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ABSTRACT: The molecular motion of polymers in concentrated solutions is studied on the 
basis of recent measurements of relaxation stresses in the nonlinear region of viscoelasticity. The 
double-step deformation with varying time interval is proved to be specifically effective for studying 
not only a slow mode of the motion known as the reptation, but also a faster mode often referred 
to as the wriggling motion. It is found that in the former mode, the entanglement points behave as 
slip-links as assumed in the Doi-Edwards theory, while in the latter mode, they turn to be non­
slip-links, as assumed in the recent Doi theory. The transfer of monomers across the entangle­
ment points is practically inhibited at least in the early stage of the wriggling motion. The concept 
of non-slippery entanglements corresponds to the independent alignment approximation (IAA) 
of Doi and Edwards, which leads to the rheological constitutive model of Bernstein, Kearsley, and 
Zapas (BKZ model). 

KEY WORDS Concentrated Polymer Solution I Nonlinear Viscoelasticity I 
Double-Step Deformation I Doi-Edwards' Theory I Polymer Entangle­
ment I Rheological Constitutive Equation I 

We1 found in 1971 that the relaxation modulus of 
a concentrated polystyrene solution in a single-step 
shear strain was factored into two parts, one de­
pending on time t and the other on strain y, at times 
longer than a certain value rk: 

G(t, y) = h(y)G(t) (I) 

This form of the strain-dependent modulus G(t, y) 
was compatible with a rheological constitutive 
model due to Bernstein, Kearsley, and Zapas 
(BKZ model).2 

Five years later, the wide applicability of the BKZ 
model was established by systematic measurements 
of a variety of flow properties, which includes the 
steady shear viscosity as a function of shear rate, the 
stress development following sudden start of shear 
flow, the stress decay following cessation of shear 
flow, and the stress relaxation following application 
of double-step strain.3 •4 At the same time, a failure 
of the BKZ model was also revealed in the case of 
double-step strain with antiparallel directions.5 

The molecular dynamics underlying the above 
results was discovered by Doi and Edwards6 in 
1978. Based on the primitive chain model, they have 

given a universal expression for the shift factor h(y) 
in eq 1, which is in excellent agreement with the 
observed values. They have also shown that the 
theory, if combined with the so-called independent 
alignment approximation (IAA), yields the BKZ 
constitutive equation, without spoiling the gain 
concerned with h(y). Furthermore, Doi7 has shown 
later that the theory gives a correct answer to the 
relaxation stress after application of antiparallel 
double-step strain with a long time interval, to 
which the BKZ model, hence IAA, produced a 
considerable error. 

Reading the above progress of studies, one might 
think that the Doi-Edwards theory has two ver­
sions, i.e., the rigorous version without IAA and the 
approximate version with IAA. However, this is 
misleading. As has been noted in the 
article,6 these two versions are simply based on two 
plausible assumptions on the slipperiness of en­
tanglement points, so that there is no a priori reason 
for discriminating two versions by the terms, rig­
orous and approximate. In other words, the for­
mer version without IAA corresponds to the perfect 
slippage, while the latter with IAA to the non-
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slippage of entanglement points. Thus, evaluation 
of IAA which is essential for a clear understanding 
of the wriggling motion of polymers has to be made 
on the experimental basis. 

We have recently pointed out elsewhere8 that in 
double-step shear involving the reversal of shearing 
direction, the IAA is successful for rapid reversal as 
compared with the time scale rk in eq I, though it 
fails for slower reversal. The situation is somewhat 
complicated. Thus, I find it worthwhile to review 
our efforts devoted to evaluation of IAA. 

