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ABSTRACT: Rubber elasticity, identified as the capacity to sustain very large deformations 
followed by complete recovery, is exhibited exclusively by polymeric substances consisting 
predominantly of long molecular chains. Moreover, it is manifested under suitable conditions by 
virtually all polymers so constituted. The molecular theory of rubber elasticity rests on the premise, 
now fully validated by experiments, that alterations of the configurations of the chains comprising 
the network account for the elastic free energy and for the stress arising from deformation. Early 
theories of rubber elasticity were propounded on the assumption that displacements of the 
junctions are affine in the macroscopic strain. James and Guth, avoiding this assumption, treated a 
phantom network consisting of Gaussian chains having otherwise no material properties. They 
showed (i) that the mean positions of the junctions in this hypothetical network are affine in the 
strain, and (ii) that fluctuations about these positions are invariant under strain. The corollary that 
the instantaneous distribution of the chain vectors cannot be affine in the strain escaped notice for 
many years. The copious interpenetration of chains that characterizes polymer networks should be 
expected to restrain the fluctuations of junctions embedded therein, but not to suppress them 
altogether. Moreover, the restraints on fluctuations should depend on the state of strain. 
Departures from phantom behavior consequently occur to a degree that depends on the strain. 
Formulation of a self-consistent theory based on this idea required recognition of the non-affine 
connection between the chain vector distribution function and the macroscopic strain in a real 
network, which may partake of characteristics of a phantom network in some degree. Postulation 
of domains of constraint affecting the equilibrium distribution of fluctuations of network junctions 
from their mean positions led to a theory that accounts for the observed relationship of stress to 
strain virtually throughout the ranges accessible to measurement. The theory establishes con
nections between network structure and elastic properties. All essential parameters are determined 
by the connectivity of the network, the number and functionality of its junctions, and inherent 
characteristics of the molecular chains comprising the network. 
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The ability to sustain high deformations followed 
by full recovery upon removal of the stress is a 
property manifested under suitable conditions by 
virtually all polymeric substances consisting of long 
molecular chains. Moreover, it is exhibited ex
clusively by materials so constituted. This property 
assumes importance beyond the narrow limits of the 
term "rubber elasticity" by which it is commonly 
designated. It is operative in the swelling of poly
meric networks and in the deformation of sub
stances not generally included in the category of 
elastomers, e.g., in the deformation of semicrystal-

line polymers and in the viscoelastic behavior of 
linear polymers under flow in the liquid or amor
phous state. Rubber elasticity is essential to the 
functions of elastic proteins and muscle. The theory 
of rubber elasticity is centrally important to much 
of polymer science. 

The basic premise of the molecular theory of 
rubber elasticity asserts that the stress in a typical 
strained elastomer originates within the molecular 
chains of the structure, typically a covalent net
work; contributions from interactions between the 
chains are negligible. This premise finds direct sup-
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port in elasticity measurements on polymeric net
works. The temperature coefficient of the stress at 
fixed strain and its constancy with dilution are 
especially significant in this connection.1- 4 

Even more pervasive confirmation is provided by 
experiments showing the configurations of polymer 
chains to be unperturbed by their neighbors in 
amorphous polymers. Neutron scattering has been 
particularly decisive in demonstrating the absence 
of appreciable perturbations in the configurations 
of polymer chains when interspersed with other 
randomly configured polymer molecules of the 
same kind.5·6 The (free) energy of interaction be
tween neighboring chains must therefore be sensibly 
independent of their configurations. It follows that 
the intermolecular energy should not be signi
ficantly affected by the changes in configurations of 
the chains of a network induced by deformation.7 

The stored elastic free energy, which is central to the 
theory of rubber elasticity, therefore comprises the 
sum of contributions of the individual network 
chains. Other contributions, such as often have been 
postulated to arise from interchain interactions, 
may be ignored according to the stated premise and 
the compelling evidence in its support. 

