-1) ceq 

(14) 

The intersection and the slope will yield the desired 
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Figure 8. Schematic drawing of the stem correlation 
function H(q) in the Zimm plot H(q)- 1 vs. q2 

Extrapolation q-->0 yields the average number N, of 
sterns per cluster. 

PEO 

Figure 9. Evaluation of (N,) and from H(q)- 1 

vs. q1 for poly(ethylene oxide) quickly crystallized by 
quenching to T, = 40°C. Long spacing L = 300 A. The 
insert shows the experimental data for J(q) vs. q2 

3 

PE 
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70 20 30 
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Figure 10. As in Figure 9 for polyethylene crystallized 
by quenching from the melt. e, Schelten et a/.,9 ; .A., 
Stamm et at." 

information. From Nc and the known number of all 
crystalline stems belonging to one molecule the 
average number v of clusters can be determined. 

PolymerJ., Vol. 17, No. I, 1985 

The procedure is demonstrated schematically in 
Figure 8. In general eq 14 will only hold within the 
so-called Zimm-range, i.e.,· for q2 · < l. Using 
experimental data it turned out however, that 
H(q) - 1 vs. q 2 yields a straight line over a range up 
to q2 · R 2 or even larger. (See for example 
Figures 9 and 10.) This special property of H(q) is 
of course determined by the character of the direct 
correlation function c(x), as we will discuss later. 

The application of the method described by 
Figure 8 to experimental neutron scattering data 
was quite successful in all cases so far studied, 18 that 
means for poly(ethylene oxide), polyethylene, and 
isotactic polypropylene. For example Figure 9 
shows the experimental data for PEO (Mw= 

125,000) quickly crystallized by quenching to Tc = 
40°C. In Figure 10 the same procedure was applied 
to polyethylene crystallized by quenching. In both 
figures the inserts show the normalised intensity 
J(q) for the small angle range and for comparison 
the lines J(q) - 1 versus q2 are also drawn in the plots. 
As one can notice a clear distinction is possible 
between the (uncorrelated) cluster scattering in the 
intermediate q-range and the scattering by the cor­
related clusters in the SANS range. Similar results18 

were obtained from the literature data of neutron 
scattering studies of isotactic polypropylene. 19 

Before we discuss the numerical results of this 
method some remarks are in order concerning the 
separation of the "cluster" scattering. The experi­
mental results confirm our basic assumption about 
well defined clusters of crystaline stems belonging to 
one molecule in one lamella. In so far the model of 
Figure 7 is similar to the "core-model" proposed by 
other authors. 17 •20 The separation of the cluster 
scattering has also been described already.21 Such 
clusters cannot be formed if an emerging chain 
enters another lamella with an high probability and 
then re-enters the former lamella again building up 
a large number of tie-molecules. There are good 
reasons to believe that the experimentally proved 
existence of well defined clusters is due to the fact, 
that the growth fronts of the lamellae of a stack do 
not arrive simultaneously at the position of a 
macromolecule. In Figure 11 this situation is 
schematically demonstrated. The stepwise growth 
will result in approximately (v-1) tie-molecules if 
v is the average number of clusters per molecule. 
The growth of the cluster within one and the same 
lamella is supposed to be stopped by kinetic hin-
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Table IV. Results of neutron scattering studies in the intermediate q-range. 
Poly( ethylene oxide) of different molecular mass crystallized 

under various conditions 

PEO I 
(40°C) 

Molecular mass.Mw (gmol- 1) 15,000 
Long spacing L (A) 170 
Number of crystalline stems N, 5.9 
Radius of gyration of the whole 
molecule in the crystalline state 73 

(A) 
Average number of stems Nc 

4.1 
per cluster 
Average number v of 

1.4 
clusters per molecule 
Radius of gyration of the 
stem centers 15 

(A) 
Average distance (a1 ) (A) 

21 
(random walk) 
Average distance (a2 ) (A) 

17 
(linear arrangement of the stems) 

Figure 11. Schematic diagram of the growth of a stack 
of lamellae in the melt. The growth fronts do not arrive 
simultaneously at the location of a single molecule. 

drance, e.g., by entanglements, and by filling up the 
growth front with other molecules. 13 

The results obtained for the case of poly( ethylene 
oxide)12 are summarized in Table IV, which we will 
now discuss in some detail. The over-all number of 
crystalline stems N,, which was evaluated from plots 
like Figure 9, is in excellent agreement with the 
value expected from the long spacing L and the 
molecular mass as measured by GPC. The z-average 
of the radius of gyration of the whole molecule is 
somewhat larger than the value obtained for the 
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PEO II PEO III PEO II PEO III 
(40°C) (40°C) (53°C) (slowly cooled) 

55,000 125,000 55,000 125,000 
220 300 300 430 

16.7 25.0 9.2 17.3 

117 160 103 221 

8.1 8.7 7.0 6.5 

2.1 2.9 1.3 2.7 

23 20 20 27 

21 19 20 26 

II 9 12 17 

melt, see also Figure 4. The difference is especially 
large for the sample with L=430A. Comparison 
of the data shows that the average number v of 
clusters per molecule is independent of the crystal­
lization conditions, whereas the radii of gyration 
of the stem centers differ by roughly 
25%, indicating that the stem distribution within a 
lamella depends on the crystallization conditions. 