STRESS RELAXATION IN 
SINGLE-STEP SHEAR 

Typical data of the relaxation modulus obtained 
for a polystyrene solution9 are shown in Figure I, 
where the curve at the top represents the linear 
relaxation modulus G(t) for sufficiently small 
strains, y < 0.6, and the remaining curves represent 
the strain-dependent moduli G(t, y) for larger 
strains. The long-time portion of these curves have 
the same shape so that they can be superposed on 
the G(t)-curve by vertical shift alone. The result is 
shown in Figure 2. In this way, we can determine 
the strain function h(y) in eq I, and two time 
constants, r 1 and rk, as indicated by the arrows. The 
r 1 represents the longest relaxation time of the test 

t Is 

Figure 1. Relaxation modulus G(t, y) for a polystyrene 
solution in chlorinated biphenyl at 30°C. Polymer mo­
lecular weight Mw is 8.42 x 106 and concentration c is 
0.06 gem - 3 . Amounts of shear y are < 0.57, 1.25, 2.06, 
3.04, 4.0, 5.3, and 6.1 from top to bottom. 
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system. 
The values of h(y) obtained for various sytems are 

shown in Figure 3. Obviously, the h(y) is a universal 
function independent of polymer molecular weight 
M and concentration c. 

The linear relaxation modulus G(t) is a material 
function. The ratio rdrk for various combinations 
of M and c is plotted against the number of 
entanglements per molecule, M/M., in Figure 4. 10 

Here the entanglement spacing M. was evaluated 
from the relation 

c;;;0.3gcm- 3 (2) 

which is applicable for polystyrene solutions. The 

1 o' 
t I s 

Figure 2. Reduced relaxation modulus G(t, y)jh(y) de­
rived from Figure I. 

y 

Figure 3. Shift factor h(y) for polystyrene solutions in 
chlorinated biphenyl. The circles with pip up, M = 
9.5 x lOs, c=0.30 g em - 3 ; succesive 45"-clockwise ro­
tations of pip represent M =9.5 x lOs, c=0.20 g em - 3 ; 

M=6.7 x lOs, c=0.30g cm- 3 ; and M=2.3 x lOs, c= 
0.40 g em - 3 , respectively. 
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Figure 4. r1/r. plotted against M/M" the number of 
entanglements per molecule, for polystyrene solutions. 
Filled circles are for polystyrenes with M = 5.6 x 106 and 
7.6 x 106 in diethyl phthalate, and unfilled circles are for 
polystyrenes with M=2.3x 105 , 6.7x 105 , 9.5x 105 , and 
1.80 x 106 in chlorinated biphenyl. Slope of line is 1.5. 

line in Figure 4 represents 

r 1/rk OC (M/Me)l. 5 (3) 

Since r1 oc M 3 ·5 , we obtain 

Tk OC (Mj Me)2 (4) 

The behavior of G(t, y) outlined above indicates 
that the stress relaxation after application of single­
step strain is divided in two processes by the time 

constant 'k· 

DOl-EDWARDS SLIP-LINK MODEL 

In the Doi-Edwards theory,6 each polymer in a 
highly entangled system is represented by a primi­
tive chain which moves along the center path of a 
tube-like region. At equilibrium, the primitive chain 
assumes a random walk configuration of N steps, 
each having length a and representing a part of 
polymer chain divided by an adjacent pair of en­
tanglement points. Thus, the number of primitive 
steps N is equated to the number of entanglements 
per molecule. If b is the length of a Rouse segment 
and N0 is its number per molecule, the equilibrium 
contour length Leq of the primitive chain is written 
as 

(5) 

and the number Ne of Rouse segments per primitive 
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Figure 5. Change in the form of a primitive chain. (0), 
The original state in equilibrium; (A), the affinely de­
formed state; (B), the equilibrated state at the end of 
process B due to the slip-link model; (C), the equilibrated 
state at the end of process B due to the independent 
alignment approximation (IAA). The dotted line repre­
sents the undeformed tube. 

step is written as 

(6) 

On application of a stepwise shear strain to the 
system, it is assumed that the tube, together with the 
primitive chain, is deformed affinely in accord with 
the macroscopic deformation. Each primitive step is 
extended or compressed and oriented according to 
its position relative to the deformation gradient as 
illustrated by the solid lines 0 and A in Figure 5. 

The extended contour length L and the hetero­
genized step-length a or segment-density Nefa in 
the chain A are equilibrated by wriggling motion of 
the Rouse chain in the equilibration time Teq of 
de Gennes. 11 A considerable part of induced stress 
is relaxed in this process B, 12 which determines 
the strain function h(y) in eq 1. 