The principal task of theory is to establish the 
relationship between the macroscopic strain and the 
distortion of the distribution of configurations of 
the network chains. 7 ·8 It was assumed originally 
that the locations of the network junctions may be 
considered to be affine in the macroscopic strain, 
from which it followed that the distribution of end
to-end vectors of the chains, i.e., the chain vectors, 
should likewise be affine in the strain. 9 - 14 The 
theory of James and Guth15 appeared at first to 
corroborate this conjecture, inasmuch as it showed 
the mean locations of junctions in a "phantom 
network" (see below) of Gaussian chains to be 
affine in the strain. Nearly thirty years elapsed 
before the important distinction between the distri
bution of mean chain vectors and their instan
taneous (or time averaged) distribution was rec
ognized.7 Modern theory of rubber elasticity is an 
outgrowth of the recognition that the actual distri
bution of chain vectors in a network of Gaussian 
chains is, in general, non-affine in the strain. 

THE ISOLATED CHAIN 

The chains in elastomeric networks typically con-
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sist of 100-1000 skeletal bonds. For free chains of 
this length, the function describing the distribution 
of end-to-end chain vector r is Gaussian in good 
approximation;16 i.e., the distribution is well repre
sented by 

W(r) = (3/2n(r2 ) 0 ) 3 i2 exp [- (3/2(r2 ) 0 )r2] ( 1) 

where (r2 ) 0 is the mean-square magnitude of r for 
the free chain averaged over all configurations. It 
follows that the free energy of the chain is given as a 
function of its displacement length r = 1 r 1 by 

A(r)=const-kTln W(r) 

=A0 (T) + (3kTj2(r 2 ) 0 )r 2 (2) 

The magnitude of the average retractive force ex
erted by the chain at fixed r, obtained by differen
tiation of eq 2, is 

(3) 

It is directed along the chain vector. Proportionality 
between the average force and the displacement 
length of the chain follows directly from eq 1, as is 
obvious. Conversely, primary assertion of eq 3 
would lead to eq 1. 

According to the premise enunciated above, the 
elastic properties of a network of Gaussian chains 
must follow from these relationships. 

NETWORK STRUCTURE AND 
TOPOLOGY 

A polymer network may be characterized by the 
number f.lJ of its junctions, their functionality ¢ (or 
average functionality</)), and by the number vends of 
ends of chains.7 The number of chains in the net
work, including those with only one end attached, 
is 

V = ( 1 /2)(f.1Jcp +Vends) (4) 

The effective number ve of chains is less than v 
owing to the imperfections due to free chain ends. 
For a perfect network for which vends= 0, 

(5) 

A quantity that characterizes the network with 
greater generality, regardless of the nature of its 
imperfections, is the cycle rank or number of 
independent circuits it contains.7·17 It may be de
fined alternatively as the minimum number of scis-
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Figure 1. Spatial neighbor junctions x surrounding a 
given junction and its four topological neighbors e in a 
tetrafunctional network. 

sions required to reduce the network to a "span
ning tree," i.e., a unified structure comprising all of 
the chains and containing no closed circuits or 
loops. This quantity will be used in due course to 
characterize the elastic response of the network. It 
suffices to observe that in a perfect network is 
given by the difference between the number of 
chains and the number of junctions of functionality 
¢;::.: 3; i.e., 

(6) 

See eq5. 
A prominent and important feature that is char

acteristic of polymeric networks is the copious 
interpenetration of chains and junctions. 7 •18 The 
region of space pervaded by a given chain is shared 
with many other chains and junctions. The do
main roughly demarcated by the junctions that 
are topologically first neighbors of a given junction 
is occupied by many other junctions. This is illus
trated in Figure I for a tetrafunctional network. 

The average number r of junctions within the 
region of radius (r2 )612 offers a quantitative mea
sure of the degree of interpenetration. It is given by 

(7) 

where V0 is the volume of the network in its state of 
reference (see below). Since (r2 ) 0 increases linearly 
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with the length of a chain, it must increase linearly 
with J.l 1- 1 . Hence, r is inversely proportional to the 
square-root of the degree of interlinking. For typi
cal elastomeric networks, r is in the range 25-100. 
Clearly, the chains and junctions are profusely 
interspersed. The first tier of topological neighbors 
is located well beyond the nearest spatial neighbors; 
see Figure I. It is to be noted also that the shortest 
topological pathway from a given junction to one of 
its nearest neighbors in space may span many 
chains. 