The quantities depend on the packing den­
sities of the stems within the clusters. For illustra­
tion the average distances (a) between the stems 
are given in Table IV for two extreme cases. First a 
random walk arrangement was assumed, on the 
other hand (a) was also calculated for linear ar­
rangement of the stems by the approximation 

(15) 

under both assumptions the average distance is 
appreciably larger than the nearest neighbour dis­
tance in the PEO lattice. 

Usally the scattering data in the intermediate q­

range are plotted in the so-called Kratky repre­
sentation I(q) · q 2 versus q. For various polymers 
(polypropylene, poly(ethylene oxide) and isotactic 
polystyrene) a plateau has been observed in this 
representation, in the case of polyethylene a slight 
increase was obtained. Therefore the question arises 
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Figure 12. Scattering curves in Kratky representation 
calculated from eq 10 and assuming an approximation of 
H(q) given by eq 14. Measured data for polyethylene 
(references as in Figure l 0). 

whether this experimentally observed behaviour can 
be approximately reproduced by the single cluster 
scattering described above. According to eq 10 the 
reduced intensity J(q) in this q-range is determined 
by the single stem form factor Ps(q) and the cor­
relation function H(q) which can be approximated 
by eq 14. As an example in Figure 12 the Kratky 
plot of experimental data of polyethylene is repro­
duced. The drawn curves are calculated on the basis 
of the assumption of eq 10 and 14 with various 
parameters R,,. As one can see, for a constant 
number N, of stems per cluster the plateau height 
depends strongly on the radius of gyration R,,. As 
has been pointed out previously22 the height of the 
q2-plateau is controlled by the average distance (a) 
of the stems within one cluster. 

It is important to note that the analysis presented 
above will yield only those integral quantities such 
as N, and the second moment of the correlation 
function h(x) of the stem centers within a cluster. It 
is quite clear that up to a q-range of about 0.15-
0.2 A_, no further information can be obtained, no 
matter how one plots the results. In particular it is 
not possible in that q-range to decide upon the 
question how the chain re-entry within one cluster 
occurs. The detailed character of the correlation 
function h(x) can only be evaluated from measure­
ments in the wide angle regime. 

We close the discussion of the intermediate q­

range with a remark on the surprising dependence 
of the long spacing L on molecular weight. If one 
calculates from Table IV the molecular mass Mv per 
cluster and accordingly the radius of gyration Rg, v 
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Figure 13. Scattering function F0 (q) =l(q) · q 2 for 
quickly crystallized PEO (T, = 40°C, Mw = 125,000) in 
comparison with calculated F0 (q) for adjacent re-entry 
along the (100) plane. Intermediate q-range qs;0.2A -I. 
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Figure 14. Comparison of measured and calculated 
stem correlation function H(q) q2 for the same sample as 
in Figure 10, for a q-range up to q=0.6A - 1 . 

of this part of the molecule in the melt one obtains 
in a good approximation 

(16) 

which speaks again in favour of the solidification 
model. 

THE DIRECT CORRELATION 
FUNCTION c(x) 

As it has been shown above the properties of the 
scattering function /(q) q2 in the intermediate q­

range depend only on the average distance between 
the crystalline stems within a cluster. A distinction 
between various models of the crystallization proc­
ess cannot be made on the base of scattering data 
from this range. This is demonstrated by Figures 13 
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and 14. In Figure 13 a measured scattering function 
of PEO crystallized at 40°C is compared with the 
calculated scattering function for an adjacent re­
entry model under the assumption that the re-entry 
takes place along the (100) plane. With regard to the 
level of the scattering function F" = nwP(q)q 2 no 
strong discrepancy seems to exist within the q-range 
q < 0.2 A - 1 . If one compares the measured and 
calculated data for larger q's, those curves differ 
completely, as demonstrated by Figure 14. There 
the measured stem correlation function H(q) is 
compared with the calculated correlation function 
for the case of adjacent re-entry. The discrepancy 
shows up for q-values q>0.15A - 1 and it may be 
noticed that most measurements and model calcu­
lations stop at about this q-value so far as the data 
in the literature are concerned. 

