Regular Article | Published:

A New Class of Polymers: Starburst-Dendritic Macromolecules

Polymer Journal volume 17, pages 117132 (1985) | Download Citation

Subjects

Abstract

This paper describes the first synthesis of a new class of topological macromolecules which we refer to as “starburst polymers.” The fundamental building blocks to this new polymer class are referred to as “dendrimers.” These dendrimers differ from classical monomers/oligomers by their extraordinary symmetry, high branching and maximized (telechelic) terminal functionality density. The dendrimers possess “reactive end groups” which allow (a) controlled moelcular weight building (monodispersity), (b) controlled branching (topology), and (c) versatility in design and modification of the terminal end groups. Dendrimer synthesis is accomplished by a variety of strategies involving “time sequenced propagation” techniques. The resulting dendrimers grow in a geometrically progressive fashion as shown: Chemically bridging these dendrimers leads to the new class of macromolecules—”starburst polymers” (e.g., (A)n, (B)n, or (C)n).

References

  1. 1.

    and , J. Phys. Lett., 44, 351 (1983).

  2. 2.

    , , and , J. Polym. Sci., Phys. Ed., 20, 157 (1982).

  3. 3.

    , J. Macromol. Sci., Chem., A17(4), 689 (1982).

  4. 4.

    and , J. Phys. Lett., 43, 625 (1982).

  5. 5.

    This terminology was adopted as an extension of present nomenclature which refers to present radial branched systems as “star Polymers.” It should be noted that some scientists refer to the present systems as “cauliflower polymers.” (See ref 1.)

  6. 6.

    , Makromol. Chem., 136, 211 (1970).

  7. 7.

    D. A. Tomalia, J. R. Dewald, M. Hall, P. Smith, and S. Martin, J. Org. Chem., to be published.

  8. 8.

    D. A. Tomalia and L. Wilson, unpublished work.

  9. 9.

    and , Russian Chem. Rev., 38, 884 (1969).

  10. 10.

    Statistical analysis shows that the mole fraction of unbridged dendrimer species is given by: f0=(1−P)NcNrG1where: P=1/(4X-1)$ and X is the moles of ethylene-diamine per mol of ester terminal group in the dendrimer. The exponential--exponential form of the above equation shows the strong dependence of f0 on G. Therefore, very high X values (low P) are essential for the higher generations, to assure unbridged, highly monodispersed dendrimers. A complete description with experimental verification of these statistical predictions will appear elsewhere (S. Martin et al.).

  11. 11.

    , “Polymeric Amines and Ammonium Salts,” Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, 1979. p 333.

  12. 12.

    and , “Alkylenimine Polymers,” John Wiley & Sons, New York, N. Y., 1984. in press.

  13. 13.

    , , , , and , Macromolecules, 14, 1203 (1983).

  14. 14.

    , Proc. R. Soc., London, Ser. A, 279, 50 (1964).

  15. 15.

    , Nature, London, 209, 5025 (1966).

  16. 16.

    , , , , and , Phys. Rev. Lett., 45, 1456 (1980).

  17. 17.

    , “The Fractal Geometry of Nature,” W. H. Freeman and Co., San Francisco, 1983.

  18. 18.

    , , , , , , and , Polym. Sci. U.S.S.R., 24, 1873 (1982).

Download references

Author information

Affiliations

  1. Functional Polymers/Process Dow Chemical U.S.A.

    • H Baker
    • , J Dewald
    • , M Hall
    • , G Kallos
    • , S Martin
    • , J Roeck
    • , J Ryder
    •  & P Smith
  2. The Analytical Laboratory, Dow Chemical U.S.A.

    • D A Tomalia

Authors

  1. Search for D A Tomalia in:

  2. Search for H Baker in:

  3. Search for J Dewald in:

  4. Search for M Hall in:

  5. Search for G Kallos in:

  6. Search for S Martin in:

  7. Search for J Roeck in:

  8. Search for J Ryder in:

  9. Search for P Smith in:

About this article

Publication history

Published

DOI

https://doi.org/10.1295/polymj.17.117

Further reading