AFFINE NETWORKS 

The high degree of interpenetration in elasto
meric networks and the fact that each junction is 
located in an environment dominated by chains and 
junctions whose structural relation to the junction 
considered is remote lends credence to the assump
tion, universally adopted in the earliest theories of 
rubber elasticity,9 - 14 that the positions of the junc
tions are approximately affine in the macroscopic 
strain. 13 It follows at once from the premise in
troduced above that the elastic free energy of the 
network is the sum of expressions like eq 2 for each 
chain of the network. Required is the sum rf 
over all chains. According to the assumption that 
the transformation of chain vectors is affine in the 
displacement gradient tensor l that defines the 
macroscopic strain, this sum is just v(r2 ) 0 (A; + 
A;+ A;), where Ax, AY, Az are the principal exten
sion ratios measured relative to the dimensions of 
the specimen when isotropic and at the volume 
V 0 such that the mean-square magnitude of the 
chain vectors matches the value (r2 ) 0 for unper
turbed chains. Adding the term - J.l1kTin V for the 
dispersion of the junctions over the prevailing 
volume V and expressing the free energy relative to 
the state of reference in which Ax= AY = Az =I and V = 
V 0 , one obtains14•19 

t1Aarr = (v/2)kT(A A;- 3) 

- J.lJkT!n ( V/V0 ) (8) 

The stress is obtained as a function of strain by 
differentiation of eq 8. For uniaxial elongation par
allel to the X-axis, Ax= A= L/ L 0 and Ay = Az = 

( V/ V0 A)112 , and the force of retraction for the affine 
network is 

3 
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= h. v = v/L0 

=(vkTjL0 )(.:t- VjV0 A.2 ) 

= (vkT/Li, v)( V/ V 0 ) 213(a- a- 2) 

(9) 

(10) 

where a= L/ Li v =A.( V/ V0 ) - 113 is the extension ratio 
relative to the, length Li v = L 0 ( V/ V 0)113 of the un
stretched (isotropic) specimen at the volume V 
prevailing in the elongated state. Equations 9 and 10 
are traditionally identified as alternative stress
strain relations for Gaussian networks. 

PHANTOM NETWORKS 

The theory of James and Guth, 15 which appeared 
in 1947, is a landmark in the evolution of rubber 
elasticity theory. It addresses networks of 
Gaussian chains whose only action is to deliver 
contractile forces (proportional to their displace
ment lengths r) at the junctions to which they are 
attached. The chains have no other material prop
erties; they may pass through one another freely and 
they are not subject to the volume exclusion re
quirements of real molecular systems. Being free of 
constraints by neighboring chains, the junctions of 
the "phantom network"7 thus described undergo 
displacements that are affected only by their con
nections to the network and not at all by their 
immediate surroundings. 

Without prior assumptions concerning the dispo
sition of the junctions in a Gaussian phantom 
network, James and Guth1•5 showed (i) that their 
mean positions in this hypothetical network are 
affine in the strain, (ii) that their fluctuations about 
these mean positions are Gaussian, and (iii) that 
these fluctuations should be independent of the 
strain. The fluctuations of the junctions are sub
stantial. The mean-squared magnitude of the fluc
tuations in the chain vectors caused by them is given 
by20,21 

(11) 

The corresponding measure of the dispersion in the 
magnitudes of the mean vectors is 7 

(12) 

Thus, for a tetrafunctional phantom network, the 
fluctuations account for half of (r2 ) 0 for the free 
chain. 

It follows directly from the James and Guth 
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deductions (i) and (iii) above that the instantaneous 
positions must be non-affine in the strain: the 
distribution of junctions is the convolution of their 
mean positions, which are affine in the strain, with 
their fluctuations which are invariant with strain. 
The distribution of chain vectors in the phantom 
network, although a function of the strain, is not 
therefore affine in the strain. We return later to the 
implications of this long-overlooked corollary of the 
James and Guth theory. 