Doi and Edwards have calculated h(y) by two 
methods. In the first method, the extended contour 
length of the chain A is assumed to return to the 
equilibrium value Leq along the center path of the 
tube as illustrated by the line B in Figure 5. Due to 
the contraction of the contour length, the number of 
primitive steps decreases, while the number of 
Rouse segments in each survived step increases. 
Counting the balance of these effects, Doi and 
Edwards have derived the following expression for 
the stress tensor in the state B: 

a.p(B)=pNk8 TQ.p(E) Teq) 
(7) 

(rt, /3= I, 2, 3) 

219 



M. KURATA 

Q / (E·u). (E·u)p) 
•P <IE·ul>\ IE-ul (a,/3=1,2,3) 

(8) 

where p is the number of polymers in unit volume, 
k 8 the Boltzmann constant, T the absolute tempera­
ture, u the unit vector along the primitive chain, E 
the transpose of the deformation gradient tensor, 
and < · · ·) the isotropic average of the contents. In 
this process from state A to B, Rouse segments are 
assumed to move freely across entanglement points, 
just like across slip-links under a hypothetical force 
F.q = 3kTja. As a result a Rouse segment located on 
an entanglement point is transferred to an in­
termediate site on a primitive step as indicated by 
the unfilled circles. 

The second method is IAA, in which the modified 
length of each step of the chain A is assumed to 
return individually to the equilibrium value a as 
illustrated by the line C. Thus, it demands no 
change in the number of steps per molecule nor in 
the number of Rouse segments per step, but a local 
adjustment of the primitive path, and finally it gives 

Q (E)=j(E·u).(E·u)p) (9) 
•P \ IE·ul 2 

In this process from state A to C, Rouse segments 
do not move across entanglement points. In other 
words, entanglements act as non-slip-links. 

The function h(y) in eq 1 can be calculated from 
Qu(y) as 

h(y) = [y- 1Qu(y)]/lim [y- 1Qu(y)] (10) 

results obtained by eq 8 and 9 are shown by 
sohd and dashed lines in Figure 3, respectively. 
They are practically indistinguishable and in good 
agreement with experimental data. 

The anisotropic orientation of the primitive chain 
in state B or C is equilibrated as the chain is 
disengaged by reptation from the original tube. This 
process C in Doi's terminologyl 2 is characterized by 
the disengagement time Td of de Gennes. 11 Since the 
disengaged part of the chain are isotropic, the 
orientation angle is determined solely by the middle 
part of the chain remaining in the original tube and 
is kept constant until the middle part vanishes. A 
schematic diagram of this process may be found in 
the recent edition of Ferry's book. 13 

The equilibration time T.q and the disengagement 
time Td are given as 
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T.q=2(M/M.)2 rA 

Td = 6(M/ M.)3rA 

(II) 

(12) 

where 'A represents the longest relaxation time 
of a Rouse chain with molecular weight M •. 
Comparison of eq 11 with eq 4 indicates that T is eq 

proportional to 'k· Here we put3 

(13) 

Equation 12 does not agree with the familiar 
3.5th power dependence of Td on M. In this article, 

are not concerned with this discrepancy, but 
simply note that Doi has recently presented a 
possible solution.14 

ORIENTATION OF POLYMERS IN 
SINGLE-STEP SHEAR 

The single-step shear deformation may be repre­
sented by a displacement vector d, whose com­
ponents are d1 =d2 =d3 =0 for t<O, and d1 =yx2 , 

d2 = d3 = 0 for t 0, with respect to a Cartesian 
coordinate system x 1x2 x3 • Then, for an incom­
pressible material, the rheologically signigicant 
stresses are the shear stress u w the first normal 
stress difference u11 -u22 , and the second normal 
stress difference u22 -u33 or its alternative u11 -u33 . 

For simplicity, we denote these stress components 
by u, v, and v2 or v3 , respectively. The stress-optical 
law is then expressed as 

2u sin 2x 

v = cos 2x 

v3 = v + v2 = 

(14) 

(15) 

(16) 

where is the birefringence in the x1x2-plane, 
is that in the x1x3 -plane, x is the extinction angle, 
and C is the stress-optical coefficient. 