This example clearly demonstrates that for the 
evaluation of the details of the stem correlation 
function h(x) the wide angle scattering range has to 
be considered. This can be done by calculating the 
formfactor of a molecule according eq 2 for large q's 
assuming certain models. For the case of poly­
ethylene and under the assumption of adjacent re­
entry the wide angle scattering function has been 
calculated by Stamm23 and it has been shown that 
characteristic maxima should appear which are not 
observed experimentally,8 •24 however. 

The question arises what kind of information can 
be obtained from the scattering data without in­
troducing detailed structural models. The eval­
uation of the scattering data in a straight forward 
manner by Fourier-Bessel-transform is complicated 
by the formation of the "clusters," which we dis­
cussed aobve. The problem can be solved by use 
of the so-called "direct correlation function" 
which was introduced by Ornstein-Zernike (OZ)25 

in the theory of critical opalescence. The meaning of 
the direct correlation function in connection with 
our problem is demonstrated in Figure 15. 

The stem at 0 is directly correlated with the stems 
at 1 and 2 by means of the amorphous loops. But 
there is also a probability to meet another stem at 
point 1 because of a direct correlation between 1 
and 2; if these stems were connected by a loop. So 
one obtains 

h(Ol)=c(O, l)+c(0,2)®c(2, 1) (17) 

The convolution has to be repeated and leads in the 
classical case of critical opalescence finally to the 
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Figure 15. Application of the direct correlation fun­
ction c(x) to the problem of the crystallization of 
polymers. 

OZ integral equation 

h(x) =c(x) +Po I c(x')h(x'- x)d 2x' (18) 

The treatment has to be modified for our problem, 
since one has to take into account the finite number 
of stems within a cluster. First we introduce the 
probability f3 that the chain leaves a cluster and 
enters into another cluster. So starting with the first 
crystalline stem the probability of n re-entries is 
given by 

p(n) = rx"/3 (19) 

with rx= 1-{3. 
Secondly we repeat the convolution of eq 17 only 

N times, where N is the number of all crystalline 
stems of one molecule (molecular weight distri­
bution is neglected). The result of this treatment is 
given by26 •27 : 

H(q) 2rxC(q) [ 1 _ _!_ 1-(rxC(q)t] 
1- rxC(q) N 1- rxC(q) 

(20) 

where C(q) is the Fourier-Bessel transform of c(x). 
It is normalized by 

C(q) 1 
q--> 

(21) 

Therefore the expectation value for the average 
number Nc of stems per cluster in the limit N -->00 is 
given by 

rx 
<Nc-1)=2 1_rx for N--> oo (22) 

Equation 20 can be used to calculate the transform 
C(q) of the direct correlation function c(x) from 
the measured overall correlation function H(q). If 
C(q) is known the correlation function c(x) can 
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be obtained by a straight forward method, at 
least in principle. 

With this method there are three major problems 
involved. i) The treatment so far does not take into 
account the crystal lattice. ii) It also neglects the 
cases where one lattice point in the basal plane of 
the lamella is already occupied by a crystalline stem 
of the same molecule (excluded volume effect) and 
iii) the back transformation C(q) into c(,r) is trun­
cated since for experimental reasons the available q­

range is limited. 
In order to check the effect of these three limi­

tations Monte-Carlo calculations were performedY 
For several initial distribution functions c(x), stem 
clusters were generated taking into account the 
crystal structure of poly(ethylene oxide). Starting 
from the first stem with a probability (1- /3) the next 
lattice point was chosen at the crystal basal plane 
shown in Figure 16. The proceeding was repeated 
taking into account the a priori distribution func­
tion c(x). If the chosen lattice point is al­
ready occupied by a previous stem a new trial 
was made. If more than 10 trials had no success, 
this cluster was no longer taken into account and 
a new cluster was generated. After repeating this 
process 1000 times an averaged scattering function 
HMc(q) is obtained as well as an "experimental" 
direct correlation function CMc(q), which now in­
cludes the excluded volume effect. As indicated in 
Figure 16 two different types of clusters were gen­
erated, once with a one-dimensional arrange­
ment of stems and secondly with rotational sym­
metry. 