This theory15 leads to an elastic free energy of the 
same form as the first term in eq 8, but with a 
smaller coefficient. For a tetrafunctional network 
v/2 should be replaced by v/4 in the adaptation of 
that equation to a phantom network. Additionally, 
the second term of eq 8 disappears. As was shown 
subsequently,7 the elastic free energy for a phantom 
network with junctions of any functionality is given 
with complete generality by 

(13) 

where is the cycle rank (see above) and 11 is the 
first strain invariant defined by 

(14) 

The form of the dependence of the force of re
traction on strain under uniaxial deformation is the 
same as given by eq 9 or 10. The number v of chains 
is replaced by Hence, the retractive force is 

[ph= Li, v)( V/Vo)213(a-a-z) (15) 

(15') 

For a perfect tetrafunctional network = vj2, as 
follows from eq 6. Hence, the predicted retractive 
force in this case is half that for the affine network. 
This difference reflects the fact that only the mean 
vectors r are altered by the strain; the fluctuations, 
which in a tetrafunctional network account for 
half of (r2 ) 0 , are unaffected by strain. 

COMPARISONS OF AFFINE AND 
PHANTOM NETWORK 

THEORIES WITH EXPERIMENTS 

It follows from eq 10 and likewise from eq 15 that 

[3in(fjT)j3T]L.v= -(2/3)dln V 0/dT 

=-din (r2 ) 0 /dT (16) 
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Values of dIn (r2 ) 0 /dT determined from stress
temperature coefficients using this relationship are 
not appreciably affected by swelling of the network 
with a diluent. 1 - 4 They are in agreement with 
results of measurements conducted on dilute so
lutions of the linear polymer. 3 •22 These findings lend 
assurance that the primary premise of the molecular 
theories of rubber elasticity is valid. 

The experimental relationship of stress to strain is 
strikingly at variance with the traditional theories 
discussed above. Gee23 showed in 1946 that the 
slope of the tension-elongation curve observed for 
natural rubber diminishes more rapidly with elon
gation and with swelling than is predicted by eq 10, 
and hence also by eq 15. Similar departures from 
theory were found for other elastomers.8 ·14•23 The 
disparity between the factors of proportionality in 
eq 10 and 15 representing theories for affine and 
phantom networks, respectively, was overshadowed 
by the failure of both theories to account for the 
relationship of stress to strain. 

This circumstance led to widespread adoption of 
the Mooney-Rivlin relation obtained by arbitrarily 
appending a term proportional to the second strain 
invariant, / 2 =A. A. ;A.;+ A. ;A.;, to the elastic free 
energy. The resulting relationship of the tension to 
elongation is 

/=2C1(cx-cx- 2)+2C2(1-cx- 3) 

or 

where cl and c2 are empirical constants for a given 
elastomer at a fixed temperature. Agreement with 
the observed tension-elongation relationship in 
simple extension is improved through use of eq I 7 
having the additional parameter C2 • It fails utterly 
in compression (or equibiaxial extension) and for 
biaxial strains generally.8 Even in simple elon
gation, departures from the linear relation pre
scribed by eq 17 are apparent. 

With the main focus of attention on elastomers in 
uniaxial elongation, experiments indicated that the 
"correction term" in C2 diminishes with dilation 
(swelling) and that it diminishes relative to cl with 
increase in the degree of interlinking. This was 
implicit in the work of Gee.23 The results of Allen, 
Kirkham, Padget and Price2 shown in part in Figure 
2 are particularly revealing in this connection. Here 
the reduced nominal stress defined by 
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Figure 2. From ref 2. 

0 

(18) 

where A0 is the area of the initial cross section in the 
reference state, is plotted against ex -J in keeping 
with eq 17. The volume fraction vP of rubber may be 
identified with V 0/V in eq 15', according to which 
[/*] should be a constant equal to V0 for a 
given network. The slopes (2C2 ) of the Mooney
Rivlin plots decrease with dilution, but the in
tercepts (2C1) remain approximately the same. 
Other experiments reported by Allen et a/.2 showed 
that the intercept increases with degree of cross
linking. Thus, the intercept appears to be an in
variant that characterizes a given network. 
Observations such as these suggested that 2C1 may 
be identified with of eq 15'. 