Figure 6 shows typical results of optical and shear 
stress measurements in the time-dependent field 
after the single-step shear. 15 The solution is a 
polystyrene in polychlorinated biphenyl (Aroclor 
1248), with Mw=6.7 x 105 and c=0.40g cm- 3. In 
the figure, values of quantities, 1 I, (2 cot 2x)/y, 
and I C I= (I 2x)/2u, measured at various y 
are plotted against time. The extinction angle x was 
independent of timet, and the quantity 1 CJ was also 
independent of t, indicating the validity of the stress 
opticallaw. 15 Furthermore, we found 
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Figure 6. Quantities I I, (2 cot 2x)/y, and I Cl = 

(I 1 sin 2x)/2(J plotted against time t for three values of 
shear strain y: circles with pip up, 0.68; pip right, 1.01; 
pip down, 2.07. The test solution is described in the text. 

b 
N 

I 
l 

0 v 
Figure 7. Two dimensional diagram of the stress state 
(y, 2(J) after application of a single-step strain. The polar 
coordinates of the circle are given by (Jp(t) and 2x, the 
latter is invariant in the relaxation process. 

cot 2x = vj2(J= y/2 (17) 

The last equality is called the Lodge-Meissner 
relation. 

Thus, if 2(J(t, y) is plotted against v(t, y), we obtain 
a straight line as illustrated in Figure 7. The angle of 
the line with the v axis is equal to 2x, and the point 
representing the instantaneous stress state moves on 
the line towards the origin as t increases. The radial 
distance (Jp is !!.njC. The (JP gives a measure of the 
tensile force acting along the extended primitive 
chain in the relaxation process B, and a measure of 
the amount of Rouse segments confined in the 
original tube in the process C where the tensile force 
is already equilibrated. This diagram is useful for 
monitoring the change in anisotropic orientation of 
polymers. 

The ratio v2/v, which was negative, also did not 
depend on time t, and its dependence on y obeyed 
approximately the theoretical function given by Doi 
and Edwards, though not reproduced here. 15·17 
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STRESS RELAXATION IN 
DOUBLE-STEP SHEAR 

Now we proceed to a double-step shear defor­
mation such that a stepwise shear of magnitude y1, 
either positive or negative, is applied at time - t1 

and another shear y2 , always positive, is added at 
t = 0. The shear stress (J and the normal stress 
difference v3 are measured for t > 0, under various 
combinations of t1, y1, and Yz. Thus, we write the 
measured stresses as (J(t, t1, y1, y2) and v3(t, t1, y1, 
y2). We did not measure v2 directly because of 
experimental difficulty, but estimated it approxi­
mately by 

v2 = -0.2v3 (y<3) (18) 

which is based on the experimental results of the 
ratio v2/v in the single-step shear _15 

According to the BKZ constitutive model (or the 
Doi-Edwards model with IAA), the stress tensor 
u(t, t1, y1, y2) can be expressed in terms of relaxation 
stresses in single-step shear as 

u(t, l1, Y1, Yz)=u(t, Yz)+(J(t+tl, Y1 +yz) 

-u(t+tl, Yz) 
(19) 

where u stands for (J, v, and v2 . This equation gives 
proper prediction of (J(t, t1, y1, y2) when y1 Yz > 0 
(i.e., y1 and y2 are parallel), but often fails when 
y1y2 <0 as already mentioned. 

On the other hand, the Doi-Edwards model 
without IAA gives the following equation as far as t, 

where 

A(/3)={(4/3/n) [cos(n/3/2)/(1- {3 2)] 

(4/n)[cos (n/2/3)/(1- r 2)] 

(/3 < 1) 
(/3>1) (21) 

f3={[3+(yl +yz)2]/(3+y12W12 (22) 

The difference between eq 19 and 20 is practically 
neglibile when y1 y2 > 0, and even vanishes when y1 = 
-y2 j2. In the latter case, f3 and A(/3) happen to 
become unity, though y1y2 <0. Apart from these 
cases, however, eq 19 and 20 give often significantly 
different predictions. 