In order to test eq 20 HMc(q) was now considered 

8 

·r. . . . . 
• • • 

• 0 
0 0 0 

0 0 

0 • • 

0 

I 
/ 

A 

Figure 16. Arrangements of crystalline stems in the 
PEO-lattice for calculating the scattering functions of 
Monte-Carlo generated clusters. A) Rotational sym­
metry of the a priori direct correlation function c(x); B) 
One dimensional arrangements of stems. 
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as an experimentally obtained scattering curve and 
C(q) was calculated according to eq 20. In Figure 17 
these values are compared with the "experimental" 
correlation function CMc(q). For the first two cases, 
that means for a direct correlation function c(x) 
which either continuously declines or which exhibits 
a maximum, the agreement between the analytically 
calculated C(q) and the "real" CMc(q) is very satis­
factory. Especially it may be noticed, that two 
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Figure 17. Fourier-Bessel transforms C(q) of the di­
rect correlation function c(x). -, CMc(q) as generated by 
Monte-Carlo method;---, C(q) as analytically calculated 
from HMc(q) by means of eq 20. (a), (b), and (c), three 
different c(x) shown in the insert. 
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important features are well reproduced, which are 
interesting from the experimental point of view. 
These are the q0 -values for C(q0 ) = 0 and the depth 
of the first minimum. The third case in Figure 16 
represents adjacent re-entry along the (100) plane. 
It is not surprising that with such a strong cor­
relation eq 20 fails to some extent. 

From a rather large number of Monte-Carlo 
experiments using various direct correlation func­
tions c(x) the general conclusion can be drawn, 27 

that C(q) can be evaluated from the measured H(q) 

by means of eq 20 in a good approximation, if c(x) is 
not just a .-5-function. This result was obtained 
independently of assumptions about a two­
dimensional or a one-dimensional arrangement of 
crystalline stem centers. 

The second problem which has been studied by 
Monte-Carlo experiments is the effect of truncation 
on the Fourier-Bessel transformation of C(q). The 
direct correlation function c(x) is obtained from 

c(x)= fm J(q)J0(qx)2nqdq (23) 

but the upper integration limit qm is finite for 
experimental reasons. Especially in the case of 
poly( ethylene oxide) the truncation effect is rather 
serious for the following reason. The crystal struc­
ture has a repeating unit in chain direction of c = 

19.48 A corresponding to a layer line distance of 
0. 64 A - 1 in the reciprocal space. The diffuse back­
ground scattering due to the H- and D-chain 
mixture is repeated on each layer line. Therefore the 
measured neutron intensity at q-values q > 0.64 A is 
the sum of the intensities from the zero layer line 
and the first layer line. In principle these contri­
butions can be separated, but in practice the scatter­
ing of the experimental data is too large for that 
purpose. So the transformation of eq 23 is re­
stricted to qm 0.6 A - 1• The situation would be 
more favourable for the case of polyethylene, of 
course, where c=2.5A. 

In Figure 18 the effects of the truncation error are 
demonstrated for two cases. W(x) gives the prob­
ability for distances r in the PEO lattice as they 
appear in the "real" Monte-Carlo generated clus­
ters. w,,(x) is the result of the back transformation 
of C(q) which was obtained from the "experimen­
tal" scattering curve HMc(q) by means of eq 20. For 
the back transformation HMc(q) was truncated at 
q=0.6A - 1 • 
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Figure 18. Probability distribution of stems within the 
clusters. W(x) as generated by the Monte-Carlo method. 
W,,(x) as calculated from the "experimental" scattering 
curve HMc(q). Truncation of HMc(q) at qm=0.6A _,_ 

The agreement is satisfying if one takes into 
account that only a rather limited q-range was 
available. Similar results were found for other dis­
tributions.27 We therefore concluded that the meth­
od applied above can also be used for the experimen­
tal neutron scattering data. The procedure was the 
following: By means of eq 10 the stem correlation 
function H(q) was obtained from the experimental 
data J(q). Then C(q) was calculated from eq 20 and 
finally the desired direct correlation function c(x) 
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Figure 19. Direct correlation function c(x) in crystal­
line PEO, Mw= 125,000. (Probability density of sub­
sequent crystalline stems belonging to the same mol­
ecule.) (a) Quickly crystallized at T,=40°C (L=300A); 
(b) Slowly cooled down (L=430A). 

was obtained by the Fourier-Bessel transformation 
of eq23. 

The results for two samples of poly(ethylene 
oxide) (Mw= 125,000) crystallized under different 
conditions are plotted in Figure 19. The direct 
correlation functions c(x), giving the probability 
densities for the location of the subsequent crystal­
line stem look very different for the two cases. For 
the quickly crystallized sample a continuously de­
creasing probability density is found and adjacent 
re-entry along (120) is most probable. In contrast 
the slowly crystallized sample with a large long 
spacing of 430 A exhibits a maximum at about 8 A. 
This may be due to a mixture of preferred adjacent 
re-entry along (100) and (160) which corresponds to 
6.50A and 10.4A. It also may be possible that 
growth occurs along (120) but then only the neigh­
bour after next is occupied (9.2A). 

Single crystals (ofPEO) crystallized at low under­
cooling exhibits growth faces parallel to (100) and 
(140).28 This may be in agreement with the preferred 
adjacent re-entry given above, if one neglects the 
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small angle ( between (140) and (160). 
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