FLUCTUATIONS IN REAL 
NETWORKS 

Inasmuch as the basic premise that the stored 
elastic free energy resides within the chains is fully 
validated, observed departures from the form of the 
stress-strain relationship prescribed by the theories 
cited above implicate the connections assumed, or 
deduced, between the macroscopic strain and the 

5 
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distribution of chain vectors as the source of the 
discrepancy. The assumption that the latter are 
affine in the strain makes no allowance whatever for 
excursions of the junctions from their mean po
sitions. Fluctuations of this nature are implicit in 
the molecular mobility that is essential to the high 
compliance exhibited by elastomers. It would be 
incorrect therefore to assume that they are sup
pressed altogether. On the other hand, the large, 
unimpeded fluctuations deduced for phantom net
works may be curtailed severely by the profusion of 
chains in which each junction is embedded; see 
Figure 1.24 

Considerations such as these led Ronca and 
Allegra25 and the author7 to suggest that real 
networks may behave in a manner between the two 
extremes. It was suggested further that a shift in 
proximity to these respective extremes might be 
expected with strain, phantom behavior being more 
closely approached with elongation or dilation.7 •25 

Inasmuch as the factor of proportionality to the 
strain function is smaller according to phantom 
theory than for affine theory, the observed depar
tures from these theories might thus be explained. 

Exploitation of this conjecture requires full grasp 
of the implications of the non-affineness of the 
transformation of the distribution of chain vectors 
with strain. 7 It is a necessary and sufficient con
dition for affine transformation that the neigh
borhood of junctions about a given junction be 
preserved, with distances between junctions altered 
in accordance with the displacement gradient l. The 
environments of the junctions must theorefore 
change with deformation in a phantom (hence, 
non-affine) network, or, indeed, in any network in 
which the junctions undergo independent fluctua
tions.26·27 The magnitude of the fluctuations occur
ring in a phantom network being generally greater 
than the distance to the nearest spatial neighbors, 
drastic reshufll.ing of neighbors about a given junc
tion may be required when the strain is large. 

Extensive interpenetration of portions of the net
work that are topologically remote in structural 
relation to one another implies a maze of entangle
ments in which chains and junctions are inextricably 
intertwined. The mutual entanglement of chains 
and junctions confers a coherence on the real 
network not present in its phantom analog compris
ing chains that neither preempt space nor obstruct 
transection of one another. This is a feature of real 

6 

networks that is of foremost importance. 
Occurrence of the rearrangements required by 
phantom network theory must obviously be difficult 
in a real network.26 - 28 

The entanglements here referred to are not dis
crete in the sense that they engage a given chain with 
one of its neighbors in a unique relationship. 
Instead, they involve a given chain diffusely with the 
manifold of its neighbors. Contrary to the usual 
sketches of chain configurations, their trajectories 
do not oscillate back and forth as if guided by their 
time-averaged· destinations.29 As follows from 
random-walk statistics in general, they are not self
correcting such that an excursion in a given direc
tion presages correction by an opposing course. The 
instantaneous configuration of the chain seldom 
describes a path such as would wind it about a 
neighboring chain, thereby establishing an entangle
ment that could be equated to a cross-linkage. The 
diffuse entanglements prevalent in polymer net
works allow extensive local rearrangements while, 
at the same time, precluding gross displacements of 
neighboring members of the network. 

The number of configurations accessible to a 
network obviously is greatly reduced by the in
tegrity of its permanent connections and by the 
further constraints due to entanglements. This re
duction is inconsequential in the undeformed net
work formed by interlinking randomly configured, 
unperturbed chains. It is the average over con
figuration space for an ensemble of equivalently 
formed networks that is relevant to the treatment of 
equilibrium properties. The ensemble average is 
unaffected by interlinking of the chains, which 
occurs via a random process. Upon deforming the 
networks thus formed, constraints due to the physi
cal integrity of the network, augmented by the 
effects of entanglements, contribute to the elastic 
free energy L1Ae1. 

The network junctions are the members of the 
network most susceptible to the steric constraints 
imposed by the diffuse entanglements. Each of them 
marks the confluence of ¢ chains (¢;;:.; 3) that en
cumber displacement of the junction relative to its 
neighbors. Although constraints obviously impinge 
on the chains as well, the totality of all constraints 
may be treated, presumably in good approximation, 
as if they restrict displacements of the junctions 
exclusively. 
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THEORY OF NETWORKS WITH 
JUNCTIONS SUBJECT TO 