Such an example is shown in Figure 8, where the 
observed values of (J and v3 are shown by the circles, 
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Figure 8. Shear stress a and normal stress difference 
1'3 = a11 - a33 in the relaxation process after application 
of a double-step strain which is specified by t 1 = 200 s, 
;· 1 = - 2.89, and ;• 2 = 1.45. The solution used is the same 
as shown in Figure 6. Meaning of symbols and lines 
are given in the text. 
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Figure 9. Relaxation stress components for the same 
type of double-step strain as that shown in Figure 8, but 
with t1 =20s. 

i.e., unfilled circles for positive sign of stresses and 
filled ones for negative sign, and the calculated 
values are shown by the solid lines (eq 19) and the 
dashed lines (eq 20), respectively. The polymer so­
lution was the same as that shown in Figure 6, 
which was specified by the time constants, r 1 = Td = 
1100s, rk=160s, and The 
strains adopted were y1 =- 2y2 = 2.89, and the time 
interval t1 w-as 200 s, hence t1 > rk. In this case, eq 20 
gives a better account of shear stress than does 
eq 19, though a symptom of the opposite tendency is 
observed at several points in short times such that 
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t<20s. 
The latter ·tendency becomes evident in Figure 9, 

where the time interval adopted is as short as t1 = 
20 s. In this case, the observed values of rJ are in 
good agreement with the solid line due to eq 19 over 
the entire region of time examined. For t 'P t1 , the 
double-step shear becomes equivalent, in effect, to a 
single-step shear of y1 + y2 , leading to 

rJ(t, tt, Yt• Y2)=rJ(t, Yt +y2) (23) 

This prediction shown by the dash-dotted line in 
Figure 9 is also in agreement with the experimental 
values for t 'P t 1 . It is to be noted that eq 19 reduces 
to eq 23 for t'P t1 unless the total strain y1 +y2 is too 
close to zero. 

In this connection, it may be pertinent to repro­
duce here an explanation of the molecular process 
due to Osaki and Doi. 18 Let us start with the state at 
t< -t1 , in which each primitive chain is in equilib­
rium and the attached Rouse segments are iso­
tropic. This is schematically shown in (A) of Figure 
10, where the thin line represents the undeformed 
tube enclosing the right half of the chain and each 
circle represents a small group of isotropic seg­
ments. Of course, the center path of the tube is not 
really a straight line. 

On application of the first negative strain y1 < 0 at 
t= -t1, the tube is elongated and negatively orient­
ed, together with the Rouse segments in it. This is 
shown in (B) by thick line and negatively inclined 
dashes. At around t =- t1 + Teq• the chain returns 
to the equilibrium length in the deformed tube as 
shown in (C), and a part of the deformed tube 
evaporates as represented by the dashed thick line. 
In the next period, a part of the primitive chain 
close to the end escapes from the deformed tube and 
recovers an equilibrium configuration in a renewed 
tube as shown in (D), where the renewed tube is 
represented by the thin line. Thus, just before the 
application of the second strain y2 , the tube enclos­
ing the primitive chain becomes to consist of two 
parts, i.e., the inner part deformed in negative 
direction by y1 and the outer part undeformed. 

On application of the second strain y2 > 0, the 
outer part is stretched by a factor ()( = (3 + y2 2)112, 

while the inner part is deformed by a factor fJ given 
in eq 22, since it is already stretched by a factor 
(3 + y/)112 • Thus, under the condition that y1 = 
-2.89 and y2 = 1.45, the inner part of the tube is 
really compressed since fJ = 0.67, while the outer 
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part is stretched by the factor ex= 2.25. As a result, a 
considerable gap in the density of Rouse segments is 
induced between two parts of the tube at t = 0 +, as 
illustrated in (E). The Rouse segments in the inner 
part are still negatively directed, while those in the 
outer part are positively directed. 

If the gap in the segment density is equilibrated 
by the transfer of segments from inner to outer 
parts, the chain attains a state as shown in (F) at the 
end of the equilibration process, i.e., at around t= 
Teq· In the process from (E) to (F), two negatively 
directed groups of segments slide into the positively 
directed tube and change to positively directed 
groups of segments. On the other hand, in the IAA 
model, the state at t = Teq is such that shown in (F'). 