STRAIN-DEPENDENT 
CONSTRAINTS26·28 

The model adopted for the purpose of giving 
quantitative expression to the ideas above is shown 
in Figure 3. Point A represents the mean position of 
the chosen junction in the hypothetical phantom 
state of the network. The radius of the large dashed 
circle centered at A represents the root-mean-square 
fluctuation about this position in the 
phantom state. The domain of constraints due to 
entanglements with surrounding real chains and to 
their steric requirements is represented by the small
er dashed circle centered at B and separated from A 
by s. It may be considered to be located as if the 
constraints were suddenly imposed at an instant 
during which a random excursion of the junction 
about its mean position A carried it to point B. (The 
manner in which the network was actually formed is 
irrelevant.) After the constraints have been estab
lished, the mean position of the junction is at point 
C removed from A by dR. In other words, under 
the combined influences of its connections with the 
network (i.e., the phantom network forces) and of 
the constraints, the mean position of the junction in 
the unstrained, real network is at C. The instan
taneous position of the junction happens to be at 
point D, which is outside the domain of constraints 
by neighbors but inside the domain representing 
fluctuations of the phantom network. Both of the 
domain boundaries are diffuse rather than rigid; 
hence the junction may wander beyond either of 
them, although the probability of its doing so 
diminishes with the distances from their centers. 
For simplicity and without significant sacrifice of 
accuracy, we take the action of the domain of con
straint to be a Gaussian function of the distance 
ds of the junction from B, just as the action of the 
(phantom) network is a Gaussian function of dR. 

The principal parameter K that characterizes the 
constraints specifies the inverse ratio of the mean
square radii of the domains; i.e., 

(19) 

where ((ds)2) 0 is the mean-square of the fluc
tuations about B that would occur in the unde
formed network if the junction would be subject 
only to the effects of its involvements with the 
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surrounding chains, constraints imposed by its con
nections to the network being somehow suspended. 
Thus, K measures the severity of the entanglement 
constraints relative to those of the phantom 
network. 

Since the network is formed through random 
molecular processes, the instantaneous distribution 
of junction positions, and hence of chain vectors, 
must be unaffected by formation of the network. It 
follows that the distribution of the centers of the 
domains of constraint about the mean phantom 
positions (A) must be identical, in the unstrained 
state, with the distribution of fluctuations (dR) in 
the phantom network. 

Isotropy of the network in its state of rest implies 
that displacement of the centers of the domains of 
constraint should be affine under strain. The dimen
sions of these domains, unlike those representing 
the action of the phantom network, must undergo 
distortion under strain. In first approximation,26·28 

they may be expected to become ellipsoidal accord
ing to the macroscopic deformation gradient tensor 
A, i.e., the sphere represented in Figure 3 by the 
smaller dashed circle becomes an ellipsoid. Thus, if 
dx is the component of ds along one of the 
principal axes of A, then on the assumption that the 
vectors ds are affine in A 

(20) 

where A.=A.x. For A> I, the domain of constraint is 
lengthened and the severity of the constraints is 
diminished in this direction. 

Experimental results suggest a somewhat more 
rapid alteration of the constraints with strain than 
predicted by affine deformation of the do
main.26'28·29 This observation may reflect structural 
inhomogeneities in the network. A higher approxi
mation is offered by28 

where ( is an additional parameter. In the following 
development we neglect (, although its effect on 
numerical calculations will be indicated. 

The primary contribution to the elastic free en
ergy from the connectivity of the network, i.e., the 
phantom network contribution dAph• is implicit in 
the displacement of the mean positions of the 
junctions in the phantom state. It is given by eq 13. 
The contribution dAc from the steric constraints 
comprises two terms26·28 due, respectively, to (a) 
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Figure 3. From ref 28. 

alteration of the (instantaneous) distribution of the 
!:lR (see Figure 3) from their values in the phantom 
network, and (b) alteration of the distribution of 
displacements !:ls of the junctions about the centers 
of their domains of constraint. The foregoing re
lations allow the required distributions to be for
mulated as functions of the strain. The free energies 
may then be obtained from the familiar configu
ration function 

where 

B, =(A?- 1)/(A:?<; - 1 + 1 )2 (25) 

and t identifies the principal axis x, y or z. 
It will be apparent that !:lAc vanishes for K-->0. In 

the opposite limit where K- 1 -->0, 

which, when substituted in eq 23 together with 
eq 13, followed by replacement of + J11 with v 

according to eq 6, yields !:lAarr of eq 8.26 The present 
theory is therefore consistent with both affine and 
phantom theory at its respective limits. 