Doi19 has recently developed a dynamics of the 
process B ( t t Teq) with the aid of IAA, and 
derived an expression for the relaxation stress in this 
process: 

cr(t, E)= 3p(N0 / Ne)k8 Tf18 (t, E)Qu(E) (24) 

where Qu(£) is given by eq 9 and f18 (t, £)is given as 

/18 (t,E)= l: - 2- l+[cx(E)-l]exp -=---8 [ ( tp2)]2 
p,odd P 1! Teq 

(25) 

Thus, the relaxation stress cr(t, £) is not separable 
into a function of time and that of strain. The 
corresponding expression for cr(t, £)without the use 
of IAA has not been presented as yet. 

BIMODAL CHAIN ORIENTATION 
IN DOUBLE-STEP SHEAR 

As illustrated in Figure 10, there are two dif­
ferently oriented segments in a polymer chain after 
application of double-step strain. Thus, we may 
extend eq 14 and 15 as20 

2cr= crp sin 2x= crp1 sin 2x1 + crp11 sin 2x11 (26) 

v=crpcos2x= crp1cos2x1+crp11 cos2x11 (27) 

with 2x1=cot- 1[(y1 +y2)/2] and 2x11 =cot- 1(yrf2). 
If Vis a vector of magnitude crp and orientation 

angle 2 X, and Vi is a vector of cr Pi and 2 Xi (i =I and 
II) in the v, 2cr-plane shown in Figure 7, the above 
equations are simply expressed as 

(28) 

The two sets of stress data shown in Figures 8 and 
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Figure 10. Change in the tube length, and in the 
orientation and density of Rouse segments at various 
stages of a double-step shear experiment. 

20 

30 
vI kPa 

Figure 11. Two dimensional diagram of the stress state 
(v, 2u) after application of double-step strain, in which 
y1 = - 2.89, y2 = 1.45, and 11 = 20, 60, and 200 s, re­
spectively. 

9, together with another set for t1 =60s, are re­
plotted by circles in Figure 11, where the lines I and 
II are drawn parallel with vectors V1 and V11, 

respectively, and the data points for t=t1 are in­
dicated by arrows. In each case, the representative 
point moves parallel with V11 at the early stage of 
relaxation, indicating that only the outer part II of 
the chain is responsible for the relaxation at this 
stage. The relaxation of mode II finishes while the 
mode I starts at around t = t1 . This is to be expected, 
since the preparation and elimination of the outer 
part II are governed by the same kinetics whatever 
the mechanism. For example, the outer tube is 
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[] 

80 
vI kPa 

Figure 12. Two dimensional diagram of the stress state 
( v, 2u) after application of double-step strain, in which 
y1 = - 1.89, y2 = 2.88, t1 = 20 and 200 s, respectively. 

prepared and eliminated mainly by the reptation of 
chain when t1 and t> Teq• and by the wriggling 
motion of segments when t1 and t < Teq· 

The ideal separation of two modes occurs in the 
case of t 1 = 20 s. Here the outer tube is so short as 
compared with the inner tube that the latter long 
survives the former. On the other hand, in the case 
of t 1 = 200 s, the inner part is already too short for 
displaying the relaxation of pure mode I. In such a 
case, there must be a high probability that two 
modes proceed simultaneously in different mol­
ecules and even at different ends of the same 
molecule. The latter effect is, however, rather in­
significant according to the Doi theory. 7 

Figure 12 shows the stress data for the same 
polymer system as that in Figure 11, but with 
another combination of strains that y1 = 1.89 and 
y2 =2.88.21 It is notable on the curve for t1 =200s 
that the contribution of inner segments ap1 are 
enhanced in the range between 10 and 60s. Since 
t 1 > T.q in this case, we obtain IX=3.36 and /3=0.78 
for the state (E) in Figure 10. Then, the equilibra­
tion gives rise to an enhancement of the outerpart 
as in the case of the previous example. Of course, 
the scheme from (E) to (F) should not be applied to 
a rapid process such that t < T.q, even if t1 > T.w 
Thus, the problem may be tentatively interpreted in 
terms of eq 25. If this type of equation is applied to 
the inner part, the relaxation factor p8 (t, E) predicts 
an enhancement of a1 since IX1 = f3 < 1. On the con­
trary, it predicts a larger decrease of au in the outer 
part, since 1Xn =IX> I. The corresponding analysis 
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due to the slip-link model is anticipated. 
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