The stress may be expressed similarly as the sum 
of contributions from the phantom network and 
from the entanglement constraints. In the case of 
simple elongation, for example, the tensile force 
is26,2s 

J =/ph+ fc =/ph( 1 + fcl /ph) (26) 

where /ph is given by eq 15 or The relative 
contribution from the entanglement constraints is 

where 
A1 =1X(V/V0 ) 113 and A2 =1X- 112(V/V0 ) 113 , 

(22) and 

where J11.; is the number of junctions at the location 
!:lR;, or at !:ls; relative to the center of the domain of 
constraint; W; is the a priori probability of the state 
thus specified, as given by the three-dimentional 
Gaussian probability distribution W(!:lR) or 
Wc(!:ls), the latter being ellipsoidal under strain. The 
contributions (a) and (b) above follow from 
-kT!n n. 

The total elastic free energy thus derived is just 
the sum 

(23) 

of the elastic free energy of the phantom network, 
!:lAph given by eq 13, and !:lAc for the combined 
contributions (a) and (b) above due to action of the 
constraints. According to the theory26 ·28 here 
outlined. 

-In [(B,+ l)(AfK- 1 B,+ !)]} (24) 

8 

K(A2)=B[B(B+ 1)- 1 

+K-!(A2 B+B)(d -2 +B)-I] 

where 
(28) 

In general, and for perfect networks in particular, 
may be replaced by unity in eq27. 

COMPARISON OF THEORY 
WITH EXPERIMENTS 

Experimental results on elastomers in uniaxial 
strain are conveniently represented by plots of the 
reduced nominal stress[/*] (see eq 18) against IX- 1. 

Results of Pak30 covering an exceptionally wide 
range of extension ratio IX are shown by the points in 
Figure 4.29 The experiments were carried out on 
cross-linked poly(dimethylsiloxane), PDMS, with
out dilation, i.e., with v2 = 1. Those in compres
sion, for which IX - 1 > 1, were obtained30 by 
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Figure 4. Results of Pak30 on PDMS in extension 
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Figure 5. Results of Flory and Tatara. 31 Effects of 
swelling on cross-linked PDMS. From ref 29. 

measuring the inflation of a sheet as a function of 
pressure. Measurements in extension were con
ducted on strips from the same sample. The curves 
have been calculated according to the theory dis
cussed above using the parameters indicated. Use of 
(=0.05 instead of (=0 improves the agreement 
with experiment in compression (1/o: > 1) but at the 
expense of agreement in extension. The divergence 
between theory and experiment is small compared 
to the range covered: fourfold in extension and 
sixfold in compression. 

The results of Allen et a/.2 on the effects of 
swelling on the reduced force of networks of natural 
rubber (see Figure 2) are well represented by 
theory.29 Results of Tatara31 on PDMS networks 
swollen to the various degrees indicated by the 
volume fractions v2 of polymer are compared in 
Figure 5 with calculations according to theory 
for the values of K and ( indicated. 

Results of Mark and Sullivan32 on tetrafunc
tional networks prepared by end-linking PDMS 
chains of different lengths, shown in Figure 6, 
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Figure 6. Results of Mark and Sullivan32 on end
linked PDMS. From Erman and Flory29 

demonstrate the effect of the degree of cross-linking. 
The curves have been calculated for values of K 

chosen to be inversely proportional to the square
roots of the degrees of cross-linking (i.e., K oc I; -!12) 

on the hypothesis that the constraints should be 
proportional to the degree of interpenetration;29 see 
eq 7. All of the data for the several networks are well 
reproduced by the arbitrary choice of one of the 
K's, the others being related thereto through the de
grees of cross-linking. 

Measurements of stress in biaxial extension are 
more definitive inasmuch as the strain is bivariate. 
The more complex array of data obtained from 
skilfully executing experiments33 on rubber in bi
axial strain long resisted rational interpretation8 on 
a molecular basis, or even in terms of the more 
familiar phenomenological theories. It is partic
ularly significant therefore that these results are 
well reprdoduced by the theory discussed above, as 
Erman34 and Treloar35 have shown. Thus, the 
theory accounts for the relationship of stress to 
strain in elastomers virtually throughout the range 
accessible to experimental measurement. 35 The do
mains of constraint postulated by the theory exert 
their greatest effect at small strains. Inasmuch as the 
domains are distorted in proportion to the principal 
extension ratios A, whereas the range of the phan
tom fluctuations is unaffected by deformation, the 
relative effect of the constraints in a given direction 
must vary inversely with the elongation A. The effect 
vanishes as A is increased without limit. This de
scription is over-simplified. It nevertheless explains 
qualitatively the attenuation of effects of the con
straints at large strains or at high dilations. 36 

9 
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The reduced nominal stress in the limit of 
high deformations or dilations emerges as the quan
tity that characterizes the molecular contribution of 
the network, as earlier experiments suggested.2 •23 It 
is obviously essential to perform the extrapolation 
accurately, complications from curvature in plots 
of [/*] vs. IX- 1 being avoided. Measurements on 
swollen networks offer the best procedure for 
this purpose. 

As formally expressed, the theory takes account 
only of the covalent cross-linkages of the network 
embodied in the cycle rank Whether or not 
entanglements may increase the effective degree of 
interlinking is difficult to decide on purely theoreti
cal grounds. It is an issue best resolved by experi
ments. If entanglements enhance the effective value 
of this enhancement should be reflected in 
determined by appropriate extrapolation of expe
rimental measurements. The value thus determined 
may be compared with the "chemical" degree of 
interlinking, or the cycle rank. 

Numerous experiments29 "32 "40 - 45 show that 
obtained by extrapolation to IX- 1 =0, or, in some 
instances [/*] measured at finite extensions, to be 
proportional to the chemical degree of interlinking. 
An intercept indicative of a threshold of "entangle
ment cross-linkages," often postualted, is not ob
served. The absolute magnitude of the chemical de
gree of interlinking is more difficult to establish 
with accuracy. In those instances where this objec
tive has been achieved, the "elastic" and "chemical" 
degrees of interlinking are in good agreement. In
cluded are networks of PDMS/9 •32 •40 •42 •43 poly
(ethyl acrylate)41 copoly(isoprene-styrene)44 and 
poly( cis-! ,4-butadiene ).45 

Results deduced from the work of Mark and 
Sullivan32 shown in Figure 729 are illustrative of 
comparisons between limiting values of the reduced 
stress and degrees of interlinking. Values from 
elasticity measurements are somewhat higher than 
those obtained from the chemical structure, es
pecially at low degrees of interlinking. Failure to 
attain ultimate elastic equilibrium may account for 
these departures. The results deduced from swelling 
equilibrium, which are not subject to this source of 
error, are in excellent agreement with the theoretical 
line based on the network structure as embodied in 

The value of the parameter K appears to be 
related uniquely to the degree of interpenetration r 
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Figure 7. Limiting values of the reduced force U;.J for 
PDMS deduced from elasticity and swelling measure
ments of Mark and Sullivan32 plotted against 
From Erman and Flory. 29 

given by eq 7; i.e.,29 

K = const T = I(r 2 ) 612(11J/V0) (29) 

where I is an empirical parameter. Data available 
suggest that I may be the same for all tetrafunc
tional networks. 29 If this indication is verified, then 
it becomes possible to relate stress to strain on the 
basis of the degree of cross-linking which, in prin
ciple at least, is determinable from the chemical 
constitution of the network. Only the empirical 
parameter ( would then be subject to arbitrary 
choice. Its role in refining agreement between theory 
and experiment is marginal. 

CONCLUSIONS 

The molecular theory here discussed provides a 
comprehensive account of rubber elasticity. It suc
ceeds in relating the elastic equation of state to 
molecular constitution. This long sought objective 
is achieved with a latitude of choice in only one 
parameter. This parameter, K, appears to be suscep
tible to independent determination, approximately 
at least, from the cycle rank that characterizes the 
connectivity of the network. Arbitrariness· in the 
choice of parameters may thus be reduced to an 
utter minimum. 

The theory also accounts for the peculiar form of 
the dependence of the "elastic" contribution to the 
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chemical potential of the diluent in a swollen net
work.46 It provides the basis for a more exact 
treatment of strain birefringence in elastomeric net
works.47·48 The theory appears to account also for 
the effects of functionality. 49 ·50 These topics are 
beyond the scope of this review. 
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